Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 992-1004.doi: 10.3724/SP.J.1006.2025.43041

;

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of drip fertigation with dense planting on yield and soil bacterial community of summer maize in Southwest China

SONG Li1,5,6(), LIU Guang-Zhou2, ZHANG Hua3, LU Ting-Qi3, QING Chun-Yan3, YANG Yun-Shan4, GUO Xiao-Xia4, Hu Dan5, LI Shao-Kun1,6, HOU Peng1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Water- Saving Agriculture in North China, Ministry of Agriculture and Rural Affairs / Key Laboratory of Crop Growth Regulation of Hebei Province / College of Agronomy, Hebei Agricultural University, Baoding 071001, Hebei, China
    3Mianyang Academy of Agricultural Sciences, Mianyang 621023, Sichuan, China
    4The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group / College of Agronomy, Shihezi University, Shihezi 832000, Xinjiang, China
    5Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, Xizang, China
    6School of Agriculture, Anhui Science and technology University, Fengyang 233100, Anhui, China
  • Received:2024-08-21 Accepted:2025-01-23 Online:2025-04-12 Published:2025-02-08
  • Contact: E-mail: houpeng@caas.cn
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Key Research and Development Program of China(2023YFD1900603)

Abstract:

Soil microorganisms play a crucial role in the carbon and nitrogen cycles, contributing significantly to the maintenance of soil ecosystem health. This study investigated the effects of drip fertigation combined with dense planting on summer maize yield and soil bacterial communities in Southwest China. Two treatments were established: traditional water and fertilizer management (F) and drip fertigation with dense planting (H). High-throughput sequencing of the 16S rRNA gene was employed to analyze the impact of these treatments on soil bacterial communities. The results revealed that the H treatment significantly increased maize yield and biomass by 30.92% and 56.03%, respectively, compared to the F treatment. Additionally, the H treatment markedly enhanced soil bacterial community diversity at different growth stages and altered bacterial community structure in 2022. At the taxonomic level, the H treatment increased the relative abundance of certain phyla, including Patescibacteria, Bacteroidota, and Actinobacteriota, as well as specific genera such as Chujaibacter, Sphingomonas, Jatrophihabitans, and Flavisolibacter. In contrast, the relative abundance of Acidobacteriota in the F treatment was associated with yield, while the relative abundance of Sphingomonas in the H treatment was linked to biomass. Furthermore, at the maturity stage, the relative abundance of bacterial communities from three phyla (Myxococcota, Acidobacteriota, and Gemmatimonadota) and two genera (Ellin6067 and Gemmatimonas) in the H treatment was correlated with both biomass and yield. Notably, no such correlations were observed in the F treatment. Functional predictions using PICRUSt2 demonstrated that the H treatment enhanced the metabolic capacity of soil bacteria, particularly in pathways related to amino acid metabolism, xenobiotics biodegradation, glycan biosynthesis, and other metabolic processes. In conclusion, compared to traditional water and fertilizer management, drip fertigation with dense planting not only improved soil bacterial community diversity and metabolic capacity but also increased the relative abundance of beneficial bacterial phyla (Patescibacteria, Bacteroidota, and Actinobacteriota) and genera (Chujaibacter, Sphingomonas, Jatrophihabitans, and Flavisolibacter). This treatment influenced yield directly or indirectly by reducing the relative abundance of potentially harmful bacteria (Gemmatimonadota) and increasing the abundance of beneficial bacteria (Sphingomonas).

Key words: dense planting, drip fertigation, summer maize, yield, bacterial community

Fig. 1

Daily mean temperature and daily rainfall during the growth period of summer maize in 2022-2023"

Table 1

Fertilizer dosage for different treatments"

处理
Treatment
施肥时期
Fertilization stage
施肥总量(纯量)
Total fertilizer (net amount) (kg hm-2)
N P2O5 K2O
密植滴灌水肥一体化
Drip fertigation with dense planting
播种前Pre-planting 86.40 99.75 75.00
拔节期Jointing stage 59.73 42.75 30.00
大喇叭口期Megaphone stage 59.73 30.00
吐丝期Silking stage 44.80 15.00
乳熟期Milky stage 37.34
总量Total amount 288.00 142.50 150.00
传统水肥管理
Traditional water-fertilizer management
播种前Pre-planting 154.13 36.75 52.50
拔节期Jointing stage 138.00
总量Total amount 292.13 36.75 52.50

Fig. 2

Biomass and yield at maturity F: traditional water-fertilizer treatment. H: drip fertigation with dense planting treatment. A and C denote the yield and biomass in 2022, respectively. B and D denote the yield and biomass in 2023, respectively. Different lowercase letters indicate significant differences among treatments at the 0.05 level."

Fig. 3

Alpha diversity index of soil bacterial communities at silking and maturity stages Different lowercase letters indicate significant differences among treatments at the 0.05 level. Treatments are the same as those given in Fig. 2."

Fig. 4

PCoA analysis (A) and NMDS ordination (B) of soil bacterial communities at silking and maturity stages Anosim: analysis of similarities. NMDS: non-metric multidimensional scaling. Treatments are the same as those given in Fig. 2."

Fig. 5

Relative abundance of species in soil bacterial communities at the phylum (A) and genus (B) taxonomic levels at silking and maturity stages"

Fig. 6

Spearman’s correlation analysis of relative abundance of soil bacterial community with biomass and yield at phylum (A) and genus (B) levels * indicates significant correlation at the 0.05 level. Treatments are the same as those given in Fig. 2."

Fig. 7

Prediction and analysis of bacterial community function under different treatments at the silking and maturity stages (secondary metabolic pathway) * and ** indicate significant differences at the 0.05 and 0.01 levels, respectively. Treatments are the same as those given in Fig. 2."

[34] Ye J, McGinnis S, Madden T L. BLAST: improvements for better sequence analysis. Nucleic Acids Res, 2006, 34: W6-W9.
doi: 10.1093/nar/gkl164 pmid: 16845079
[35] Pruesse E, Quast C, Knittel K, Fuchs B M, Ludwig W, Peplies J, Glöckner F O. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res, 2007, 35: 7188-7196.
doi: 10.1093/nar/gkm864 pmid: 17947321
[36] Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010, 7: 335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131
[37] Qi D L, Hu T T, Liu T T. Biomass accumulation and distribution, yield formation and water use efficiency responses of maize (Zea mays L.) to nitrogen supply methods under partial root-zone irrigation. Agric Water Manag, 2020, 230: 105981.
[38] Zou H Y, Fan J L, Zhang F C, Xiang Y Z, Wu L F, Yan S C. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric Water Manag, 2020, 230: 105986.
[39] Hou S, Ren H, Fan F L, Zhao M, Zhou W B, Zhou B Y, Li C F. The effects of plant density and nitrogen fertilization on maize yield and soil microbial communities in the black soil region of Northeast China. Geoderma, 2023, 430: 116325.
[40] 孙昭萱, 张强, 孙蕊, 邓彪. 2022年西南地区极端高温干旱特征及其主要影响. 干旱气象, 2022, 40: 764-770.
doi: 10.11755/j.issn.1006-7639(2022)-05-0764
Sun Z X, Zhang Q, Sun R, Deng B. Characteristics of the extreme high temperature and drought and their main impacts in Southwestern China of 2022. J Arid Meteor, 2022, 40: 764-770 (in Chinese with English abstract).
[41] Li H R, Mei X R, Nangia V, Guo R, Liu Y E, Hao W P, Wang J D. Effects of different nitrogen fertilizers on the yield, water- and nitrogen-use efficiencies of drip-fertigated wheat and maize in the North China Plain. Agric Water Manag, 2021, 243: 106474.
[42] 翟娟, 薛军, 张园梦, 张国强, 沈东萍, 王群, 刘朝巍, 李少昆. 水肥一体化条件下施氮量对密植春玉米茎秆抗倒伏性状的影响. 玉米科学, 2021, 29(5): 137-144.
Zhai J, Xue J, Zhang Y M, Zhang G Q, Shen D P, Wang Q, Liu C W, Li S K. Effect of nitrogen application rate on lodging resistance of spring maize stalks under integrated irrigation with water and fertilizer. J Maize Sci, 2021, 29(5): 137-144 (in Chinese with English abstract).
[43] Sarula, Yang H S, Zhang R F, Li Y Y, Meng F H, Ma J H. Impact of drip irrigation and nitrogen fertilization on soil microbial diversity of spring maize. Plants (Basel), 2022, 11: 3206.
[44] Li G C, Niu W Q, Ma L, Du Y D, Zhang Q, Gan H C, Siddique K H M. Effects of drip irrigation upper limits on rhizosphere soil bacterial communities, soil organic carbon, and wheat yield. Agric Water Manag, 2024, 293: 108701.
[45] Liu M J, Zheng J L, Li Q S, Liang F, Mu X G, Pei D J, Jia H T, Wang Z H. Effects of film mulching on soil microbial diversity and community structure in the maize root zone under drip irrigation in Northwest China. Agronomy, 2024, 14: 1139.
[46] 于天一, 杨吉顺, 吴正锋, 张智猛, 沈浦, 郑永美, 李尚霞, 吴菊香, 孙棋棋, 吴月. 不同类型地膜对花生生长及根际细菌群落影响的比较分析. 中国农业科学, 2023, 56: 4842-4853.
doi: 10.3864/j.issn.0578-1752.2023.24.004
Yu T Y, Yang J S, Wu Z F, Zhang Z M, Shen P, Zheng Y M, Li S X, Wu J X, Sun Q Q, Wu Y. Comparative analysis of the effects of different types of plastic film on peanut growth and rhizobacterial community. Sci Agric Sin, 2023, 56: 4842-4853 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.24.004
[47] 张雨圣, 张帆, 郭守军, 郭志刚, 陈佰鸿, 马宗桓. 不同肥料配施对樱桃园土壤微生物群落结构及多样性的影响. 北方园艺, 2024, (16): 65-72.
Zhang Y S, Zhang F, Guo S J, Guo Z G, Chen B H, Ma Z H. Effects of different fertilizer combinations on soil microbial community structure and diversity in cherry orchards. North Hortic, 2024, (16): 65-72 (in Chinese with English abstract).
[48] 魏宇飞, 覃仁柳, 丁点草, 黎永斌, 谢源源, 屈达才, 赵天义, 杨尚东. 不同生育期番茄植株根际土壤微生物群落结构特征. 华中农业大学学报, 2024, 43(12): 9-21.
Wei Y F, Qin R L, Ding D C, Li Y B, Xie Y Y, Qu D C, Zhao T Y, Yang S D. Structural characteristics of soil microbial community in rhizospheres of tomatoes during different growth periods. J Huazhong Agric Univ, 2024, 43(12): 9-21 (in Chinese with English abstract).
[49] 李春梅, 王芳, 董合林, 马云珍, 徐文修, 张娜, 李鹏程, 万素梅, 徐清华. 不同氮用量对新疆棉田土壤微生物的影响. 中国土壤与肥料, 2022, (12): 68-73.
Li C M, Wang F, Dong H L, Ma Y Z, Xu W X, Zhang N, Li P C, Wan S M, Xu Q H. Effects of different nitrogen application rates on soil microorganisms in Xinjiang cotton field. Soil Fert Sci China, 2022, (12): 68-73 (in Chinese with English abstract).
[50] Chen H, Shang Z H, Cai H J, Zhu Y. Irrigation combined with aeration promoted soil respiration through increasing soil microbes, enzymes, and crop growth in tomato fields. Catalysts, 2019, 9: 945.
[51] Zhang Y H, Hou R J, Fu Q, Li T X, Li M, Cui S, Dong W C. Drip irrigation impacts on the root zone soil environment and enrichment characteristics of heavy metals in soybean. Agric Water Manag, 2023, 288: 108483.
[52] Ding B X, Bai Y G, Guo S C, He Z J, Wang B, Liu H B, Zhai J R, Cao H X. Effect of irrigation water salinity on soil characteristics and microbial communities in cotton fields in southern Xinjiang, China. Agronomy, 2023, 13: 1679.
[53] Li Z Y, Li W H, Wang J L, Zhang J Z, Wang Z H. Drip irrigation shapes the soil bacterial communities and enhances jujube yield by regulating the soil moisture content and nutrient levels. Agric Water Manag, 2023, 289: 108563.
[54] 吴杨, 卢秋云, 姜学峰, 李永红, 彭俊文. 不同套作模式对魔芋根际土壤微生物群落的影响. 南方农业, 2024, 18(11): 19-22.
Wu Y, Lu Q Y, Jiang X F, Li Y H, Peng J W. Effects of different intercropping patterns on microbial communities in konjac rhizosphere soil. South China Agric, 2024, 18(11): 19-22 (in Chinese with English abstract).
[55] 胡庆兰, 杨凯, 王金贵. 地膜覆盖及不同施肥处理对根际土壤微生物数量和酶活性的影响. 西北农业学报, 2023, 32: 429-439.
Hu Q L, Yang K, Wang J G. Effect of plastic mulching and different fertilization treatments on microbial quantity and enzyme activity of rhizosphere. Acta Agric Boreali-Occident Sin, 2023, 32: 429-439 (in Chinese with English abstract).
[56] 黄艳, 金秋, 陈竞楠, 肖颖, 佘翔宇, 侯毛毛. 节水灌溉对块根作物和土壤微生物影响的研究进展. 中国资源综合利用, 2024, 42(4): 115-119.
Huang Y, Jin Q, Chen J N, Xiao Y, She X Y, Hou M M. Research progress on the effects of water-saving irrigation on root crops and soil microorganisms. China Resour Comprehensive Util, 2024, 42(4): 115-119 (in Chinese with English abstract).
[57] Qiang R W, Wang M, Li Q, Li Y J, Sun H X, Liang W Y, Li C L, Zhang J J, Liu H. Response of soil nitrogen components and nirK- and nirS-type denitrifying bacterial community structures to drip irrigation systems in the semi-arid area of Northeast China. Agronomy, 2024, 14: 577.
[58] Sarula, Yang H S, Zhang R F, Li Y Y. Shallow-buried drip irrigation promoted the enrichment of beneficial microorganisms in surface soil. Rhizosphere, 2023, 28: 100776.
[59] Guardia G, García-Gutiérrez S, Vallejo A, Ibáñez M A, Sanchez-Martin L, Montoya M. Nitrous oxide emissions and N-cycling gene abundances in a drip-fertigated (surface versus subsurface) maize crop with different N sources. Biol Fert Soils, 2024, 60: 375-391.
[60] 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响. 作物学报, 2025, 51: 273-284.
doi: 10.3724/SP.J.1006.2025.43010
Qian Y P, Su B B, Gao J X, Ruan F H, Li Y W, Mao L C. Effects of maize and soybean intercropping on soil physicochemical properties and microbial carbon metabolism in karst region. Acta Agron Sin, 2025, 51: 273-284 (in Chinese with English abstract).
[1] Rong L B, Gong K Y, Duan F Y, Li S K, Zhao M, He J Q, Zhou W B, Yu Q. Yield gap and resource utilization efficiency of three major food crops in the world: a review. J Integr Agric, 2021, 20: 349-362.
[2] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 等. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941-1959.
doi: 10.3864/j.issn.0578-1752.2017.11.001
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, et al. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941-1959 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.001
[3] 程雅婷, 李荣发, 王克如, 谢瑞芝, 侯鹏, 明博, 薛军, 张国强, 刘广周, 李少昆. 中国春玉米高产纪录的创造与思考. 玉米科学, 2021, 29(2): 56-59.
Cheng Y T, Li R F, Wang K R, Xie R Z, Hou P, Ming B, Xue J, Zhang G Q, Liu G Z, Li S K. Creation and thinking of China’s spring maize high-yield record. J Maize Sci, 2021, 29(2): 56-59 (in Chinese with English abstract).
[4] 国家数据统计局. (2024-10-15) [2024-11-25]. https://www.stats.gov.cn.
National Bureau of Statistics,China. (2024-10-15) [2024-11-25]. https://www.stats.gov.cn (in Chinese).
[5] 侯鹏, 胡单. 西藏林芝玉米亩产喜获1672.86公斤刷新全国高产纪录. [2024-11-02]. http://www.xza.edu.cn/xww/info/1211/146111.htm.
Hou P, Hu D. The maize yield per mu in Nyingchi, Xizang was 1672.86 kg, setting a new national high yield record. http://www.xza.edu.cn/xww/info/1211/146111.htm ( in Chinese).
[6] 李新河, 黄宁. 西南地区玉米产业现状与发展建议. 农业研究与应用, 2020, 33(3): 60-64.
Li X H, Huang N. Present situation and development suggestions of corn industry in Southwest China. Agric Res Appl, 2020, 33(3): 60-64 (in Chinese with English abstract).
[7] 陈尚洪, 陈红琳, 郑盛华, 吴铭, 梁圣, 曲热朗磋, 沈学善, 张鸿, 梅旭荣, 刘定辉. 西南地区玉米养分管理现状分析与评价. 中国土壤与肥料, 2019, (1): 159-165.
Chen S H, Chen H L, Zheng S H, Wu M, Liang S, Qu R L C, Shen X S, Zhang H, Mei X R, Liu D H. Current status and evaluation of nutrient management for maize in Southwest China. Soil Fert Sci China, 2019, (1): 159-165 (in Chinese with English abstract).
[8] 余垚颖, 莫太相, 刘金丹, 郭应菊, 陈代容, 王明富. 四川山地、丘陵玉米N、P、K需肥特性及肥料利用率研究. 西南农业学报, 2021, 34: 326-333.
Yu Y Y, Mo T X, Liu J D, Guo Y J, Chen D R, Wang M F. N, P, K demand characteristics and fertilizer use efficiency of maize in mountain and hilly Sichuan. Southwest China J Agric Sci, 2021, 34: 326-333 (in Chinese with English abstract).
[9] 董欣, 倪相. 西南地区不同海拔极端降水时空变化特征. 西南大学学报(自然科学版), 2022, 44(9): 110-121.
Dong X, Ni X. Spatiotemporal variation of extreme precipitation at different elevations in Southwest China. J Southwest Univ (Nat Sci Edn), 2022, 44(9): 110-121 (in Chinese with English abstract).
[10] 黄小梅, 仕仁睿, 刘思佳, 舒建川, 肖丁木. 西南地区夏季高温热浪时空分布特征及其成因. 高原山地气象研究, 2020, 40(3): 59-65.
Huang X M, Shi R R, Liu S J, Shu J C, Xiao D M. Spatial- temporal characteristics and causes of summer heat waves in Southwest China. Plateau Mt Meteor Res, 2020, 40(3): 59-65 (in Chinese with English abstract).
[11] 张庆娜, 邵广忠, 孙殷会, 程娟, 傅迎军, 孟祥海, 胡颖慧, 王佰成. 种植密度对玉米茎秆抗倒伏性能及产量的影响. 黑龙江农业科学, 2023, (7): 1-6.
Zhang Q N, Shao G Z, Sun Y H, Cheng J, Fu Y J, Meng X H, Hu Y H, Wang B C. Effects of planting density on lodging resistance and yield of maize. Heilongjiang Agric Sci, 2023, (7): 1-6 (in Chinese with English abstract).
[12] Zhai L C, Xie R Z, Ming B, Li S K, Ma D L. Evaluation and analysis of intraspecific competition in maize: a case study on plant density experiment. J Integr Agric, 2018, 17: 2235-2244.
doi: 10.1016/S2095-3119(18)61917-3
[13] 于玮淇, 王芙臣, 杜伟嘉, 刘浩, 孙宁, 孟祥盟, 边少锋. 种植密度与化学调控对春玉米茎秆性状及抗倒伏能力的影响. 玉米科学, 2022, 30(5): 71-79.
Yu W Q, Wang F C, Du W J, Liu H, Sun N, Meng X M, Bian S F. Effects of planting density and chemical regulation on stem traits of spring maize. J Maize Sci, 2022, 30(5): 71-79 (in Chinese with English abstract).
[14] 袁曼曼, 吴浩, 朱世蝶, 王会强, 王会涛, 袁刘正. 不同种植密度对不同玉米品种农艺性状及产量的影响. 现代农业科技, 2023, (15): 29-32.
Yuan M M, Wu H, Zhu S D, Wang H Q, Wang H T, Yuan L Z. Effects of different planting density on agronomic traits and yield of different maize varieties. Mod Agric Sci Technol, 2023, (15): 29-32 (in Chinese).
[15] 李传哲, 许仙菊, 马洪波, 安霞, 盛金元, 张永春. 水肥一体化技术提高水肥利用效率研究进展. 江苏农业学报, 2017, 33: 469-475.
Li C Z, Xu X J, Ma H B, An X, Sheng J Y, Zhang Y C. Research advances in fertigation technology improving water and fertilizer use efficiency. Jiangsu J Agric Sci, 2017, 33: 469-475 (in Chinese with English abstract).
[16] Liu G Z, Yang Y S, Guo X X, Liu W M, Xie R Z, Ming B, Xue J, Wang K R, Li S K, Hou P. A global analysis of dry matter accumulation and allocation for maize yield breakthrough from 1.0 to 25.0 Mg ha-1. Resour Conserv Recycl, 2023, 188: 106656.
[17] Liu G Z, Yang Y S, Liu W M, Guo X X, Xie R Z, Ming B, Xue J, Zhang G Q, Li R F, Wang K R, et al. Optimized canopy structure improves maize grain yield and resource use efficiency. Food Energy Secur, 2022, 11: e375.
[18] 毛圆圆, 薛军, 翟娟, 张园梦, 张国强, 明博, 谢瑞芝, 王克如, 侯鹏, 李召锋, 等. 水肥一体化条件下密植高产玉米适宜追氮次数研究. 植物营养与肥料学报, 2022, 28: 2227-2238.
Mao Y Y, Xue J, Zhai J, Zhang Y M, Zhang G Q, Ming B, Xie R Z, Wang K R, Hou P, Li Z F, et al. Optimum times of nitrogen topdressing in high-yield maize under high plant density and fertigation. J Plant Nutr Fert, 2022, 28: 2227-2238 (in Chinese with English abstract).
[19] Wang F, Meng H F, Xie R Z, Wang K R, Ming B, Hou P, Xue J, Li S K. Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize. Agric Water Manag, 2023, 280: 108205.
[20] 曹文超, 王娅静, 宋贺, 李艳青, 赵飞, 徐海成, 田素波, 李英杰, 尹俊慧, 郭景恒, 等. 土壤原生生物的生态功能及其影响因素. 植物营养与肥料学报, 2024, 30: 160-179.
Cao W C, Wang Y J, Song H, Li Y Q, Zhao F, Xu H C, Tian S B, Li Y J, Yin J H, Guo J H, et al. Ecological function of soil protists and the influence factors. J Plant Nutr Fert, 2024, 30: 160-179 (in Chinese with English abstract).
[21] 刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展. 微生物学报, 2021, 61: 231-248.
Liu J W, Li X Z, Yao M J. Research progress on assembly of plant rhizosphere microbial community. Acta Microbiol Sin, 2021, 61: 231-248 (in Chinese with English abstract).
[22] 吴波, 冯凯, 职晓阳, 何强, 许玫英, 邓晔, 肖凡书, 汪善全, 于玲, 鲁祺鸿, 等. 环境微生物组多样性及功能研究进展. 中山大学学报(自然科学版), 2017, 56(5): 1-11.
Wu B, Feng K, Zhi X Y, He Q, Xu M Y, Deng Y, Xiao F S, Wang S Q, Yu L, Lu Q H, et al. Progresses in environmental microbiome diversity and function research. Acta Sci Nat Univ Sunyatseni, 2017, 56(5): 1-11 (in Chinese with English abstract).
[23] 赵康, 张磊, 李凯凯, 王斐, 张丙昌. 干旱区土壤自养微生物研究进展. 中国沙漠, 2022, 42(5): 177-186.
doi: 10.7522/j.issn.1000-694X.2022.00033
Zhao K, Zhang L, Li K K, Wang F, Zhang B C. A review on autotrophic microorganisms research in dryland soils. J Desert Res, 2022, 42(5): 177-186 (in Chinese with English abstract).
doi: 10.7522/j.issn.1000-694X.2022.00033
[24] 景兰舒, 屈艳萍, 翁白莎, 张学君, 姜田亮, 毕吴瑕. 干旱胁迫下夏玉米根区不同土层土壤微生物群落结构特征分析. 第十四届防汛抗旱信息化论坛论文集. 北京: 中国防汛抗旱杂志社, 2024. p 11.
Jing L S, Qu Y P, Weng B S, Zhang X J, Jiang T L, Bi W X. Characterization of soil microbial community structure in different soil layers in the root zone of summer maize under drought stress. Proceedings of the 14th Flood Control and Drought Relief Informa ionization Forum. Beijing: China Flood Control and Drought Relief Magazine, 2024. p 11 (in Chinese).
[25] 谷鹏, 焦燕, 杨文柱, 温慧洋, 白曙光, 杨洁. 不同灌溉方式对农田土壤微生物丰度及通透性的影响. 灌溉排水学报, 2018, 37(1): 21-27.
Gu P, Jiao Y, Yang W Z, Wen H Y, Bai S G, Yang J. Effects of different irrigation methods on soil microbial abundance and permeability in farmland. J Irrig Drain, 2018, 37(1): 21-27 (in Chinese with English abstract).
[26] 王芳, 沈舒雨, 杨柳, 林妍敏, 南雄雄, 张俊华. 旱区滴灌条件下不同养分组合对叶用枸杞土壤活性碳库及细菌群落的调控效应. 节水灌溉, 2021, (12): 21-29.
Wang F, Shen S Y, Yang L, Lin Y M, Nan X X, Zhang J H. Effects of different nutrient combinations on soil fertility and bacterial community of Lycium chinense mill under drip irrigation in arid area. Water Sav Irrig, 2021, (12): 21-29 (in Chinese with English abstract).
[27] 李依韦, 毕佳欣, 袁琴, 尹萌萌, 魏晓奇. 不同施肥处理玉米根际微生物种群结构及代谢多样性. 中国微生态学杂志, 2020, 32: 21-24.
Li Y W, Bi J X, Yuan Q, Yin M M, Wei X Q. The population structure and metabolic diversity of microorganisms in rhizosphere soil of corn treated with different fertilizers. Chin J Microecol, 2020, 32: 21-24 (in Chinese with English abstract).
[28] 严君, 韩晓增, 陈旭, 邹文秀, 陆欣春, 郝翔翔. 施肥对小麦、玉米和大豆连作土壤微生物群落功能多样性的影响. 干旱地区农业研究, 2019, 37(6): 171-177.
Yan J, Han X Z, Chen X, Zou W X, Lu X C, Hao X X. Effects of fertilization on soil microbial community and functional diversity under continuous cropping of wheat, maize and soybean. Agric Res Arid Areas, 2019, 37(6): 171-177 (in Chinese with English abstract).
[29] 艾铄, 张丽杰, 肖芃颖, 张晓凤, 邢志林. 高通量测序技术在环境微生物领域的应用与进展. 重庆理工大学学报(自然科学), 2018, 32(9): 111-121.
Ai S, Zhang L J, Xiao P Y, Zhang X F, Xing Z L. Application and progress of high-throughput sequencing technology in the field of environmental microorganisms. J Chongqing Univ Technol (Nat Sci), 2018, 32(9): 111-121 (in Chinese with English abstract).
[30] Zhang J J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 2014, 30: 614-620.
doi: 10.1093/bioinformatics/btt593 pmid: 24142950
[31] Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open-source tool for metagenomics. PeerJ, 2016, 4: e2584.
[32] Edgar R C, Haas B J, Clemente J C, Quince C, Knight R. UCHIME improves sensitivity and speed of Chimera detection. Bioinformatics, 2011, 27: 2194-2200.
[33] Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 2013, 10: 996-998.
doi: 10.1038/nmeth.2604 pmid: 23955772
[1] LI Pei-Hua, LI Jie, MENG Xiang-Yu, SUN Yu-Chen, FENG Yong-Jia, LI Yun-Li, DIAO Deng-Chao, ZHAO Wen, WU Wei, HAN De-Jun, ZHANG Song-Wu, ZHENG Wei-Jun. Evaluation of stress tolerance and physiological response of cold-type wheat under heat stress [J]. Acta Agronomica Sinica, 2025, 51(4): 1118-1130.
[2] LI Qiao, YE Yang-Chun, CHANG Xu-Hong, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, MA Rui-Qi, ZHAO Guang-Cai, CAI Rui-Guo, ZHANG Min, LIU Xi-Wei. Effects of high temperature and drought stresses on photosynthetic characteristics and yield of winter wheat after anthesis [J]. Acta Agronomica Sinica, 2025, 51(4): 1077-1090.
[3] WANG Jiao, BAI Hai-Xia, HAN Yu-Yan, LIANG Hui, FENG Ya-Nan, ZHANG Dong-Sheng, LI Ping, ZONG Yu-Zheng, SHI Xin-Rui, HAO Xing-Yu. Effects of elevated CO2 concentration, increased temperature and their interaction on the carbon and nitrogen metabolism in Liangxing 99 winter wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(4): 1061-1076.
[4] MENG Zi-Zhen, LIU Chen, SHENG Qian-Nan, XIONG Zhi-Hao, FANG Ya-Ting, ZHAO Jian, YU Qiu-Hua, WANG Kun-Kun, LI Xiao-Kun, REN Tao, LU Jian-Wei. Effects of nitrogen, phosphorus, and potassium fertilizer application on the yield increase of winter oilseed rape and the degree of yield reduction due to freezing stress [J]. Acta Agronomica Sinica, 2025, 51(4): 1037-1049.
[5] ZHANG Xiao-Li, LIU Xiao-Yan, XIA Wen-Wen, LI Jin. Functional analysis of the plasma membrane intrinsic protein gene SiPIP1;3 from Saussurea involucrata in tomato [J]. Acta Agronomica Sinica, 2025, 51(4): 863-872.
[6] LI Hui-Min, XING Zhi-Peng, ZHANG Hai-Peng, WEI Hai-Yan, ZHANG Hong-Cheng, LI Guang-Yan. Application of chemical regulators and other cultivation measures in lodging resistance and high-yield cultivation of wheat [J]. Acta Agronomica Sinica, 2025, 51(4): 847-862.
[7] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[8] LIU Ya-Long, WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SHANG Yong-Pan, YANG Xue-Hui, YIN Bo, ZHANG Dong-Ling, WANG Feng. Effects of nitrogen reduction on maize yield and N2O emission under green manure returning in Hexi oasis irrigation area [J]. Acta Agronomica Sinica, 2025, 51(3): 771-784.
[9] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[10] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[11] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[12] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[13] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[14] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[15] XIN Yu-Ning, REN Hao, WANG Hong-Zhang, LIANG Ming-Lei, YU Tao, LIU Peng. Effects of spraying 6-benzylaminopurine (6-BA) on grain filling and yield of summer maize under post-pollination high temperature stress [J]. Acta Agronomica Sinica, 2025, 51(2): 418-431.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!