Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Salt tolerance evaluation and transcriptome analysis of maize mutant caspl2b2

ZHANG Jin-Hui1,XIAO Zi-Yi1,LI Xu-Hua3,ZHANG Ming3,JIA Chun-Lan3,PAN Zhen-Yuan2,*,QIU Fa-Zhan1,*   

  1. 1 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University / Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China; 2 College of Agriculture, Shihezi University / Key Laboratory of Oasis Ecological Agriculture Corps, Shihezi 832003, Xinjiang, China; 3 Shandong Denghai Seed Industry Co., Ltd, Laizhou 261448, Shandong, China
  • Received:2024-04-20 Revised:2024-08-15 Accepted:2024-08-15 Published:2024-08-23
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (U2106230) and the Key Research and Development Program of Shandong Province (2022CXPT014). 

Abstract:

Salt stress-sensitive mutants are crucial genetic materials for studying the genetic basis and molecular mechanisms of salt tolerance in crops. In this study, the maize inbred line LY8405 and the mutant caspl2b2 were used to investigate phenotype, physiological, and biochemical indices at the seedling stage under normal growth and salt stress conditions. The results showed that, compared to LY8405, the survival rate of caspl2b2 significantly decreased under salt stress, and the growth of aboveground parts was notably inhibited. The content of Na+ ions and malondialdehyde (MDA) in aboveground parts significantly increased, while transpiration rate, stomatal conductance, and intercellular CO2 concentration also increased significantly. Conversely, the net photosynthetic rate significantly decreased. To uncover the molecular basis of the phenotypic differences under salt stress, transcriptome analysis was performed on leaf tissues of LY8405 and caspl2b2 under normal growth and salt stress conditions. The results revealed that differentially expressed genes (DEGs) were mainly concentrated in glutathione transferase activity, glutathione metabolism, REDOX enzyme activity, and cell homeostasis, with glutathione metabolism being the most significant. This study not only provides important germplasm resources for the genetic basis analysis of crop salt tolerance but also lays a foundation for the identification of salt tolerance genes and the analysis of genetic regulatory networks.

Key words: Zea mays L., salt stress, mutant, transcriptome analysis, differentially expressed genes

[1] Fedoroff N V, Battisti D S, Beachy R N, Cooper P J M, Fischhoff D A, Hodges C N, Knauf V C, Lobell D, Mazur B J, Molden D, Reynolds M P, Ronald P C, Rosegrant M W, Sanchez P A, Vonshak A, Zhu J K. Radically rethinking agriculture for the 21st century. Science, 2010, 327: 833–834.

[2] 胡一, 韩霁昌, 张扬. 盐碱地改良技术研究综述. 陕西农业科学, 2015, 61: 67–71.

Hu Y, Han J C, Zhang Y. Research overview of saline-alkali soil improvement techniques. Shaanxi J Agric Sci, 2015, 61: 67–71 (in Chinese).

[3] 姜佩弦, 张凯, 王艺桥, 张鸣, 曹一博, 蒋才富. 玉米耐盐分子机制研究进展. 植物遗传资源学报, 2022, 23: 49–60.

Jiang P X, Zhang K, Wang Y Q, Zhang M, Cao Y B, Jiang C F. Recent advance of molecular understanding of salt tolerance in maize. Plant Genetic Resour, 2022, 23: 49–60 (in Chinese with English abstract).

[4] Zhang F, Zhu G Z, Du L, Shang X G, Cheng C Z, Yang B, Hu Y, Cai C P, Guo W Z. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii. Sci Rep, 2016, 6: 20582.

[5] Kim C K, Lim H M, Na J K, Choi J W, Sohn S H, Park S C, Kim Y H, Kim Y K, Kim D Y. A multistep screening method to identify genes using evolutionary transcriptome of plants. Evol Bioinform Online, 2014, 10: 69–78.

[6] Xu T T, Meng S, Zhu X P, Di J C, Zhu Y, Yang X, Yan W. Integrated GWAS and transcriptomic analysis reveal the candidate salt-responding genes regulating Na+/K+ balance in barley (Hordeum vulgare L.). Front Plant Sci, 2023, 13: 1004477.

[7] Qin Y J, Wu W H, Wang Y. ZmHAK5 and ZmHAK1 function in K+ uptake and distribution in maize under low K+ conditions. J Integr Plant Biol, 2019, 61: 691–705.

[8] Zhang M, Liang X Y,Wang L M, Cao Y B, Song W B, Shi J P, Lai J S, Jiang C F. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat Plants, 2019, 5: 1297–1308.

[9] Zhang M, Li Y D, Liang X Y, Lu M H, Lai J S, Song W B, Jiang C F. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize. Plant Biotechnol J, 2023, 21: 97–108.

[10] Luo M J, Zhao Y X, Zhang R Y, Xing J F, Duan M X, Li J N, Wang N S, Wang W G, Zhang S S, Chen Z H, Zhang H S, Shi Z, Song W, Zhao J R. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biol, 2017, 17: 140.

[11] Cao Y B, Zhang M, Liang X Y, Li F R, Shi Y L, Yang X H, Jiang C F. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nat Commun, 2020, 11: 186–199.

[12] Wen Z Y, Tyerman S D, Dechorgnat J, Ovchinnikova E, Dhugga K S, Kaiser B N. Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride. Plant Cell, 2017, 29: 2581–2596.

[13] Wang Z G,Yamaji N K, Huang S, Zhang X, Shi M X, Fu S, Yang G Z, Ma J F, Xia J X. OsCASP1 is required for casparian strip formation at endodermal cells of rice roots for selective uptake of mineral elements. Plant Cell, 2019, 31: 2636–2648.

[14] Yang J H, Ding C Q, Xu B C, Chen C T, Narsai R, Whelan J, Hu Z Y, Zhang M F. A Casparian strip domain-like gene, CASPL negatively alters growth and cold tolerance. Sci Rep, 2015, 5: 14299.

[15] Wang Y Y, Cao Y B, Liang X Y, Zhuang J H, Wang X F, Qin F, Jiang C F. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat Commun, 2022, 13: 2222.

[16] Landi S, Hausman J F, Guerriero G, Esposito S. Poaceae vs. abiotic stress: focus on drought and salt stress, recent insights and perspectives. Front Plant Sci, 2017, 8: 1214.

[17] Cui P, Liu H B, Islam F, Li L, Farooq M A, Ruan S L, Zhou W J. OsPEX11, a peroxisomal biogenesis factor 11, contributes to salt stress tolerance in Oryza sativa. Front Plant Sci, 2016, 7: 1357.

[18] Bo C, Chen H W, Luo G W, Li W, Zhang X G, Ma Q, Cheng B J, Cai R H. Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice. Plant Cell Rep, 2020, 39: 135–148.

[19] Ming Q, Wang K, Wang J J, Liu J X, Li X H, Wei P P, Guo H L, Chen J B, Zong J Q. The combination of RNA-seq transcriptomics and data-independent acquisition proteomics reveals the mechanisms underlying enhanced salt tolerance by the ZmPDI gene in Zoysia matrella [L.] Merr. Front Plant Sci, 2022, 13: 970651.

[20] 邓肖, 徐学欣, 孙芹, 张玉璐, 朱紫鑫, 郝天佳, 高国龙, 贺小彦, 王秀琳, 赵长星. 不同盐浓度胁迫下冬小麦幼苗光合特性及转录组分析. 植物生理学报, 2023, 59: 1819–1829.

Deng X, Xu X X, Sun Q, Zhang Y L, Zhu Z X, Hao T J, Gao G L, He X Y, Wang X L, Zhao C X. Photosynthetic characteristics and transcriptome analysis of winter wheat seedlings under different salt concentration stress. Plant Biotechnol J, 2023, 59: 1819–1829 (in Chinese with English abstract).

[21] Wei X C, Liu L L, Lu C X, Yuan F, Han G L, Wang B S. SbCASP4 improves salt exclusion by enhancing the root apoplastic barrier. Planta, 2021, 254: 81.

[1] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[2] XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156.
[3] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[4] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[5] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
[6] MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103.
[7] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[8] SONG Meng-Yuan, GUO Zhong-Xiao, SU Yu-Fei, DENG Kun-Peng, LAN Tian-Jiao, CHENG Yu-Xin, BAO Shu-Ying, WANG Gui-Fang, DOU Jin-Guang, JIANG Ze-Kai, WANG Ming-Hai, XU Ning. Transcriptome analysis of a stigma exsertion mutant in mungbean [J]. Acta Agronomica Sinica, 2024, 50(4): 957-968.
[9] ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956.
[10] WANG Ya-Qi, XU Hai-Feng, LI Shu-Guang, FU Meng-Meng, YU Xi-Wen, ZHAO Zhi-Xin, YANG Jia-Yin, ZHAO Tuan-Jie. Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf [J]. Acta Agronomica Sinica, 2024, 50(4): 808-819.
[11] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[12] LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309.
[13] LI Yan, FANG Yu-Hui, WANG Yong-Xia, PENG Chao-Jun, HUA Xia, QI Xue-Li, HU Lin, XU Wei-Gang. Transcriptomics profile of transgenic OsPHR2 wheat under different phosphorus stress [J]. Acta Agronomica Sinica, 2024, 50(2): 340-353.
[14] GUO Jia-Xin, YE Yang, GUO Hui-Juan, MIN Wei. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves [J]. Acta Agronomica Sinica, 2024, 50(1): 219-236.
[15] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!