Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (12): 3144-3154.doi: 10.3724/SP.J.1006.2024.43017

• RESEARCH NOTES • Previous Articles     Next Articles

Salt tolerance evaluation and transcriptome analysis of maize mutant caspl2b2

ZHANG Jin-Hui1(), XIAO Zi-Yi1, LI Xu-Hua3, ZHANG Ming3, JIA Chun-Lan3, PAN Zhen-Yuan2,*(), QIU Fa-Zhan1,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University / Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
    2College of Agriculture, Shihezi University / Key Laboratory of Oasis Ecological Agriculture Corps, Shihezi 832003, Xinjiang, China
    3Shandong Denghai Seed Industry Co., Ltd, Laizhou 261448, Shandong, China
  • Received:2024-04-20 Accepted:2024-08-15 Online:2024-12-12 Published:2024-08-23
  • Contact: *E-mail: panzhenyuandawood@163.com; E-mail: qiufa
  • Supported by:
    National Natural Science Foundation of China(U2106230);Key Research and Development Program of Shandong Province(2022CXPT014)

Abstract:

Salt stress-sensitive mutants are crucial genetic materials for studying the genetic basis and molecular mechanisms of salt tolerance in crops. In this study, the maize inbred line LY8405 and the mutant caspl2b2 were used to investigate phenotype, physiological, and biochemical indices at the seedling stage under normal growth and salt stress conditions. The results showed that, compared to LY8405, the survival rate of caspl2b2 significantly decreased under salt stress, and the growth of aboveground parts was notably inhibited. The content of Na+ ions and malondialdehyde (MDA) in aboveground parts significantly increased, while transpiration rate, stomatal conductance, and intercellular CO2 concentration also increased significantly. Conversely, the net photosynthetic rate significantly decreased. To uncover the molecular basis of the phenotypic differences under salt stress, transcriptome analysis was performed on leaf tissues of LY8405 and caspl2b2 under normal growth and salt stress conditions. The results revealed that differentially expressed genes (DEGs) were mainly concentrated in glutathione transferase activity, glutathione metabolism, REDOX enzyme activity, and cell homeostasis, with glutathione metabolism being the most significant. This study not only provides important germplasm resources for the genetic basis analysis of crop salt tolerance, but also lays a foundation for the identification of salt tolerance genes and the analysis of genetic regulatory networks.

Key words: Zea mays L., salt stress, mutant, transcriptome analysis, differentially expressed genes

Fig. 1

Salt concentration screening of caspl2b2 mutant A: the phenotype of WT and caspl2b2 mutant before salt treatment; B-D: the phenotype of WT and caspl2b2 mutant after 100 mmol L-1, 150 mmol L-1, and 200 mmol L-1 NaCl treated for 7 days; E: survival rate of caspl2b2 mutant treated with different salt concentrations."

Fig. 2

Phenotype of WT and caspl2b2 mutant after salt treatment A: the phenotype of WT and caspl2b2 mutant before salt treatment; B, D: the phenotype of WT and caspl2b2 mutant after 200 mmol L-1 NaCl treated for 3 days, 7 days, and 14 days; E: the survival rates of WT and caspl2b2 mutant after salt treatment for different days."

Fig. 3

Phenotypic traits of WT and caspl2b2 mutant after salt stress A-D: phenotypic traits of seedling height, primary root length, shoot fresh weight, and root fresh weight of WT and caspl2b2 mutant after 200 mmol L-1 NaCl treatment. E-G: the total phenotype, leaf phenotype, and root phenotype of WT and caspl2b2 mutant after 200 mmol L-1 NaCl treated 3 days. The above data are presented as mean ± SD. Student’s t-test was used for significance analysis. NS: no significant difference. *: P < 0.05; **: P < 0.01."

Fig. 4

Na+ and K+ content of WT and caspl2b2 mutant after salt stress A: Na+ content of WT and caspl2b2 in shoot; B: K+ content; C: Na+/K+; D: MDA content of WT and caspl2b2 mutant. The above data are presented as mean ± SD. Student’s t-test was used for significance analysis. NS: no significant difference. *: P < 0.05; **: P < 0.01."

Fig. 5

Photosynthetic indicators of WT and caspl2b2 mutant after salt stress A-D: photosynthetic indices of WT and caspl2b2 mutant treated with 200 mmol L-1 NaCl after 3 d; A: transpiration rate; B: stomatal conductivity; C: intercellular CO2 concentration; D: net photosynthetic rate. The above data are presented as mean ± SD. Student’s t-test was used for significance analysis. NS: no significant difference. *: P < 0.05; **: P < 0.01."

Table 1

Transcriptome sequencing data"

样本
Sample
测序总读数
Total reads number
质控后读数
Clean reads number
错误率
Error rate
(%)
总比对率
Mapped ratio (%)
Q20 碱基百分比
Q20 base percentage (%)
Q30 碱基百分比
Q30 base percentage (%)
WT-1 21,635,978 20,957,262 0.02 96.86 98.22 94.71
WT-2 24,644,756 23,996,460 0.02 97.37 98.21 94.81
WT-3 22,386,955 21,537,487 0.02 96.21 98.12 94.55
Caspl2b2-1 25,381,514 24,489,459 0.02 96.49 98.20 94.72
Caspl2b2-2 23,662,504 22,826,123 0.02 96.47 98.14 94.68
Caspl2b2-3 23,551,867 22,839,156 0.02 96.97 97.94 94.32

Fig. 6

Distribution and correlation analysis of gene expression in samples A: distribution of gene expression in each sample; B: correlation heat map between samples."

Fig. 7

Volcano plot of differentially expressed genes Up: up-regulated gene; Down: down-regulated gene; Not signifi-cant: not significant difference gene."

Fig. 8

Gene enrichment analysis with significant differences A: GO enrichment of differentially expressed genes; B: KEGG enrichment of genes with significant differences."

Table 2

Differentially expressed genes associated with ion transport"

基因编号
Gene ID
基因名称
Gene name
描述
Description
log2
(Fold Change)
P
P-value
Zm00001d003861 ZmHAK1 Potassium high-affinity transporter -0.15 0.44
Zm00001d042244 ZmHAK5 Potasium ion uptake permease 1 -0.61 0.55
Zm00001d049987 ZmHAK4 Probable potassium transporter 4 -0.31 0.71
Zm00001d040627 ZmHKT1 Sodium transporter HKT1 0.92 0.01
Zm00001d030955 ZmSOS3 CBL11; calcineurin B-like11: cbl11 -0.07 0.77
Zm00001d031232 ZmSOS1 Sodium/hydrogen exchanger 0.14 0.49
Zm00001d002428 ZmNSA1 EF hand family protein 0.46 3.00E-03
Zm00001d024587 ZmNPF6.4 Protein NRT1/PTR FAMILY 6.3 0.38 0.03

Fig. 9

qRT-PCR was used to detect the expression of ion transport-related genes A: expression level of ZmHKT1 gene; B: expression level of ZmHKT2 gene; C: expression level of ZmHAK1 gene; D: expression level of ZmHAK5 gene."

Table 3

Differentially expressed genes associated with the formation of Casparian strip"

基因编号
Gene ID
基因名称
Gene name
描述
Description
log2
(Fold Change)
P
P-value
Zm00001d038762 ZmRBOHF RBOH3; respiratory burst oxidase3 -0.32 0.11
Zm00001d027636 ZmESB1 Dirigent protein 16 0.42 0.87
Zm00001d040807 ZmCASPL1B2 CASPL4; CASP-like protein 4 0.10 0.60
Zm00001d005158 ZmCASPL1D1 CASPL3; CASP-like protein 3 -0.27 0.52
Zm00001d019457 ZmCASPL1D2 CASPL1D2; CASP-like protein 1D2 -0.44 0.05

Table 4

Glutathione-related differentially expressed genes"

基因编号
Gene ID
基因名称
Gene name
描述
Description
log2
(Fold Change)
P
P-value
Zm00001d049657 ZmGSTU1 GST26; glutathione transferase 26 -0.31 0.34
Zm00001d038192 ZmGSTU2 GST41; glutathione transferase 41 1.08 0.37
Zm00001d016860 ZmGSTU4 GST17; glutathione transferase 17 0.31 0.07
Zm00001d036951 ZmGSTU5 GST19; glutathione transferase 19 1.28 3.28E-09
Zm00001d043787 ZmGSTU6 GSTU6; glutathione S-transferase 6 0.85 0.003
Zm00001d043795 ZmGSTU10 GSTU10; glutathione S-transferase 10 0.98 8.47E-05
Zm00001d043789 ZmGSTU11 GSTU11; glutathione S-transferase 11 2.40 0.01
Zm00001d029706 ZmGSTU12 GST39; glutathione transferase 39 1.10 3.50E-07
Zm00001d043344 ZmGSTF3 GST8; glutathione transferase 8 0.80 0.20
[1] Fedoroff N V, Battisti D S, Beachy R N, Cooper P J M, Fischhoff D A, Hodges C N, Knauf V C, Lobell D, Mazur B J, Molden D, Reynolds M P, Ronald P C, Rosegrant M W, Sanchez P A, Vonshak A, Zhu J K. Radically rethinking agriculture for the 21st century. Science, 2010, 327: 833-834.
doi: 10.1126/science.1186834 pmid: 20150494
[2] 胡一, 韩霁昌, 张扬. 盐碱地改良技术研究综述. 陕西农业科学, 2015, 61: 67-71.
Hu Y, Han J C, Zhang Y. Research overview of saline-alkali soil improvement techniques. Shaanxi J Agric Sci, 2015, 61: 67-71 (in Chinese).
[3] 姜佩弦, 张凯, 王艺桥, 张鸣, 曹一博, 蒋才富. 玉米耐盐分子机制研究进展. 植物遗传资源学报, 2022, 23: 49-60.
doi: 10.13430/j.cnki.jpgr.20210812004
Jiang P X, Zhang K, Wang Y Q, Zhang M, Cao Y B, Jiang C F. Recent advance of molecular understanding of salt tolerance in maize. J Plant Genet Resour, 2022, 23: 49-60 (in Chinese with English abstract).
[4] Zhang F, Zhu G Z, Du L, Shang X G, Cheng C Z, Yang B, Hu Y, Cai C P, Guo W Z. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Sci Rep, 2016, 6: 20582.
doi: 10.1038/srep20582 pmid: 26838812
[5] Kim C K, Lim H M, Na J K, Choi J W, Sohn S H, Park S C, Kim Y H, Kim Y K, Kim D Y. A multistep screening method to identify genes using evolutionary transcriptome of plants. Evol Bioinform Online, 2014, 10: 69-78.
[6] Xu T T, Meng S, Zhu X P, Di J C, Zhu Y, Yang X, Yan W. Integrated GWAS and transcriptomic analysis reveal the candidate salt-responding genes regulating Na+/K+ balance in barley (Hordeum vulgare L.). Front Plant Sci, 2023, 13: 1004477.
[7] Qin Y J, Wu W H, Wang Y. ZmHAK5 and ZmHAK1 function in K+ uptake and distribution in maize under low K+conditions. J Integr Plant Biol, 2019, 61: 691-705.
[8] Zhang M, Liang X Y, Wang L M, Cao Y B, Song W B, Shi J P, Lai J S, Jiang C F. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat Plants, 2019, 5: 1297-1308.
doi: 10.1038/s41477-019-0565-y pmid: 31819228
[9] Zhang M, Li Y D, Liang X Y, Lu M H, Lai J S, Song W B, Jiang C F. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnol J, 2023, 21: 97-108.
[10] Luo M J, Zhao Y X, Zhang R Y, Xing J F, Duan M X, Li J N, Wang N S, Wang W G, Zhang S S, Chen Z H, Zhang H S, Shi Z, Song W, Zhao J R. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biol, 2017, 17: 140.
doi: 10.1186/s12870-017-1090-7 pmid: 28806927
[11] Cao Y B, Zhang M, Liang X Y, Li F R, Shi Y L, Yang X H, Jiang C F. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nat Commun, 2020, 11: 186.
[12] Wen Z Y, Tyerman S D, Dechorgnat J, Ovchinnikova E, Dhugga K S, Kaiser B N. Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride. Plant Cell, 2017, 29: 2581-2596.
[13] Wang Z G, Yamaji N, Huang S, Zhang X, Shi M X, Fu S, Yang G Z, Ma J F, Xia J X. OsCASP1 is required for casparian strip formation at endodermal cells of rice roots for selective uptake of mineral elements. Plant Cell, 2019, 31: 2636-2648.
[14] Yang J H, Ding C Q, Xu B C, Chen C T, Narsai R, Whelan J, Hu Z Y, Zhang M F. A Casparian strip domain-like gene, CASPL negatively alters growth and cold tolerance. Sci Rep, 2015, 5: 14299.
[15] Wang Y Y, Cao Y B, Liang X Y, Zhuang J H, Wang X F, Qin F, Jiang C F. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat Commun, 2022, 13: 2222.
doi: 10.1038/s41467-022-29809-0 pmid: 35468878
[16] Landi S, Hausman J F, Guerriero G, Esposito S. Poaceae vs. abiotic stress: focus on drought and salt stress, recent insights and perspectives. Front Plant Sci, 2017, 8: 1214.
[17] Cui P, Liu H B, Islam F, Li L, Farooq M A, Ruan S L, Zhou W J. OsPEX11, a peroxisomal biogenesis factor 11, contributes to salt stress tolerance in Oryza sativa. Front Plant Sci, 2016, 7: 1357.
[18] Bo C, Chen H W, Luo G W, Li W, Zhang X G, Ma Q, Cheng B J, Cai R H. Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice. Plant Cell Rep, 2020, 39: 135-148.
doi: 10.1007/s00299-019-02481-3 pmid: 31659429
[19] Ming Q, Wang K, Wang J J, Liu J X, Li X H, Wei P P, Guo H L, Chen J B, Zong J Q. The combination of RNA-seq transcriptomics and data-independent acquisition proteomics reveals the mechanisms underlying enhanced salt tolerance by the ZmPDI gene in Zoysia matrella [L.] Merr. Front Plant Sci, 2022, 13: 970651.
[20] 邓肖, 徐学欣, 孙芹, 张玉璐, 朱紫鑫, 郝天佳, 高国龙, 贺小彦, 王秀琳, 赵长星. 不同盐浓度胁迫下冬小麦幼苗光合特性及转录组分析. 植物生理学报, 2023, 59: 1819-1829.
Deng X, Xu X X, Sun Q, Zhang Y L, Zhu Z X, Hao T J, Gao G L, He X Y, Wang X L, Zhao C X. Photosynthetic characteristics and transcriptome analysis of winter wheat seedlings under different salt concentration stress. Plant Physiol J, 2023, 59: 1819-1829 (in Chinese with English abstract).
[21] Wei X C, Liu L L, Lu C X, Yuan F, Han G L, Wang B S. SbCASP4 improves salt exclusion by enhancing the root apoplastic barrier. Planta, 2021, 254: 81.
[1] MENG Fan-Hua, LIU Min, SHEN Ao, LIU Wei. Preliminary investigation of the SiLTP1: a lipid transfer protein gene involved in the salt tolerance of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 58-67.
[2] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[3] GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013.
[4] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[5] XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156.
[6] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[7] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[8] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
[9] MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103.
[10] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[11] SONG Meng-Yuan, GUO Zhong-Xiao, SU Yu-Fei, DENG Kun-Peng, LAN Tian-Jiao, CHENG Yu-Xin, BAO Shu-Ying, WANG Gui-Fang, DOU Jin-Guang, JIANG Ze-Kai, WANG Ming-Hai, XU Ning. Transcriptome analysis of a stigma exsertion mutant in mungbean [J]. Acta Agronomica Sinica, 2024, 50(4): 957-968.
[12] ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956.
[13] WANG Ya-Qi, XU Hai-Feng, LI Shu-Guang, FU Meng-Meng, YU Xi-Wen, ZHAO Zhi-Xin, YANG Jia-Yin, ZHAO Tuan-Jie. Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf [J]. Acta Agronomica Sinica, 2024, 50(4): 808-819.
[14] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[15] LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .