Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (6): 1501-1513.doi: 10.3724/SP.J.1006.2025.43052
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YANG Xiao-Hui1,2(), YAN Xuan-Jun2,3, YANG Wen-Yan2, FU Jun-Jie2, YANG Qin1,*(
), XIE Yu-Xin2,*(
)
[1] |
Li X P, Zhou Z J, Ding J Q, Wu Y B, Zhou B, Wang R X, Ma J L, Wang S W, Zhang X C, Xia Z L, et al. Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front Plant Sci, 2016, 7: 833.
doi: 10.3389/fpls.2016.00833 pmid: 27379126 |
[2] |
Lu X D, Liu J S, Ren W, Yang Q, Chai Z G, Chen R M, Wang L, Zhao J, Lang Z H, Wang H Y, et al. Gene-indexed mutations in maize. Mol Plant, 2018, 11: 496-504.
doi: S1674-2052(17)30368-4 pmid: 29223623 |
[3] |
Liang L, Zhou L, Tang Y P, Li N K, Song T, Shao W, Zhang Z R, Cai P, Feng F, Ma Y F, et al. A sequence-indexed Mutator insertional library for maize functional genomics study. Plant Physiol, 2019, 181: 1404-1414.
doi: 10.1104/pp.19.00894 pmid: 31636104 |
[4] | Dai D W, Ma Z Y, Song R T.Maize kernel development. Mol Breed, 2021, 41: 2. |
[5] | Cai M J, Li S Z, Sun F, Sun Q, Zhao H L, Ren X M, Zhao Y X, Tan B C, Zhang Z X, Qiu F Z. Emp10 encodes a mitochondrial PPR protein that affects the Cis-splicing of nad2 intron 1 and seed development in maize. Plant J, 2017, 91: 132-144. |
[6] |
Ren X M, Pan Z Y, Zhao H L, Zhao J L, Cai M J, Li J, Zhang Z X, Qiu F Z. EMPTY PERICARP11 serves as a factor for splicing of mitochondrial nad1 intron and is required to ensure proper seed development in maize. J Exp Bot, 2017, 68: 4571-4581.
doi: 10.1093/jxb/erx212 pmid: 28981788 |
[7] | Li X J, Zhang Y F, Hou M M, Sun F, Shen Y, Xiu Z H, Wang X M, Chen Z L, Sun S S M, Small I, et al. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J, 2014, 79: 797-809. |
[8] | Xu C H, Song S, Yang Y Z, Lu F, Zhang M D, Sun F, Jia R X, Song R L, Tan B C. DEK46 performs C-to-U editing of a specific site in mitochondrial nad7 introns that is critical for intron splicing and seed development in maize. Plant J, 2020, 103: 1767-1782. |
[9] | Gao J, Zhang L, Du H N, Dong Y B, Zhen S H, Wang C, Wang Q L, Yang J Y, Zhang P F, Zheng X, et al. An ARF24-ZmArf2 module influences kernel size in different maize haplotypes. J Integr Plant Biol, 2023, 65: 1767-1781. |
[10] |
Qi W W, Zhu J, Wu Q, Wang Q, Li X, Yao D S, Jin Y, Wang G, Wang G F, Song R T. Maize reas1 mutant stimulates ribosome use efficiency and triggers distinct transcriptional and translational responses. Plant Physiol, 2016, 170: 971-988.
doi: 10.1104/pp.15.01722 pmid: 26645456 |
[11] |
Wang H Q, Wang K, Du Q G, Wang Y F, Fu Z Y, Guo Z Y, Kang D M, Li W X, Tang J H. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytol, 2018, 218: 1233-1246.
doi: 10.1111/nph.15057 pmid: 29479724 |
[12] | Pang J L, Fu J J, Zong N, Wang J, Song D D, Zhang X, He C, Fang T, Zhang H W, Fan Y L, et al. Kernel size-related genes revealed by an integrated eQTL analysis during early maize kernel development. Plant J, 2019, 98: 19-32. |
[13] |
Chen L, Li Y X, Li C H, Shi Y S, Song Y C, Zhang D F, Wang H Y, Li Y, Wang T Y. The retromer protein ZmVPS29 regulates maize kernel morphology likely through an auxin-dependent process(es). Plant Biotechnol J, 2020, 18: 1004-1014.
doi: 10.1111/pbi.13267 pmid: 31553822 |
[14] |
Yang N, Liu J, Gao Q, Gui S T, Chen L, Yang L F, Huang J, Deng T Q, Luo J Y, He L J, et al. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet, 2019, 51: 1052-1059.
doi: 10.1038/s41588-019-0427-6 pmid: 31152161 |
[15] |
Sun Q, Li Y F, Gong D M, Hu A Q, Zhong W S, Zhao H L, Ning Q, Tan Z D, Liang K, Mu L Y, et al. A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination. Nat Commun, 2022, 13: 5708.
doi: 10.1038/s41467-022-33513-4 pmid: 36175574 |
[16] |
Zhang Q L, Wu R H, Hong T, Wang D C, Li Q L, Wu J Y, Zhang H, Zhou K, Yang H X, Zhang T, et al. Natural variation in the promoter of qRBG1/OsBZR5 underlies enhanced rice yield. Nat Commun, 2024, 15: 8565.
doi: 10.1038/s41467-024-52928-9 pmid: 39362889 |
[17] | Li Y X, Lu J W, He C, Wu X, Cui Y, Chen L, Zhang J, Xie Y X, An Y X, Liu X Y, et al. Cis-regulatory variation affecting gene expression contributes to the improvement of maize kernel size. Plant J, 2022, 111: 1595-1608. |
[18] |
Fu J J, Cheng Y B, Linghu J J, Yang X H, Kang L, Zhang Z X, Zhang J, He C, Du X M, Peng Z Y, et al. RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun, 2013, 4: 2832.
doi: 10.1038/ncomms3832 pmid: 24343161 |
[19] |
Lister R, O’Malley R C, Tonti-Filippini J, Gregory B D, Berry C C, Harvey Millar A, Ecker J R.Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 2008, 133: 523-536.
doi: 10.1016/j.cell.2008.03.029 pmid: 18423832 |
[20] |
Stark R, Grzelak M, Hadfield J.RNA sequencing: the teenage years. Nat Rev Genet, 2019, 20: 631-656.
doi: 10.1038/s41576-019-0150-2 pmid: 31341269 |
[21] |
Rehman A, Rehman S U, Khatoon A, Qasim M, Itoh T, Iwasaki Y, Wang X, Sunohara Y, Matsumoto H, Komatsu S. Proteomic analysis of the promotive effect of plant-derived smoke on plant growth of chickpea. J Proteomics, 2018, 176: 56-70.
doi: S1874-3919(18)30042-3 pmid: 29391210 |
[22] |
Meyer R R, Laine P S. The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev, 1990, 54: 342-380.
doi: 10.1128/mr.54.4.342-380.1990 pmid: 2087220 |
[23] | Maffeo C, Aksimentiev A. Molecular mechanism of DNA association with single-stranded DNA binding protein. Nucleic Acids Res, 2017, 45: 12125-12139. |
[24] |
Maier D, Farr C L, Poeck B, Alahari A, Vogel M, Fischer S, Kaguni L S, Schneuwly S.Mitochondrial single-stranded DNA- binding protein is required for mitochondrial DNA replication and development in Drosophila melanogaster. Mol Biol Cell, 2001, 12: 821-830.
pmid: 11294889 |
[25] |
Ruhanen H, Borrie S, Szabadkai G, Tyynismaa H, Jones A W E, Kang D, Taanman J W, Yasukawa T. Mitochondrial single- stranded DNA binding protein is required for maintenance of mitochondrial DNA and 7S DNA but is not required for mitochondrial nucleoid organisation. Biochim Biophys Acta, 2010, 1803: 931-939.
doi: 10.1016/j.bbamcr.2010.04.008 pmid: 20434493 |
[26] | Radulovic M, Crane E, Crawford M, Godovac-Zimmermann J, Yu V P C C. CKS proteins protect mitochondrial genome integrity by interacting with mitochondrial single-stranded DNA-binding protein. Mol Cell Proteom, 2010, 9: 145-152. |
[27] |
Edmondson A C, Song D Q, Alvarez L A, Wall M K, Almond D, McClellan D A, Maxwell A, Nielsen B L.Characterization of a mitochondrially targeted single-stranded DNA-binding protein in Arabidopsis thaliana. Mol Genet Genomics, 2005, 273: 115-122.
doi: 10.1007/s00438-004-1106-5 pmid: 15744502 |
[28] | Li D Q, Wu X B, Wang H F, Feng X, Yan S J, Wu S Y, Liu J X, Yao X F, Bai A N, Zhao H, et al. Defective mitochondrial function by mutation in THICK ALEURONE 1 encoding a mitochondrion-targeted single-stranded DNA-binding protein leads to increased aleurone cell layers and improved nutrition in rice. Mol Plant, 2021, 14: 1343-1361. |
[29] |
Kozłowski J. Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends Ecol Evol, 1992, 7: 15-19.
doi: 10.1016/0169-5347(92)90192-E pmid: 21235937 |
[30] |
Kumar N V, Varshney U. Contrasting effects of single stranded DNA binding protein on the activity of uracil DNA glycosylase from Escherichia coli towards different DNA substrates. Nucleic Acids Res, 1997, 25: 2336-2343.
pmid: 9171083 |
[31] | Selinski J, König N, Wellmeyer B, Hanke G T, Linke V, Ekkehard Neuhaus H, Scheibe R. The plastid-localized NAD-dependent malate dehydrogenase is crucial for energy homeostasis in developing Arabidopsis thaliana seeds. Mol Plant, 2014, 7: 170-186. |
[32] | Srivastava R, Li Z X, Russo G, Tang J, Bi R, Muppirala U, Chudalayandi S, Severin A, He M Z, Vaitkevicius S I, et al. Response to persistent ER stress in plants: a multiphasic process that transitions cells from prosurvival activities to cell death. Plant Cell, 2018, 30: 1220-1242. |
[33] | Yu Y J, Li J, Song B Y, Ma Z, Zhang Y F, Sun H N, Wei X S, Bai Y Y, Lu X G, Zhang P, et al. Polymeric PD-L1 blockade nanoparticles for cancer photothermal-immunotherapy. Biomaterials, 2022, 280: 121312. |
[34] | Li Y Q, Zhan P L, Pu R M, Xiang W Q, Meng X, Yang S Q, Hu G J, Zhao S, Han J L, Xia C, et al. Transcriptome analysis of potential regulatory genes under chemical doubling in maize haploids. Agronomy, 2024, 14: 624. |
[35] |
Wang Y C, Xu J Y, Ge M, Ning L H, Hu M M, Zhao H. High-resolution profile of transcriptomes reveals a role of alternative splicing for modulating response to nitrogen in maize. BMC Genomics, 2020, 21: 353.
doi: 10.1186/s12864-020-6769-8 pmid: 32393171 |
[36] | Guo S, Arshad A, Yang L, Qin Y S, Mu X H, Mi G H. Comparative transcriptome analysis reveals common and developmental stage-specific genes that respond to low nitrogen in maize leaves. Plants, 2022, 11: 1550. |
[1] | WANG Xiao-Lin, LIU Zhong-Song, KANG Lei, YANG Liu. Mapping of silique length and seeds per silique and transcriptome profiling of pod walls in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(4): 888-899. |
[2] | ZHANG Jin-Ze, ZHOU Qing-Guo, YANG Xu, WANG Qian, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, YU Kun-Jiang, TIAN En-Tang. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(3): 621-631. |
[3] | SUN Cheng-Ming, ZHOU Xiao-Ying, CHEN Feng, ZHANG Wei, WANG Xiao-Dong, PENG Qi, GUO Yue, GAO Jian-Qin, HU Mao-Long, FU San-Xiong, ZHANG Jie-Fu. Functional analysis and prediction of long non-coding RNA (lncRNA) in the regulation of branch angle in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(3): 559-567. |
[4] | LIU Xin-Yuan, CHENG Yu-Kun, WANG Li-Li, ZHAN Shuai-Shuai, MA Meng-Yao, GUO Ling, GENG Hong-Wei. Allelic variation and distribution of peroxidase activity genes TaPod-A1, TaPod-A3, and TaPod-D1 of wheat in Xinjiang, China [J]. Acta Agronomica Sinica, 2025, 51(1): 68-78. |
[5] | YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296. |
[6] | YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206. |
[7] | XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156. |
[8] | PENG Xiao-Ai, LU Mao-Ang, ZHANG Ling, LIU Tong, CAO Lei, SONG You-Hong, ZHENG Wen-Yin, HE Xian-Fang, ZHU Yu-Lei. Genome-wide association study of major grain quality traits in wheat based on 55K SNP arrays [J]. Acta Agronomica Sinica, 2024, 50(8): 1948-1960. |
[9] | ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513. |
[10] | CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146. |
[11] | SONG Meng-Yuan, GUO Zhong-Xiao, SU Yu-Fei, DENG Kun-Peng, LAN Tian-Jiao, CHENG Yu-Xin, BAO Shu-Ying, WANG Gui-Fang, DOU Jin-Guang, JIANG Ze-Kai, WANG Ming-Hai, XU Ning. Transcriptome analysis of a stigma exsertion mutant in mungbean [J]. Acta Agronomica Sinica, 2024, 50(4): 957-968. |
[12] | LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835. |
[13] | ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956. |
[14] | WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685. |
[15] | TIAN Chun-Yan, BIAN Xin, LANG Rong-Bin, YU Hua-Xian, TAO Lian-An, AN Ru-Dong, DONG Li-Hua, ZHANG Yu, JING Yan-Fen. Association analysis of three breeding traits with SSR markers and exploration of elite alleles in sugarcane [J]. Acta Agronomica Sinica, 2024, 50(2): 310-324. |
|