Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1542-1550.doi: 10.3724/SP.J.1006.2023.24126

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Application of host-induced gene silencing interfering with Sclerotinia sclerotiorum pathogenic gene OAH in Brassica napus resistance to Sclerotinia sclerotiorum

YANG Yi-Dan1(), HE Du1, LIU Jing2, ZHANG Yan1, CHEN Fei-Zhi1, WU Yan-Fei1, DU Xue-Zhu1,*()   

  1. 1School of Life Sciences, Hubei University/State Key Laboratory of Biocatalysis and Enzyme Engineering, Wuhan 430062, Hubei, China
    2Key Laboratory of Biology and Genetics and Breeding of Oil Crops, Ministry of Agriculture and Rural Affairs, Hubei University, Wuhan 430062, Hubei, China
  • Received:2022-05-26 Accepted:2022-10-10 Online:2023-06-12 Published:2022-10-31
  • Contact: *E-mail: duxuezhusk@163.com
  • Supported by:
    Open Project Foundation of Key Laboratory of Oil Crop Biology and Genetics and Breeding of the Ministry of Agriculture and Rural Affairs(KF2022001);National Natural Science Foundation of China(31771837)

Abstract:

Rapeseed is the largest oil crop in China, and Sclerotinia sclerotiorum is one of the main diseases of rapeseed in China. In this experiment, to study the effect of HIGS-mediated SsOAH gene silencing on the resistance to S. sclerotiorum in Brassica napus, the interference fragment of the key pathogenic gene SS1G_08218 (OAH) in S. sclerotiorum was transformed into Brassica napus by HIGS technique, and the transgenic plants containing siRNA were obtained. The results of disease resistance identification after inoculation with S. sclerotiorum showed that the resistance of SS.OAH.RNAi transgenic rapeseed plants to S. sclerotiorum was enhanced, and the relative expression levels of OAH genes in S. sclerotiorum mycelia of R18, R25, and R36 lines were lower than wild type, indicating that siRNA was successfully expressed in transgenic rapeseed. The lesion size of S. sclerotiorum cultured on the medium supplemented with transgenic rapeseed leaf extract was significantly smaller than wild type, which decreased by 35.29%, 21.98%, and 31.53% respectively. The mycelium grew slowly, the expansion length was shorter, the branches were few, and the growth was abnormal. After inoculating it into normal wild type rapeseed, its pathogenicity decreased significantly. After inoculating the transgenic rapeseed leaves with S. sclerotiorum, it was observed that the mycelium expansion on the leaves was sparse, the growth was blocked, and the infection pad formation was inhibited, suggesting that the interference fragments expressing OAH gene in rapeseed affected the mycelium growth and expansion. Compared with the wild type, the content of oxalic acid in the lesion tissue of transgenic rapeseed was 391 μg g-1 and 446 μg g-1 at 36 hpi and 48 hpi, which decreased 54 μg g-1 and 32 μg g-1, respectively. This study showed that the interference fragment expressing S. sclerotiorum OAH in rapeseed could reduce the accumulation of oxalic acid during S. sclerotiorum infection and enhance the resistance level of transgenic rapeseed to S. sclerotiorum. In this experiment, HIGS technique was used to improve resistance to S. sclerotiorum by transforming interference fragments of OAH gene in rapeseed, and to provide a theoretical basis and germplasm resources for breeding S. sclerotiorum resistant varieties.

Key words: Brassica napus, Sclerotinia sclerotiorum, HIGS, oxalyl acetate acetylhydrolase, oxalic acid

Table 1

Buffer extract preparation"

试剂
Reagent
相对分子质量
Relative molecular weight (g mol-1)
浓度
Concentration (mmol L-1)
配制1000 mL
Formulated 1000 mL
MES 195.24 50 9.762
Triscl 121.14 100 12.114
EDTA 372.24 0.1 0.037,224
NaCl 58.44 30 1.7532

Fig. 1

Relative expression levels of related pathogenic genes in wild rape infected by S. sclerotiorum"

Fig. 2

OAH interference PCR detection of terminal carrier colonies M: DL2000; 1-8: the colony PCR fragments."

Fig. 3

Gel electrophoresis map of positive identification of some SS.OAH.RNAi transgenic plants in T2 generation M: Trans 2K; WT: the negative control."

Fig. 4

Statistical map of lesion area in leaves of T2 generation SS.OAH.RNAi transgenic rapeseed inoculated with bacteria for 36 hours WT: wild Brassica napus; R25, R36, and R18 are T2 generation SS.OAH.RNAi transgenic lines."

Fig. 5

Statistical map of disease spot of T2 generation SS.OAH.RNAi transgenic rapeseed line inoculated with stem for 4 days WT: wild Brassica napus; R25, R36, and R18 are T2 generation SS.OAH.RNAi transgenic lines."

Fig. 6

Relative expression patterns of OAH gene in Sclerotinia sclerotiorum after inoculation of T2 generation SS.OAH.RNAi transgenic rapeseed line WT: wild Brassica napus; R25, R36, and R18 are T2 generation SS.OAH.RNAi transgenic lines."

Fig. 7

Identification of resistance of Sclerotinia sclerotiorum cultured with rape leaf extract WT: wild Brassica napus; R25, R36, and R18 are T2 generation SS.OAH.RNAi transgenic lines. Mock: S. sclerotiorum cultured in PDA medium; A: the statistics of the expanded area of the culture disk after adding PDA to the mycelial extract for 40 hours; B: bar: 1 cm; B1: PDA activated hyphae without added extract; B2: S. sclerotiorum activated by wild-type rape leaf extract; B3-B5 added SS.OAH.RNAi transgenic rape (R18, R25, and R36) leaf extract; B6-B10: corresponding to the mycelial growth of S. sclerotiorum observed under stereomicroscope in Fig. B1-B5 respectively. C: the expansion of S. sclerotiorum hyphae cultured in the medium made of wild-type rape and transgenic rape (R18, R25, and R36) leaf extract 48 hours after inoculation in wild-type rape. Bar: 2 cm."

Fig. 8

Observation on inoculation of rape leaves by cotton blue staining WT: wild Brassica napus; R25, R36, and R18 are T2 generation SS.OAH.RNAi transgenic lines."

Fig. 9

Determination of oxalic acid content in diseased leaf spots of T2 generation SS.OAH.RNAi transgenic rapeseed Different lowercase letters represent statistically significant differences at P < 0.05 based on one-way ANOVA."

[1] 李慧, 文李, 刘凯, 官春云. 油菜抗菌核病机制研究进展. 作物研究, 2015, 29(1): 84-90.
Li H, Wen L, Liu K, Guan C Y. Research progress on resistance mechanism of Brassica napus to Sclerotinia sclerotiorum. Crop Res, 2015, 29(1): 84-90. (in Chinese with English abstract)
[2] Liang X, Rollins J A. Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum. Phytopathology, 2018, 108: 1128-1140.
doi: 10.1094/PHYTO-06-18-0197-RVW
[3] 吴健, 周永明, 王幼平. 油菜与核盘菌互作分子机理研究进展. 中国油料作物学报, 2018, 40: 721-729.
Wu J, Zhou Y M, Wang Y P. Research progress on molecular mechanisms of Brassica napus Sclerotinia sclerotiorum interaction. Chin Oil Crop Sci, 2018, 40: 721-729. (in Chinese with English abstract)
[4] 杨清坡, 刘万才, 黄冲. 近10年油菜主要病虫害发生危害情况的统计和分析. 植物保护, 2018, 44(3): 24-30.
Yang Q P, Liu W C, Huang C. Statistics and analysis of oilseed rape losses caused by main diseases and insect pests in recent 10 years. Plant Prot Sci, 2018, 44(3): 24-30. (in Chinese with English abstract)
[5] Wu J, Zhao Q, Yang Q, Liu H, Li Q Y, Yi X Q, Cheng Y, Guo L, Fan C C, Zhou Y Z. Comparative transcriptomic analysis uncovers the complexgenetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007.
doi: 10.1038/srep19007
[6] Adams P B, Ayers W A. Ecology of Sclerotinia species. Phytopathology, 1979, 69: 896-896.
doi: 10.1094/Phyto-69-896
[7] Willetts H J, Wong J. The biology of Sclerotinia sclerotiorum, S. trifoliorum and S. minor with emphasis on specific nomenclature. Bot Rev, 1980, 46: 101-165.
doi: 10.1007/BF02860868
[8] Godoy G, Steadman J R, Dickman M B, Dam R. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Mol Plant Pathol, 1990, 37: 179-191.
doi: 10.1111/radm.2007.37.issue-3
[9] Liang Y, Strelkov S E, Kav N N V. Oxalic acid-mediated stress responses in Brassica napus L. Proteomics, 2010, 9: 3156-3173.
doi: 10.1002/pmic.200800966
[10] Williams B, Kabbage M, Kim H J, Britt R, Dickman M B. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog, 2011, 7: e1002107.
[11] Heller A, Witt G T. Oxalic acid has an additional. detoxifying function in Sclerotinia sclerotiorum pathogenesis. PLoS One, 2013, 8: e72292.
doi: 10.1371/journal.pone.0072292
[12] Riou C, Freyssinet G, Fevre M. Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum. Appl Environ Microb, 1991, 57:1478-1484.
doi: 10.1128/aem.57.5.1478-1484.1991 pmid: 16348487
[13] Evans M V D, Christine S. Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol, 1996, 42: 881-895.
doi: 10.1139/m96-114
[14] Derbyshire M, Mbengue M, Barascud M, Navaud O, Raffaele S. Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance. Mol Plant Pathol, 2019, 20: 1279-1297.
doi: 10.1111/mpp.12841 pmid: 31361080
[15] Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C, Zhou Y. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007-19022.
doi: 10.1038/srep19007
[16] Xu J, Wang X, Li Y, Zeng J, Wang G, Deng C, Guo W. Host-induced gene silencing of a regulator of G protein signalling gene (VdRGS1) confers resistance to Verticillium wilt in cotton. Plant Biotechnol J, 2018, 16: 1629-1643.
doi: 10.1111/pbi.2018.16.issue-9
[17] Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell, 2010, 22: 3130-3141.
doi: 10.1105/tpc.110.077040
[18] Yin C, Jurgenson J E, Hulbert S H. Development of a host-induced rnai system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant Microbe Interact, 2011, 24: 554-561.
doi: 10.1094/MPMI-10-10-0229
[19] Zhu L, Zhu J, Liu Z, Wang Z, Zhou C, Wang H. Host-induced gene silencing of rice blast fungus Magnaporthe oryzae pathogenicity genes mediated by the brome mosaic virus. Genes, 2017, 8: 241.
doi: 10.3390/genes8100241
[20] McCaghey M, Shao D, Kurcezewski J, Lindstrom A, Ranjan A, Whitham S A, Conley S P, Williams B, Smith D L, Kabbage M. Host-induced gene silencing of a Sclerotinia sclerotiorum oxaloacetate acetylhydrolase using bean pod mottle virus as a vehicle reduces disease on soybean. Front Plant Sci, 2021, 12: 677631.
doi: 10.3389/fpls.2021.677631
[21] Rana K, Yuan J, Liao H, Banga S S, Kumar R, Qian W, Ding Y. Host-induced gene silencing reveals the role of Sclerotinia sclerotiorum oxaloacetate acetylhydrolase gene in fungal oxalic acid accumulation and virulence. Microbiol Res, 2022, 258: 126981.
doi: 10.1016/j.micres.2022.126981
[22] Nakayashiki H, Nguyen Q B. RNA interference: roles in fungal biology. Curr Opin Microbiol, 2008, 11: 494-502.
doi: 10.1016/j.mib.2008.10.001 pmid: 18955156
[23] Spiering M J, Moon C D, Wilkinson H H, Schardl C L. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics, 2005, 169: 1403-1414.
pmid: 15654104
[1] YANG Tai-Hua, YANG Fu-Quan, GAO Geng-Dong, YIN Shuai, JIN Qing-Dong, XU Lin-Shan, KUAI Jie, WANG Bo, XU Zheng-Hua, GE Xian-Hong, WANG Jing, ZHOU Guang-Sheng. Preliminary exploration of the role of LncRNA in the ecotype differentiation of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(5): 1197-1210.
[2] ZHANG Ying-Chuan, WU Xiao-Ming-Yu, TAO Bao-Long, CHEN Li, LU Hai-Qin, ZHAO Lun, WEN Jing, YI Bin, TU Jing-Xing, FU Ting-Dong, SHEN Jin-Xiong. Functional analysis of Bna-miR43-FBXL regulatory module involved in aluminum stress in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(5): 1211-1221.
[3] BAI Cheng-Cheng, YAO Xiao-Yao, WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu. Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 1016-1027.
[4] CHEN Hui, XIAO Qin, WANG Hua-Dong, WEN Jing, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, YI Bin. Identification of SUMO protein family members and functional study of Bna.SUMO1.C08 gene in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 917-925.
[5] CHEN Xiao-Han, WANG Li-Qin, WANG Hua-Dong, XIAO Qing, TAO Bao-Long, ZHAO Lun, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. BnABCI8 affects chloroplast development of Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 893-905.
[6] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
[7] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[8] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
[9] ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195.
[10] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
[11] LI Sheng-Ting, XU Yuan-Fang, CHANG Wei, LIU Ya-Jun, GU Yuan, ZHU Hong, LI Jia-Na, LU Kun. Bna.C02SWEET15 positively regulates the flowering time of rapeseed through photoperiodic pathway [J]. Acta Agronomica Sinica, 2022, 48(8): 1938-1947.
[12] DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644.
[13] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[14] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[15] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .