Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1542-1550.doi: 10.3724/SP.J.1006.2023.24126
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YANG Yi-Dan1(), HE Du1, LIU Jing2, ZHANG Yan1, CHEN Fei-Zhi1, WU Yan-Fei1, DU Xue-Zhu1,*()
[1] | 李慧, 文李, 刘凯, 官春云. 油菜抗菌核病机制研究进展. 作物研究, 2015, 29(1): 84-90. |
Li H, Wen L, Liu K, Guan C Y. Research progress on resistance mechanism of Brassica napus to Sclerotinia sclerotiorum. Crop Res, 2015, 29(1): 84-90. (in Chinese with English abstract) | |
[2] |
Liang X, Rollins J A. Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum. Phytopathology, 2018, 108: 1128-1140.
doi: 10.1094/PHYTO-06-18-0197-RVW |
[3] | 吴健, 周永明, 王幼平. 油菜与核盘菌互作分子机理研究进展. 中国油料作物学报, 2018, 40: 721-729. |
Wu J, Zhou Y M, Wang Y P. Research progress on molecular mechanisms of Brassica napus Sclerotinia sclerotiorum interaction. Chin Oil Crop Sci, 2018, 40: 721-729. (in Chinese with English abstract) | |
[4] | 杨清坡, 刘万才, 黄冲. 近10年油菜主要病虫害发生危害情况的统计和分析. 植物保护, 2018, 44(3): 24-30. |
Yang Q P, Liu W C, Huang C. Statistics and analysis of oilseed rape losses caused by main diseases and insect pests in recent 10 years. Plant Prot Sci, 2018, 44(3): 24-30. (in Chinese with English abstract) | |
[5] |
Wu J, Zhao Q, Yang Q, Liu H, Li Q Y, Yi X Q, Cheng Y, Guo L, Fan C C, Zhou Y Z. Comparative transcriptomic analysis uncovers the complexgenetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007.
doi: 10.1038/srep19007 |
[6] |
Adams P B, Ayers W A. Ecology of Sclerotinia species. Phytopathology, 1979, 69: 896-896.
doi: 10.1094/Phyto-69-896 |
[7] |
Willetts H J, Wong J. The biology of Sclerotinia sclerotiorum, S. trifoliorum and S. minor with emphasis on specific nomenclature. Bot Rev, 1980, 46: 101-165.
doi: 10.1007/BF02860868 |
[8] |
Godoy G, Steadman J R, Dickman M B, Dam R. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Mol Plant Pathol, 1990, 37: 179-191.
doi: 10.1111/radm.2007.37.issue-3 |
[9] |
Liang Y, Strelkov S E, Kav N N V. Oxalic acid-mediated stress responses in Brassica napus L. Proteomics, 2010, 9: 3156-3173.
doi: 10.1002/pmic.200800966 |
[10] | Williams B, Kabbage M, Kim H J, Britt R, Dickman M B. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog, 2011, 7: e1002107. |
[11] |
Heller A, Witt G T. Oxalic acid has an additional. detoxifying function in Sclerotinia sclerotiorum pathogenesis. PLoS One, 2013, 8: e72292.
doi: 10.1371/journal.pone.0072292 |
[12] |
Riou C, Freyssinet G, Fevre M. Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl Environ Microb, 1991, 57:1478-1484.
doi: 10.1128/aem.57.5.1478-1484.1991 pmid: 16348487 |
[13] |
Evans M V D, Christine S. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol, 1996, 42: 881-895.
doi: 10.1139/m96-114 |
[14] |
Derbyshire M, Mbengue M, Barascud M, Navaud O, Raffaele S. Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance. Mol Plant Pathol, 2019, 20: 1279-1297.
doi: 10.1111/mpp.12841 pmid: 31361080 |
[15] |
Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C, Zhou Y. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007-19022.
doi: 10.1038/srep19007 |
[16] |
Xu J, Wang X, Li Y, Zeng J, Wang G, Deng C, Guo W. Host-induced gene silencing of a regulator of G protein signalling gene (VdRGS1) confers resistance to Verticillium wilt in cotton. Plant Biotechnol J, 2018, 16: 1629-1643.
doi: 10.1111/pbi.2018.16.issue-9 |
[17] |
Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell, 2010, 22: 3130-3141.
doi: 10.1105/tpc.110.077040 |
[18] |
Yin C, Jurgenson J E, Hulbert S H. Development of a host-induced rnai system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant Microbe Interact, 2011, 24: 554-561.
doi: 10.1094/MPMI-10-10-0229 |
[19] |
Zhu L, Zhu J, Liu Z, Wang Z, Zhou C, Wang H. Host-induced gene silencing of rice blast fungus Magnaporthe oryzae pathogenicity genes mediated by the brome mosaic virus. Genes, 2017, 8: 241.
doi: 10.3390/genes8100241 |
[20] |
McCaghey M, Shao D, Kurcezewski J, Lindstrom A, Ranjan A, Whitham S A, Conley S P, Williams B, Smith D L, Kabbage M. Host-induced gene silencing of a Sclerotinia sclerotiorum oxaloacetate acetylhydrolase using bean pod mottle virus as a vehicle reduces disease on soybean. Front Plant Sci, 2021, 12: 677631.
doi: 10.3389/fpls.2021.677631 |
[21] |
Rana K, Yuan J, Liao H, Banga S S, Kumar R, Qian W, Ding Y. Host-induced gene silencing reveals the role of Sclerotinia sclerotiorum oxaloacetate acetylhydrolase gene in fungal oxalic acid accumulation and virulence. Microbiol Res, 2022, 258: 126981.
doi: 10.1016/j.micres.2022.126981 |
[22] |
Nakayashiki H, Nguyen Q B. RNA interference: roles in fungal biology. Curr Opin Microbiol, 2008, 11: 494-502.
doi: 10.1016/j.mib.2008.10.001 pmid: 18955156 |
[23] |
Spiering M J, Moon C D, Wilkinson H H, Schardl C L. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics, 2005, 169: 1403-1414.
pmid: 15654104 |
[1] | YANG Tai-Hua, YANG Fu-Quan, GAO Geng-Dong, YIN Shuai, JIN Qing-Dong, XU Lin-Shan, KUAI Jie, WANG Bo, XU Zheng-Hua, GE Xian-Hong, WANG Jing, ZHOU Guang-Sheng. Preliminary exploration of the role of LncRNA in the ecotype differentiation of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(5): 1197-1210. |
[2] | ZHANG Ying-Chuan, WU Xiao-Ming-Yu, TAO Bao-Long, CHEN Li, LU Hai-Qin, ZHAO Lun, WEN Jing, YI Bin, TU Jing-Xing, FU Ting-Dong, SHEN Jin-Xiong. Functional analysis of Bna-miR43-FBXL regulatory module involved in aluminum stress in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(5): 1211-1221. |
[3] | BAI Cheng-Cheng, YAO Xiao-Yao, WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu. Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 1016-1027. |
[4] | CHEN Hui, XIAO Qin, WANG Hua-Dong, WEN Jing, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, YI Bin. Identification of SUMO protein family members and functional study of Bna.SUMO1.C08 gene in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 917-925. |
[5] | CHEN Xiao-Han, WANG Li-Qin, WANG Hua-Dong, XIAO Qing, TAO Bao-Long, ZHAO Lun, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. BnABCI8 affects chloroplast development of Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 893-905. |
[6] | WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868. |
[7] | ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331. |
[8] | MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166. |
[9] | ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195. |
[10] | ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995. |
[11] | LI Sheng-Ting, XU Yuan-Fang, CHANG Wei, LIU Ya-Jun, GU Yuan, ZHU Hong, LI Jia-Na, LU Kun. Bna.C02SWEET15 positively regulates the flowering time of rapeseed through photoperiodic pathway [J]. Acta Agronomica Sinica, 2022, 48(8): 1938-1947. |
[12] | DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644. |
[13] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[14] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[15] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
|