Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 621-631.doi: 10.3724/SP.J.1006.2025.44120

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea

ZHANG Jin-Ze1(), ZHOU Qing-Guo2, YANG Xu1, WANG Qian1, XIAO Li-Jing1, JIN Hai-Run1, OU-YANG Qing-Jing1, YU Kun-Jiang1, TIAN En-Tang1,*()   

  1. 1College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China
    2Anhui Dingke Seed Industry Co., Ltd., Hefei 230001, Anhui, China
  • Received:2024-07-25 Accepted:2024-10-25 Online:2025-03-12 Published:2024-11-13
  • Contact: *E-mail: erictian121@163.com
  • Supported by:
    Guizhou Provincial Science and Technology Support Program(Guizhou Kehe Support [2022] Key 031);National Natural Science Foundation of China(32160483);National Natural Science Foundation of China(32360497);National Natural Science Foundation of Guizhou University([2023] 093);Guizhou Provincial Key Laboratory of Molecular Breeding of Grain and Oil Crops(Guizhou Kehezhong Yindi [2023] 008);Guizhou Provincial Key Laboratory of Functional Agriculture in Colleges and Universities(Guizhou Jiaoji [2023] 007)

Abstract:

Sclerotinia sclerotiorum is a major disease affecting rapeseed, often causing significant yield losses after infection. In this study, we evaluated the resistance of 200 Brassica juncea lines to S. sclerotiorum and selected one highly resistant line (G21-243-1, HR) and one susceptible line (G21-149-2, LR) for transcriptome analysis. A total of 138.16 Gb of clean data was generated by simulating leaf responses at 12, 24, and 36 hours post-infection (hpi) with S. sclerotiorum. The analysis identified 1899 up-regulated genes and 1330 down-regulated genes, with 445 differentially expressed genes (DEGs) detected across two time points and 90 DEGs across all three time points. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses revealed significant enrichment in pathways related to plant-pathogen interactions, plant hormone signaling, and the MAPK signaling pathway in plants. By integrating transcriptome and functional analysis results, we preliminarily identified 20 candidate genes associated with resistance to S. sclerotiorum. Six of these genes were randomly selected for validation via qRT-PCR analysis. The findings of this study provide a foundation for future research on S. sclerotiorum, including the characterization of gene expression, the identification of resistance genes, and the development of resistant rapeseed varieties.

Key words: Brassica juncea, Sclerotinia sclerotiorum, transcriptome analysis, differentially expressed genes

Table 1

qRT-PCR primer sequences for the candidate genes"

基因名称
Gene name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
BjuB043567 AAGGCTTCGACTTCTGGTGG GGCGCAAACGAGCATCTAAA
BjuB043588 GGTTGAGCAGAAAAGGTACGC AGCTGGAACTCTGCCTTTAAGA
BjuA023180 CGGAAACCCATACCCAACCA AGACGAGGCTCTGAGTCCAT
BjuA027474 TCCTAGAGACGGCGGAGAAA ATGCGACCGTCGTCTTCTAG
BjuA040356 CCTTCCGACCAACAGAACCA GCAAAACCAAACGGGCTCAT
BjuA024994 TCAGCTGCTGACAGTGACAG GCTCGAACAGGCCAAGTACT
Actin1 CCCTGGAATTGCTGACCGTA TGGAAAGTGCTGAGGGATGC

Fig. 1

Frequency distribution of lesion areas in the leaves of 200 B. juncea lines (A), and the different resistance of LR and HR lines (B and C) *** indicates a significant difference at P < 0.001."

Table 2

Sequencing data statistics and quality testing"

样本
Sample
过滤后读长
Clean reads
过滤后碱基
Clean bases
匹配读长
Mapped reads
匹配比率
Mapping rate (%)
Q30碱基比例
Q30 bases rate (%)
HR12 21,049,953 6,304,265,677 39,172,284 93.04 93.56
HR24 20,890,365 6,255,809,943 38,776,834 93.02 93.50
HR36 21,801,040 6,529,517,940 40,687,767 93.31 94.05
LR12 21,522,196 6,444,737,219 39,803,989 92.48 93.88
LR24 20,142,620 6,032,972,157 37,585,078 92.98 93.69
LR36 20,359,340 6,097,753,385 37,899,609 93.08 93.68

Fig. 2

DEGs statistics at different time points (A) and DEGs Venn diagram (B)"

Fig. 3

Statistics of GO-enriched pathways of DEGs in different time periods The top five entries in Biological process and Molecular function enrichment, and the top three entries in Cellular component enrichment."

Fig. 4

Significant enrichment of KEGG in DEGs at different time periods DEGs are enriched in the KEGG pathway common to the first ten and three periods."

Table 3

Candidate genes for S. sclerotiorum resistance in B. juncea"

候选基因ID
Candidate
gene ID
拟南芥同源基因信息
Information of Arabidopsis homologous genes
基因功能
Gene function
BjuB043567 AT4G31800, 转录因子WRKY18
AT4G31800, transcription factor WRKY18
调节防御相关基因的表达
Regulates the expression of defense-related genes
BjuB043588 AT4G30530, γ-谷氨酰肽酶GGP1
AT4G30530, γ-glutamyl peptidase GGP1
硫苷和植保素的合成
Synthesis of glucosinolate and phytoprophylaxis
BjuA037008 AT1G12220, 抗病蛋白家族基因RPS5
AT1G12220, disease resistance protein family gene RPS5
芥子油苷相关合成
Glucosinolin synthesis
BjuB032919 AT1G32640, 转录因子MYC2
AT1G32640, transcription factor MYC2
茉莉酸介导的防御反应
Jasmonic acid-mediated defense responses
BjuB043577 AT4G31550, 转录因子WRKY11
AT4G31550, transcription factor WRKY11
茉莉酸(JA)信号通路的激活
Activation of the jasmonic acid (JA) signaling pathways
BjuA024994 AT5G45510, (LRR)家族蛋白
AT5G45510, (LRR) family proteins
细胞黏附和信号传递
Cell adhesion and signaling
BjuB023180 AT3G54030, 蛋白激酶蛋白BSK6
AT3G54030, protein kinase protein BSK6
调节低R:FR反应基因的表达
Regulates the expression of low R:FR response genes
BjuB027474 AT2G01640, 核仁蛋白SAHY1
AT2G01640, nucleolar protein SAHY1
核质之间穿梭转运
Shuttle transport between nucleoplasms
BjuB040356 AT4G25690, HLS家族 AT4G25690, HLS family 赤霉素相关合成 Gibberellin-related synthesis
BjuA017705 AT2G47140, 短链脱氢酶还原酶SDR5
AT2G47140, short-chain dehydrogenase reductase SDR5
植物防御反应
Plant defense responses
BjuA028613 AT4G17390, 核糖体蛋白家族基因EL15Y
AT4G17390, ribosomal protein family gene EL15Y
核糖体生物合成和蛋白质翻译
Ribosomal biosynthesis and protein translation
BjuA024292 AT5G66900, 抗病蛋白基因NRG1A
AT5G66900, the disease resistance protein gene NRG1A
植物防御反应和细胞凋亡
Plant defense response and apoptosis
BjuB011722 AT5G59070, UDP-糖基转移酶超家族蛋白
AT5G59070, UDP-glycosyltransferase superfamily proteins
转移酶活性, 转移糖基
Transferase activity, transfer glycans
BjuB041379 AT2G46450, 环核苷酸门控通道CNGC12
AT2G46450, cyclic nucleotide-gated channel CNGC12
触发Ca2+信号转导
Triggers Ca2+ signaling
BjuA014448 AT3G62600, 结构域蛋白基因ERDJ3B
AT3G62600, domain protein gene ERDJ3B
病原体受体信号通路
Pathogen receptor signaling pathways
BjuB033192 AT1G13060, 蛋白酶体基因PBE1
AT1G13060, the proteasome gene PBE1
降解受损蛋白
Degradation of damaged proteins
BjuA022756 AT3G48000, 醛脱氢酶基因ALDH2
AT3G48000, aldehyde dehydrogenase gene ALDH2
编码线粒体醛脱氢酶
Encodes mitochondrial aldehyde dehydrogenase
BjuA039403 AT3G01640, 葡萄糖醛酸激酶基因GLCAK
AT3G01640, glucuronide kinase gene GLCAK
D-GlcA磷酸化为D-GlcA-1-磷酸
D-GlcA phosphorylation to D-GlcA-1-phosphate
BjuA022423 AT3G48950, 果胶裂解酶样超家族蛋白基因PGF7
AT3G48950, pectin lyase-like superfamily protein gene PGF7
碳水化合物代谢过程
Carbohydrate metabolism processes
BjuO000727 AT1G65930, 异柠檬酸脱氢酶基因CICDH
AT1G65930, isocitrate dehydrogenase gene CICDH
与防御反应相关的氧化还原信号传导
Redox signaling associated with defense responses

Fig. 5

qRT-PCR validation (A) and RNA-Seq analysis results (B) H1, H2, and H3 are disease-resistant materials inoculated for 12, 24, and 36 h, and L1, L2, and L3 are susceptible materials inoculated for 12, 24, and 36 h."

[1] 白桂萍, 谢雄泽, 谢捷, 尹羽丰, 褚乾梅, 张清伟. 我国油菜生产布局时空演变及影响因素分析. 中国油脂, 2023, 48(4): 1-6.
Bai G P, Xie X Z, Xie J, Yin Y F, Chu Q M, Zhang Q W. Analysis on the temporal and spatial evolution and influencing factors of oilseed rape production layout in China. China Oils Fats, 2023, 48(4): 1-6 (in Chinese with English abstract).
[2] 胡志勇, 鲜孟筑, 李俊. 我国油菜品种改良现状及发展趋势. 中国农业大学学报, 2024, 29(3): 50-62.
Hu Z Y, Xian M Z, Li J. Current situation and development trends of rapeseed variety improvement in China. J China Agric Univ, 2024, 29(3): 50-62 (in Chinese with English abstract).
[3] 韩俣天, 何晓莹, 任静, 张建昆, 罗延青, 陈苇, 董云松, 李庆刚, 田志梅, 程小毛, 俎峰. 云南省芥菜型油菜菌核病抗性鉴定及抗性位点全基因组关联分析. 中国油料作物学报, 2023, 45: 1128-1140.
doi: 10.19802/j.issn.1007-9084.2023209
Han Y T, He X Y, Ren J, Zhang J K, Luo Y Q, Chen W, Dong Y S, Li Q G, Tian Z M, Cheng X M, Zu F. Identification of resistance to Sclerotinia sclerotiorum and genome-wide association analysis of resistance sites in Brassica juncea from Yunnan province. Chin J Oil Crop Sci, 2023, 45: 1128-1140 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2023209
[4] Wu J, Cai G Q, Tu J Y, Li L X, Liu S, Luo X P, Zhou L P, Fan C C, Zhou Y M. Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS One, 2013, 8: e67740.
[5] Yang B, Rahman M H, Liang Y, Shah S, Kav N N V. Characterization of defense signaling pathways of Brassica napus and Brassica carinata in response to Sclerotinia sclerotiorum challenge. Plant Mol Biol Rep, 2010, 28: 253-263.
[6] 蔺自敏. 油菜菌核病发病特点及防治措施. 安徽农学通报, 2021, 27(18): 96-97.
Lin Z M. Occurrence characteristics and control measures of Sclerotinia sclerotiorum in rapeseed. Anhui Agric Sci Bull, 2021, 27(18): 96-97 (in Chinese).
[7] 任卿虹. 油菜栽培技术与提高种植效益的措施. 种子科技, 2024, 42(15): 146-148.
Ren Q H. Cultivation techniques of rape and measures to improve planting efficiency. Seed Sci Technol, 2024, 42(15): 146-148 (in Chinese).
[8] 蒋丹. 油菜主要病虫害及防治方法. 种子科技, 2024, 42(3): 110-112.
Jiang D. Main diseases and insect pests of rape and their control methods. Seed Sci Technol, 2024, 42(3): 110-112 (in Chinese).
[9] 惠成章, 赵丽丽, 刘爱群. 中国油菜种业发展现状与对策研究. 园艺与种苗, 2024, 44(2): 92-94.
Hui C Z, Zhao L L, Liu A Q. Research on the current situation and countermeasures of rape seed industry development in China. Hortic Seed, 2024, 44(2): 92-94 (in Chinese with English abstract).
[10] Ding L N, Li T, Guo X J, Li M, Liu X Y, Cao J, Tan X L. Sclerotinia stem rot resistance in rapeseed: recent progress and future prospects. J Agric Food Chem, 2021, 69: 2965-2978.
[11] 黄小琴, 张蕾, 杨潇湘, 张重梅, 余垚颖, 邓越, 刘勇. 基于抗病评价解析西南区油菜主要病害抗病育种现状. 中国油料作物学报, 2023, 45: 1103-1108.
doi: 10.19802/j.issn.1007-9084.2023215
Huang X Q, Zhang L, Yang X X, Zhang Z M, Yu Y Y, Deng Y, Liu Y. Analysis resistance breeding progression of Brassica napus in Southwest China based on evaluation of disease resistance. Chin J Oil Crop Sci, 2023, 45: 1103-1108 (in Chinese with English abstract).
[12] Muhammad U Q. 甘蓝型油菜菌核病抗性基因和调控途径鉴定. 华中农业大学博士学位论文, 湖北武汉, 2020.
Muhammad U Q. Identification of Resistant Genes and Pathways Involved in Resistance for Sclerotinia Stem Rot in Brassica napus. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2020 (in Chinese with English abstract).
[13] Zhang F Q, Huang J Y, Tang M Q, Cheng X H, Liu Y Y, Tong C B, Yu J Y, Sadia T, Dong C H, Liu L Y, Tang B J, Chen J G, Liu S Y. Syntenic quantitative trait loci and genomic divergence for Sclerotinia resistance and flowering time in Brassica napus. J Integr Plant Biol, 2019, 61: 75-88.
[14] 杨玉涵, 曹嘉懿, 蔡新忠. 油菜miR6030通过靶标两个编码CC-NBS-LRR蛋白的基因调控对核盘菌的抗性. 植物病理学报, 2023, 53: 277-286.
Yang Y H, Cao J Y, Cai X Z. Brassica napus miR6030 negatively regulates resistance to Sclerotinia sclerotiorum via targeting two genes encoding CC-NBS-LRR proteins. Acta Phytopathol Sin, 2023, 53: 277-286 (in Chinese with English abstract).
[15] 汤依唯. 中介因子复合体亚基BnMED16和延伸因子复合体亚基BnELP4抗油菜菌核病的功能研究. 湖北大学硕士学位论文, 湖北武汉, 2021.
Tang Y W. Study on the Mechanism of Mediator Complex Subunit BnMED16 and Elongator Complex Subunit BnELP4 in the Sclerotinia sclerotiorum Resistance of Rape. MS Thesis of Hubei University, Wuhan, Hubei, China, 2021 (in Chinese with English abstract).
[16] Rana K, Ding Y J, Banga S S, Liao H M, Zhao S Q, Yu Y, Qian W. Sclerotinia sclerotiorum thioredoxin1 (SsTrx1) is required for pathogenicity and oxidative stress tolerance. Mol Plant Pathol, 2021, 22: 1413-1426.
[17] Zhao J W, Meng J L. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet, 2003, 106: 759-764.
[18] Zhang K, Liu F, Wang Z X, Zhuo C J, Hu K N, Li X X, Wen J, Yi B, Shen J X, Ma C Z, Fu T D, Tu J X. Transcription factor WRKY28 curbs WRKY33-mediated resistance to Sclerotinia sclerotiorum in Brassica napus. Plant Physiol, 2022, 190: 2757-2774.
doi: 10.1093/plphys/kiac439 pmid: 36130294
[19] Mei J Q, Liu Y, Wei D Y, Wittkop B, Ding Y J, Li Q F, Li J N, Wan H F, Li Z Y, Ge X H, Frauen M, Snowdon R J, Qian W, Friedt W. Transfer of Sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theor Appl Genet, 2015, 128: 639-644.
[20] Mei J Q, Shao C G, Yang R H, Feng Y X, Gao Y, Ding Y J, Li J N, Qian W. Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed. Theor Appl Genet, 2020, 133: 1313-1319.
[21] 谢永俊, 刘旭云, 万洪辉. 云南地方油菜种质资源抗(耐)病毒病、菌核病和霜霉病的鉴定研究. 云南农业大学学报, 2001, 16(2): 89-92.
Xie Y J, Liu X Y, Wan H H. Evaluation on resistance (tolerance) of Yunnan rape germplasm to virus, sclerotiniose and downy mildes. J Yunnan Agric Univ, 2001, 16(2): 89-92 (in Chinese with English abstract).
[22] Roy N N. Interspecific transfer of Brassica juncea-type high blackleg resistance to Brassica napus. Euphytica, 1984, 33: 295-303.
[23] Srivastava S K. Peroxidase and Poly-Phenol oxidase in Brassica juncea plants infected with Macrophomina phaseolina (tassai) goid. and their implication in disease resistance. J Phytopathol, 1987, 120: 249-254.
[24] Kumar A. Use of physiological indices as a screening technique for drought tolerance in oilseed Brassica species. Ann Bot, 1998, 81: 413-420.
[25] Phutela A, Jain V, Dhawan K, Nainawatee H S. Proline metabolism under water stress in the leaves and roots of Brassica juncea cultivars differing in drought tolerance. J Plant Biochem Biotechnol, 2000, 9: 35-39.
[26] Østergaard L, Kempin S A, Bies D, Klee H J, Yanofsky M F. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol J, 2006, 4: 45-51.
doi: 10.1111/j.1467-7652.2005.00156.x pmid: 17177784
[27] Liu Y B, Wei W, Ma K P, Darmency H. Spread of introgressed insect-resistance genes in wild populations of Brassica juncea: a simulated in vivo approach. Transgenic Res, 2013, 22: 747-756.
[28] Wilson R A, Sangha M K, Banga S S, Atwal A K, Gupta S. Heat stress tolerance in relation to oxidative stress and antioxidants in Brassica juncea. J Environ Biol, 2014, 35: 383-387.
pmid: 24665766
[29] Ding Y J, Mei J Q, Li Q F, Liu Y, Wan H F, Wang L, Becker H C, Qian W. Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea. Genet Resour Crop Evol, 2013, 60: 1615-1619.
[30] 殷生亮. 甘蓝型油菜抗菌核病的遗传分析和种质创新. 扬州大学硕士学位论文, 江苏扬州, 2021.
Yin S L. Genetic Analysis and Germplasm Innovation of Sclerotinia Sclerotiorum Resistance in Brassica Napus. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2021 (in Chinese with English abstract).
[31] 杨旭. 芥菜型油菜菌核病抗性QTL定位及候选基因分析. 贵州大学硕士学位论文, 贵州贵阳, 2024.
Yang X. QTL Mapping and Candidate Gene Analysis of Sclerotinia sclerotiorum Resistance in Brassica juncea. MS Thesis of Guizhou University, Guiyang, Guizhou, China, 2024 (in Chinese with English abstract).
[32] Kim D, Langmead B, Hisat S S. A fast spliced aligner with low memory requirements. Biochem Res Methods, 2015, 12: 357-360.
[33] Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 2015, 33: 290-295.
doi: 10.1038/nbt.3122 pmid: 25690850
[34] Mei J Q, Wei D Y, Disi J O, Ding Y J, Liu Y, Qian W. Screening resistance against Sclerotinia sclerotiorum in Brassica crops with use of detached stem assay under controlled environment. Eur J Plant Pathol, 2012, 134: 599-604.
[35] Miller A C, Obholzer N D, Shah A N, Megason S G, Moens C B. RNA-seq-based mapping and candidate identification of mutations from forward genetic screens. Genome Res, 2013, 23: 679-686.
doi: 10.1101/gr.147322.112 pmid: 23299976
[36] Liu J, Zuo R, He Y Z, Zhou C, Yang L L, Gill R A, Bai Z T, Zhang X, Liu Y Y, Cheng X H, Huang J Y. Analysis of tissue-specific defense responses to Sclerotinia sclerotiorum in Brassica napus. Plants (Basel), 2022, 11: 2001.
[37] Chittem K, Yajima W R, Goswami R S, Del Río Mendoza L E. Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines. PLoS One, 2020, 15: e0229844.
[38] Xu B J, Gong X, Chen S, Hu M L, Zhang J F, Peng Q. Transcriptome analysis reveals the complex molecular mechanisms of Brassica napus-Sclerotinia sclerotiorum interactions. Front Plant Sci, 2021, 12: 716935.
[39] Wu J, Zhao Q, Yang Q Y, Liu H, Li Q Y, Yi X Q, Cheng Y, Guo L, Fan C C, Zhou Y M. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007.
[40] Hossain M M, Sultana F, Li W Q, Tran L S P, Mostofa M G. Sclerotinia sclerotiorum (lib.)de bary: insights into the pathogenomic features of a global pathogen. Cells, 2023, 12: 1063.
[41] Joshi R K, Megha S, Rahman M H, Basu U, Kav N N V. A global study of transcriptome dynamics in canola (Brassica napus L.)responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Gene, 2016, 590: 57-67.
[42] Liang W W, Yang B, Yu B J, Zhou Z L, Li C, Jia M, Sun Y, Zhang Y, Wu F F, Zhang H F, Wang B Y, Deyholos M K, Jiang Y Q. Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.). BMC Genomics, 2013, 14: 392.
[43] Wang Z, Tan X L, Zhang Z Y, Gu S L, Li G Y, Shi H F. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling. Plant Sci, 2012, 184: 75-82.
[44] Liu F, Li X X, Wang M R, Wen J, Yi B, Shen J X, Ma C Z, Fu T D, Tu J X. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection. Plant Biotechnol J, 2018, 16: 911-925.
[45] Mikkelsen M D, Petersen B L, Glawischnig E, Jensen A B, Andreasson E, Halkier B A. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol, 2003, 131: 298-308.
doi: 10.1104/pp.011015 pmid: 12529537
[46] Lin L, Zhang X R, Fan J L, Li J W, Ren S C, Gu X, Li P P, Xu M L, Xu J Y, Lei W J, Liu D X, Sun Q F, Cai G Q, Yang Q Y, Wang Y P, Wu J. Natural variation in BnaA07.MKK9 confers resistance to Sclerotinia stem rot in oilseed rape. Nat Commun, 2024, 15: 5059.
doi: 10.1038/s41467-024-49504-6 pmid: 38871727
[47] Madloo P, Lema M, Francisco M, Soengas P. Role of major glucosinolates in the defense of kale against Sclerotinia sclerotiorum and Xanthomonas campestris pv.campestris. Phytopathology, 2019, 109: 1246-1256.
doi: 10.1094/PHYTO-09-18-0340-R pmid: 30920356
[48] Zhang Y Y, Huai D X, Yang Q Y, Cheng Y, Ma M, Kliebenstein D J, Zhou Y M. Overexpression of three glucosinolate biosynthesis genes in Brassica napus identifies enhanced resistance to Sclerotinia sclerotiorum and Botrytis cinerea. PLoS One, 2015, 10: e0140491.
[49] Fan Z X, Lei W X, Sun X L, Yu B, Wang Y Z, Yang G S. The association of Sclerotinia sclerotiorum resistance with glucosinolates in Brassica napus double-low DH 15population. J Plant Pathol, 2008, 90: 43-48.
[50] 费丹丹, 王军伟, 吴小媚, 黄惠萍, 毛舒香, 吴秋云, 黄科. 细胞色素P450基因家族参与植物硫代葡萄糖苷生物合成的研究进展. 中国蔬菜, 2023, (5): 30-41.
Fei D D, Wang J W, Wu X M, Huang H P, Mao S X, Wu Q Y, Huang K. Research progress of cytochrome P450 gene family taking part in biosynthesis of plant glucosinolates. China Veget, 2023, (5): 30-41 (in Chinese with English abstract).
[51] 王萌, 解红娥, 王凌云, 解晓红, 李江辉, 吴宇浩, 张鸿兴, 武宗信. 高硫苷油菜对甘薯茎线虫病的防治效果. 江苏农业科学, 2022, 50(11): 119-123.
Wang M, Xie H E, Wang L Y, Xie X H, Li J H, Wu Y H, Zhang H X, Wu Z X. Control effect of rape with high glucosinolate content on sweet potato stem nematode disease. Jiangsu Agric Sci, 2022, 50(11): 119-123 (in Chinese with English abstract).
[52] 雷建军, 陈长明, 陈国菊, 曹必好, 邹丽芳, 吴双花, 朱张生. 硫苷及其生物合成分子生物学机理研究进展. 华南农业大学学报, 2019, 40(5): 59-70.
Lei J J, Chen C M, Chen G J, Cao B H, Zou L F, Wu S H, Zhu Z S. Progress in glucosinolates and its molecular mechanism of biosynthesis. J South China Agric Univ, 2019, 40(5): 59-70 (in Chinese with English abstract).
[53] 赵吉春, 余洁, 谭正卫, 颜鑫艺, 周海燕, 雷小娟, 明建. 发酵十字花科蔬菜中硫代葡萄糖苷代谢研究进展. 食品科学, 2021, 42(23): 381-389.
Zhao J C, Yu J, Tan Z W, Yan X Y, Zhou H Y, Lei X J, Ming J. Recent advances in glucosinolates metabolism in fermented cruciferous vegetables. Food Sci, 2021, 42(23): 381-389 (in Chinese with English abstract).
[54] Zhang J, Song T T, Meng X N, Han Z Y, Yao Y C. Early phenylpropanoid biosynthetic pathway genes are responsible for flavonoid accumulation in the leaves of three crabapple (Malus spp.)cultivars. J Hortic Sci Biotechnol, 2015, 90: 489-502.
[55] 张秋平, 文李, 张振乾, 王峰, 官春云. 抗感菌核病甘蓝型油菜近等基因系盛花期叶片转录组比较分析. 华北农学报, 2020, 35(3): 168-177.
doi: 10.7668/hbnxb.20190761
Zhang Q P, Wen L, Zhang Z Q, Wang F, Guan C Y. Comparative transcriptomic analysis of Brassica napus near-isogenic line resistant to Sclerotinia sclerotirium at flowering stage. Acta Agric Boreali-Sin, 2020, 35(3): 168-177 (in Chinese with English abstract).
[56] Dong N Q, Lin H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J Integr Plant Biol, 2021, 63: 180-209.
[57] Desgagné-Penix I. Biosynthesis of alkaloids in Amaryllidaceae plants: a review. Phytochem Rev, 2021, 20: 409-431.
[58] 尚军, 吴旺泽, 马永贵. 植物苯丙烷代谢途径. 中国生物化学与分子生物学报, 2022, 38: 1467-1476.
doi: 10.13865/j.cnki.cjbmb.2022.03.1604
Shang J, Wu W Z, Ma Y G. Phenylpropanoid metabolism pathway in plants. Chin J Biochem Mol Biol, 2022, 38: 1467-1476 (in Chinese with English abstract).
doi: 10.13865/j.cnki.cjbmb.2022.03.1604
[59] 武颖, 李好样, 高洁, 朱瑞涛, 陈博坤. 木质素抗氧化活性的构效关系研究及应用进展. 精细化工, 2023, 40: 929-940.
Wu Y, Li H Y, Gao J, Zhu R T, Chen B K. Structure-antioxidant activity relationship and application progress of lignin. Fine Chem, 2023, 40: 929-940 (in Chinese with English abstract).
[60] Nesterova N A, Shtro A A, Panarin E F. Synthesis and antiviral activity of copolymers of hydroxycinnamic acid with N-vinylamides. Dokl Chem, 2023, 513: 389-392.
[1] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[2] XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156.
[3] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[4] ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956.
[5] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[6] LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353.
[7] ZHANG Jin-Hui, XIAO Zi-Yi, LI Xu-Hua, ZHANG Ming, JIA Chun-Lan, PAN Zhen-Yuan, QIU Fa-Zhan. Salt tolerance evaluation and transcriptome analysis of maize mutant caspl2b2 [J]. Acta Agronomica Sinica, 2024, 50(12): 3144-3154.
[8] YANG Yi-Dan, HE Du, LIU Jing, ZHANG Yan, CHEN Fei-Zhi, WU Yan-Fei, DU Xue-Zhu. Application of host-induced gene silencing interfering with Sclerotinia sclerotiorum pathogenic gene OAH in Brassica napus resistance to Sclerotinia sclerotiorum [J]. Acta Agronomica Sinica, 2023, 49(6): 1542-1550.
[9] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
[10] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[11] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[12] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[13] HUANG Wei, GAO Guo-Ying, WU Jin-Feng, LIU Li-Li, ZHANG Da-Wei, ZHOU Ding-Gang, CHENG Hong-Tao, ZHANG Kai-Xuan, ZHOU Mei-Liang, LI Mei, YAN Ming-Li. Regulation of flavonoid synthesis by BjA09.TT8 and BjB08.TT8 genes in Brassica juncea [J]. Acta Agronomica Sinica, 2022, 48(5): 1169-1180.
[14] YANG Ya-Jie, LI Yu-Ying, SHEN Zhuang-Zhuang, CHEN Tian, RONG Er-Hua, WU Yu-Xiang. Differential expressed analysis by transcriptome sequencing in leaves of different ploidy Gossypium herbaceum [J]. Acta Agronomica Sinica, 2022, 48(11): 2733-2748.
[15] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!