Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 687-895.doi: 10.3724/SP.J.1006.2025.44087

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production

JIN Gao-Rui1(), WU Xiao-Li2(), DENG Li3, CHEN Yu-Ning1, YU Bo-Lun1, GUO Jian-Bin1, DING Ying-Bin1, LIU Nian1, LUO Huai-Yong1, CHEN Wei-Gang1, HUANG Li1, ZHOU Xiao-Jing1, HUAI Dong-Xin1, TAN Jia-Zhuang2, JIANG Hui-Fang1, REN Li3, LEI Yong1, LIAO Bo-Shou1,*()   

  1. 1Oil Crops Research Institute, China Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Zhanjiang Academy of Agricultural Sciences, Zhanjiang 524094, Guangdong, China
    3Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng 475004, Henan, China
  • Received:2024-05-27 Accepted:2024-09-18 Online:2025-03-12 Published:2024-10-08
  • Contact: *E-mail: lboshou@hotmail.com
  • About author:

    **Contributed equally to this work

  • Supported by:
    National Key Research and Development Program of China(2023YFD1202800);National Natural Science Foundation of China(32101708);China Agriculture Research System of MOF and MARA(CARS-13);National Crop Germplasm Resources Center(NCGRC-2023-036)

Abstract:

High oleate peanut is a key focus for both varietal improvement and industry development worldwide due to its extended shelf life and potential health benefits. However, peanuts are highly susceptible to Aspergillus infection, leading to aflatoxin contamination, making it critical to enhance aflatoxin resistance in the development of the high oleate peanut industry to ensure food safety. In this study, a recombinant inbred line (RIL) population was developed by crossing the high oleic acid peanut genotype Kainong H03-3 with the high-yielding variety Zhonghua 16. The RILs were evaluated for oleic acid content and other traits, including their response to Aspergillus flavus infection and aflatoxin formation. Notably, Kainong H03-3 exhibited resistance to both fungal infection and toxin production. Additionally, four lines resistant to fungal infection and three lines resistant to toxin formation were identified among the 53 high oleate lines segregated from the RILs. Of these, two high oleate lines, QT0790 and QT0918, demonstrated resistance to both fungal infection and aflatoxin production. Further analysis revealed that the aflatoxin resistance in QT0790 and QT0918 was not only superior to that of both parental genotypes, but also exceeded that of the well-known fungal infection-resistant genotype J11 and the toxin production-resistant variety Zhonghua 6. This suggests the presence of complementary effects among certain minor-effect genes/loci for both fungal infection and toxin production resistance, which could be valuable for improving or integrating resistance traits. Both QT0790 and QT0918 maintained stable oleic acid contents above 80% in samples harvested from five diverse ecological locations. The genetic effects observed in this study for minor genes/loci associated with aflatoxin resistance, along with the identification of resistant high oleate lines, provide valuable insights for further research into the underlying genetic mechanisms and for the development of peanut varieties with both high oleic acid content and enhanced resistance to aflatoxin contamination.

Key words: peanut genotypes, high oleic acid, Aspergillus flavus infection resistance, aflatoxin production resistance

Fig. 1

Distribution of oleic acid content in RIL population 2020WH: 2020 Wuhan; 2021WH: 2021 Wuhan; 2021QZ: 2021 Quanzhou."

Fig. 2

Distribution of PSII and AFT in RIL population 2020WH: 2020 Wuhan; 2021WH: 2021 Wuhan; 2021QZ: 2021 Quanzhou. PSII: percent seed infection index; AFT: aflatoxin content."

Table 1

Correlation analysis between oleic acid content, PSII, and AFT in RIL population"

环境
Environment
性状
Trait
油酸含量
Oleic acid content
侵染指数
PSII
产毒值
AFT
2020WH Oleic acid content 1.000
PSII 0.078 1.000
AFT -0.040 0.431** 1.000
2021WH Oleic acid content 1.000
PSII 0.035 1.000
AFT -0.187** 0.628** 1.000
2021QZ Oleic acid content 1.000
PSII -0.003 1.000
AFT -0.104 0.318** 1.000

Table 2

Distribution of different PSII and AFT in high-oleic and non-high oleic peanut materials"

性状
Trait
分类
Classification
数量
Quantity
I级
Level I
II级
Level II
III级
Level III
IV级
Level IV
V级
Level V
侵染指数PSII 非高油酸Non-high oleic 247 0 44 136 61 6
高油酸High-oleic 53 0 8 21 23 1
产毒值AFT 非高油酸Non-high oleic 247 34 147 95 17 8
高油酸High-oleic 53 8 27 13 3 2

Table 3

Chi-square test for linear trend of oleic acid content and PSII"

项目
Item

Value
自由度
DF
渐进显著性(双侧)
Asymptotic significance (two-side)
皮尔逊卡方Pearson chi-square 7.678 3 0.053
似然比Likelihood ratio 7.222 3 0.065
线性关联Linear-by-linear association 3.437 1 0.064
有效个案数Number of valid cases 300

Table 4

Chi-square test for linear trend of oleic acid content and AFT"

项目
Item

Value
自由度
DF
渐进显著性(双侧)
Asymptotic significance (two-side)
皮尔逊卡方Pearson chi-square 1.518 4 0.823
似然比Likelihood ratio 1.510 4 0.825
线性关联Linear-by-linear association 0.331 1 0.565
有效个案数Number of valid cases 354

Fig. 3

Distribution of PSII of high-oleic acid lines 2020WH: 2020 Wuhan; 2021WH: 2021 Wuhan; 2021QZ: 2021 Quanzhou. PSII: percent seed infection index."

Fig. 4

Distribution of AFT of high-oleic acid lines 2020WH: 2020 Wuhan; 2021WH: 2021 Wuhan; 2021QZ: 2021 Quanzhou. AFT: aflatoxin content."

Table 5

High-oleic acid lines with resistant to Aspergillus flavus infection and toxin production"

家系
Line
油酸含量
Oleic acid
content (%)
侵染指数PSII (%) 产毒值AFT (μg g-1)
2020武汉
2020WH
2021武汉
2021WH
2021泉州
2021QZ
2020武汉
2020WH
2021武汉
2021WH
2021泉州
2021QZ
QT0722 81.01 16.23 35.12 45.28 21.00 58.06 96.43
QT0790 80.18 42.33 34.96 56.31 14.04 18.34 28.48
QT0903 80.22 41.42 42.88 78.37 17.73 36.84 44.18
QT0918 79.91 14.27 31.72 57.19 8.49 25.18 33.15
QT1008 79.41 30.67 33.91 41.67 50.29 66.72 31.95
ZH16 46.81 79.56 76.35 88.33 110.43 129.67 123.67
KNH03-3 79.59 43.86 35.23 57.99 18.58 37.35 43.55
J11 42.58 45.12 36.33 59.42 35.45 53.11 62.98
ZH6 45.40 85.97 87.29 84.12 20.83 42.77 50.12

Fig. 5

Significant differences in PSII and AFT among QT0790, QT0918, and NJSU2007 in different ecological regions *** indicates significant correlation at the 0.001 probability level; ** indicates significant correlation at the 0.01 probability level. NY: Nanyang; TZ: Taizhou; NC: Nanchong; HF: Heifei; TR: Tongren. PSII: percent seed infection index; AFT: aflatoxin content."

Table 6

Agronomic traits of QT0790 and QT0918 in different ecological regions"

家系
Line
性状
Trait
南阳
Nanyang
泰州
Taizhou
南充Nanchong 合肥
Hefei
铜仁
Tongren
平均
Average
QT0790 主茎高 HMS (cm) 41.8 42.2 41.4 42.3 28.0 39.1
总分枝数 TBN 9.8 11.4 14.7 16.0 13.7 13.1
饱果数 FFN 33.3 15.8 15.4 29.1 18.1 22.3
百果重 HPW (g) 162.4 147.6 142.3 153.2 115.5 144.2
百粒重 HSW (g) 63.5 65.8 52.5 63.3 45.7 58.2
出仁率 SP (%) 62.3 70.4 70.6 72.9 66.6 68.6
QT0918 主茎高 HMS (cm) 45.0 33.7 37.0 54.1 28.8 39.7
总分枝数 TBN 9.8 8.4 9.6 9.8 9.6 9.4
饱果数 FFN 25.8 10.6 16.4 26.4 17.3 19.3
百果重 HPW (g) 165.3 131.0 129.4 132.3 123.8 136.4
百粒重 HSW (g) 64.5 59.9 50.6 54.8 46.0 55.2
出仁率 SP (%) 71.3 75.3 75.2 75.7 67.2 72.9
[1] Janila P, Pandey M K, Shasidhar Y, Variath M T, Sriswathi M, Khera P, Manohar S S, Nagesh P, Vishwakarma M K, Mishra G P, Radhakrishnan T, Manivannan N, Dobariya K L, Vasanthi R P, Varshney R K. Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci, 2016, 242: 203-213.
[2] Braddock J C, Sims C A, O’Keefe S F. Flavor and oxidative stability of roasted high oleic acid peanuts. J Food Sci, 1995, 60: 489-493.
[3] Terés S, Barceló-Coblijn G, Alemany R, Benet M, Escribá P V. Oleic acid is responsible for the blood pressure reduction induced by olive oil through its “membrane-lipid therapy” action. Chem Phys Lipds, 2007, 149: S71-S72.
[4] Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding Program1. Peanut Sci, 1987, 14: 7-11.
[5] Gorbet D W, Knauft D A. Registration of ‘SunOleic 95R’ peanut. Crop Sci, 1997, 37: 1392.
[6] Moore K M, Knauft D A. The inheritance of high oleic acid in peanut. J Hered, 1989, 80: 252-253.
[7] 禹山林, TGIsleib. 美国大花生脂肪酸的遗传分析. 中国油料作物学报, 2000, 22: 34-37.
Yu S L, TGIsleib. The inheritance of high oleic acid content in peanut of Virginia type in USA. Chin J Oil Crop Sci, 2000, 22: 34-37 (in Chinese with English abstract).
[8] 王传堂, 朱立贵. 高油酸花生. 上海: 上海科学技术出版社, 2017. pp 189-190.
Wang C T, Zhu L G. High Oleic Acid Peanuts. Shanghai: Shanghai Scientific & Technical Publishers, 2017. pp 189-190 (in Chinese).
[9] Rao K S, Tulpule P G. Varietal differences of groundnut in the production of aflatoxin. Nature, 1967, 214: 738-739.
[10] Mixon A C, Rogers K M. Peanut accessions resistant to seed infection by Aspergillus flavus. Agron J, 1973, 65: 560-562.
[11] 肖达人, 王圣玉, 瞿桢, 张洪玲. 花生抗黄曲霉毒素污染研究进展. 花生科技, 1999, 28(增刊1): 124-129.
Xiao D R, Wang S Y, Qu Z, Zhang H L. Research progress of peanut resistance to aflatoxin pollution. J Peanut Sci, 1999, 28(S1): 124-129 (in Chinese with English abstract).
[12] 姜慧芳, 任小平, 王圣玉, 张晓杰, 黄家权, 廖伯寿, Holbrooka C, Upadhyaya H. 利用核心种质发掘及评价花生抗黄曲霉资源. 作物学报, 2010, 36: 428-434.
doi: 10.3724/SP.J.1006.2010.00428
Jiang H F, Ren X P, Wang S Y, Zhang X J, Huang J Q, Liao B S, Holbrooka C, Upadhyaya H. Development and evaluation of peanut germplasm with resistance to Aspergillus flavus from core collection. Acta Agron Sin, 2010, 36: 428-434 (in Chinese with English abstract).
[13] 王后苗. 花生抗黄曲霉菌产毒机制的研究. 中国农业科学院博士学位论文, 北京, 2016.
Wang H M. Mechanism of Resistance to Aflatoxin Production in Peanut (Arachis hypogaea L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[14] Yu B L, Huai D X, Huang L, Kang Y P, Ren X P, Chen Y N, Zhou X J, Luo H Y, Liu N, Chen W G, Lei Y, Pandey M K, Sudini H, Varshney R K, Liao B S, Jiang H F. Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Genet, 2019, 20: 32.
[15] 晋高锐, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 雷永, 廖伯寿, 姜慧芳. 花生籽仁抗黄曲霉菌侵染评价方法的优化及应用. 中国油料作物学报, 2024, 46: 1405-1411.
doi: 10.19802/j.issn.1007-9084.2023178
Jin G R, Yu B L, Guo J B, Ding Y B, Liu N, Luo H Y, Chen W G, Huang L, Zhou X J, Lei Y, Liao B S, Jiang H F. Improvement and utilization for scoring of the Aspergillus flavus infection to peanut seed. Chin J Oil Crop Sci, 2024, 46: 1405-1411 (in Chinese with English abstract).
[16] Davis J P, Dean L O, Faircloth W H, Sanders T H. Physical and chemical characterizations of normal and high-oleic oils from nine commercial cultivars of peanut. J Am Oil Chem Soc, 2008, 85: 235-243.
[17] 赵志浩, 石爱民, 王强. 高油酸花生的研究进展与发展趋势. 粮食与油脂, 2019, 32(9): 1-4.
Zhao Z H, Shi A M, Wang Q. Research progress and development trend of high-oleic acid peanuts. Cereals Oils, 2019, 32(9): 1-4 (in Chinese with English abstract).
[18] 刘芳, 王积军, 汤松. 我国高油酸花生品种选育与推广应用. 中国农技推广, 2017, 33(1): 14-15.
Liu F, Wang J J, Tang S. Breeding, popularization and application of peanut varieties with high oleic acid in China. China Agric Technol Ext, 2017, 33(1): 14-15 (in Chinese).
[19] 巩鹏涛. 基于SSR标记锚定策略的大豆分子连锁图的整合. 广西大学硕士学位论文, 广西南宁, 2006.
Gong P T. An Integrated Soybean Genetic Linkage Map Based on SSR Anchor Marker Strategies. MS Thesis of Guangxi University, Nanning, Guangxi, China, 2006 (in Chinese with English abstract).
[20] Burr B, Burr F A, Thompson K H, Albertson M C, Stuber C W. Gene mapping with recombinant inbreds in maize. Genetics, 1988, 118: 519-526.
doi: 10.1093/genetics/118.3.519 pmid: 3366363
[21] 廖伯寿, 雷永, 王圣玉, 李栋, 黄家权, 姜慧芳, 任小平. 花生重组近交系群体的遗传变异与高油种质的创新. 作物学报, 2008, 34: 999-1004.
doi: 10.3724/SP.J.1006.2008.00999
Liao B S, Lei Y, Wang S Y, Li D, Huang J Q, Jiang H F, Ren X P. Genetic diversity of peanut RILs and enhancement for high oil genotypes. Acta Agron Sin, 2008, 34: 999-1004 (in Chinese with English abstract).
[22] 李威涛, 徐志军, 蔡岩, 郭建斌, 喻博伦, 黄莉, 陈玉宁, 周小静, 罗怀勇, 刘念, 陈伟刚, 任小平, 姜慧芳. 抗青枯病兼大果和高出仁率的花生新种质创制. 作物学报, 2020, 46: 484-490.
doi: 10.3724/SP.J.1006.2020.94112
Li W T, Xu Z J, Cai Y, Guo J B, Yu B L, Huang L, Chen Y N, Zhou X J, Luo H Y, Liu N, Chen W G, Ren X P, Jiang H F. Development of novel peanut genotypes with resistance to bacterial wilt disease, large pod, and high shelling percentage. Acta Agron Sin, 2020, 46: 484-490 (in Chinese with English abstract).
[23] 蒋艺飞, 喻博伦, 丁膺宾, 陈伟刚, 郭建斌, 陈海文, 罗怀勇, 刘念, 黄莉, 周小静, 姜慧芳, 雷永, 晏立英, 康彦平, 姜成红, 廖伯寿. 花生抗黄曲霉大果种质的创制与鉴定. 中国油料作物学报, 2022, 44: 72-77.
doi: 10.19802/j.issn.1007-9084.2020304
Jiang Y F, Yu B L, Ding Y B, Chen W G, Guo J B, Chen H W, Luo H Y, Liu N, Huang L, Zhou X J, Jiang H F, Lei Y, Yan L Y, Kang Y P, Jiang C H, Liao B S. Development and characterization of novel large-podded peanut genotypes with resistance to aflatoxin contamination. Chin J Oil Crop Sci, 2022, 44: 72-77 (in Chinese with English abstract).
[1] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[2] HUANG Bing-Yan,QI Fei-Yan,SUN Zi-Qi,MIAO Li-Juan,FANG Yuan-Jin,ZHENG Zheng,SHI Lei,ZHANG Zhong-Xin,LIU Hua,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You. Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines [J]. Acta Agronomica Sinica, 2019, 45(4): 546-555.
[3] Jian-Guo LI,Xiao-Meng XUE,Zhao-Hua ZHANG,Zhi-Hui WANG,Li-Ying YAN,Yu-Ning CHEN,Li-Yun WAN,Yan-Ping KANG,Dong-Xin HUAI,Hui-Fang JIANG,Yong LEI,Bo-Shou LIAO. Establishment and applicant of near-infrared reflectance spectroscopy models for predicting main fatty acid contents of single seed in peanut [J]. Acta Agronomica Sinica, 2019, 45(12): 1891-1898.
[4] LIU Hao,LU Qing,LI Hai-Fen,LI Shao-Xiong,CHEN Xiao-Ping,LIANG Xuan-Qiang,HONG Yan-Bin. Molecular mechanism of stearoyl-ACP desaturase gene FAB2 expression in peanut [J]. Acta Agronomica Sinica, 2019, 45(11): 1638-1648.
[5] YU Ming-Yang,SUN Ming-Ming,GUO Yue,JIANG Ping-Ping,LEI Yong,HUANG Bing-Yan,FENG Su-Ping,GUO Bao-Zhu,SUI Jiong-Ming,WANG Jing-Shan,QIAO Li-Xian. Breeding New Peanut Line with High Oleic Acid Content Using Backcross Method [J]. Acta Agron Sin, 2017, 43(06): 855-861.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!