Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 548-556.doi: 10.3724/SP.J.1006.2025.44090
• RESEARCH NOTES • Previous Articles
ZHAO Fei-Fei1,2,LI Shao-Xiong2,LIU Hao2,LI Hai-Fen2,WANG Run-Feng2,HUANG Lu2,YU Qian-Xia2,HONG Yan-Bin2,CHEN Xiao-Ping2,LU Qing2,*,CAO Yu-Man1,*
[1] Hammons R O, Herman D, Stalker H T. Origin and early history of the peanut. Peanuts. Amsterdam: Elsevier, 2016. pp 1–26.
[2] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161–166. [3] 付凌晖, 叶礼奇. 中国统计年鉴2023. 北京: 中国统计出版社, 2023. pp 386–403. Fu L H, Ye L Q. China Statistical Yearbook 2023. Beijing: China Statistics Press, 2023. pp 386–403 (in Chinese). [4] 郝西, 张俊, 高伟, 易明林, 刘娟, 臧秀旺. 中国花生生产成本与收益分析. 农业科技通讯, 2023, (11): 150–153. Hao X, Zhang J, Gao W, Yi M L, Liu J, Zang X W. Cost and benefit analysis of peanut production in China. Bull Agric Sci Technol, 2023, (11): 150–153 (in Chinese).
[5] 刘晓慧. 基于碳排放的我国花生绿色全要素生产率评价研究. 山东农业大学硕士学位论文, 山东泰安, 2023. [6] Donald C M. A barley breeding programme based on an ideotype. J Agric Sci, 1979, 93: 261–269. [7] Li Y B, Tao F L, Hao Y F, Tong J Y, Xiao Y G, Zhang H, He Z H, Reynolds M. Linking genetic markers with an eco-physiological model to pyramid favourable alleles and design wheat ideotypes. Plant Cell Environ, 2023, 46: 780–795. [8] Wang Z Q, Wu F K, Chen X D, Zhou W L, Shi H R, Lin Y, Hou S, Yu S F, Zhou H, Li C X, Liu Y X. Fine mapping of the tiller inhibition gene TIN4 contributing to ideal plant architecture in common wheat. Theor Appl Genet, 2022, 135: 527–535. [9] Cheng Y X, Xiao F, Huang D Y, Yang Y, Cheng W D, Jin S C, Li G H, Ding Y F, Paul M J, Liu Z H. High canopy photosynthesis before anthesis explains the outstanding yield performance of rice cultivars with ideal plant architecture. Field Crops Res, 2024, 306: 109223.
[10] 马梦影, 巩文靓, 康雪蒙, 段海燕. 水稻理想株型改良的研究进展. 中国农学通报, 2020, 36(29): 1–6. [11] Dermail A, Fuengtee A, Lertrat K, Suwarno W B, Lübberstedt T, Suriharn K. Simultaneous selection of sweet-waxy corn ideotypes appealing to hybrid seed producers, growers, and consumers in Thailand. Agronomy, 2021, 12: 87. [12] Li R F, Zhang G Q, Liu G Z, Wang K R, Xie R Z, Hou P, Ming B, Wang Z G, Li S K. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure. Food Energy Secur, 2021, 10: e312.
[13] 李新国, 郭峰, 万书波. 高产花生理想株型的研究. 花生学报, 2013, 42(3): 23–26. [14] Falster D S, Westoby M. Plant height and evolutionary games. Trends Ecol Evol, 2003, 18: 337–343. [15] Salas Fernandez M G, Becraft P W, Yin Y H, Lübberstedt T. From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci, 2009, 14: 454–461. [16] Sarlikioti V, de Visser P H B, Buck-Sorlin G H, Marcelis L F M. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional-structural plant model. Ann Bot, 2011, 108: 1065–1073. [17] 张佳蕾, 郭峰, 李新国, 杨莎, 耿耘, 孟静静, 张凤, 万书波. 提早化控对高产花生节间分布和产量构成的影响. 花生学报, 2017, 46(4): 63–67. Zhang J L, Guo F, Li X G, Yang S, Geng Y, Meng J J, Zhang F, Wan S B. Effects of earlier chemical control on internode distribution and yield components of high yield peanut. J Peanut Sci, 2017, 46(4): 63–67 (in Chinese with English abstract).
[18] 张佳蕾, 郭峰, 杨佃卿, 孟静静, 杨莎, 王兴语, 陶寿祥, 李新国, 万书波. 单粒精播对超高产花生群体结构和产量的影响. 中国农业科学, 2015, 48: 3757–3766. [19] McKim S M. Moving on up - controlling internode growth. New Phytol, 2020, 226: 672–678. [20] Li S C, Sun Z H, Sang Q, Qin C, Kong L P, Huang X, Liu H, Su T, Li H Y, He M L, Fang C, Wang L S, Liu S R, Liu B, Liu B H, Fu X D, Kong F J, Lu S J. Soybean reduced internode 1 determines internode length and improves grain yield at dense planting. Nat Commun, 2023, 14: 7939. [21] Dayan J, Voronin N, Gong F, Sun T P, Hedden P, Fromm H, Aloni R. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell, 2012, 24: 66–79. [22] Patil V, McDermott H I, McAllister T, Cummins M, Silva J C, Mollison E, Meikle R, Morris J, Hedley P E, Waugh R, Dockter C, Hansson M, McKim S M. APETALA2 control of barley internode elongation. Development, 2019, 146: dev170373. [23] Li L, Cui S L, Dang P, Yang X L, Wei X J, Chen K, Liu L F, Chen C Y. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2022, 23: 403. [24] Zhang H, Chu Y, Dang P, Tang Y Y, Jiang T, Clevenger J P, Ozias-Akins P, Holbrook C, Wang M L, Campbell H, Hagan A, Chen C. Identification of QTLs for resistance to leaf spots in cultivated peanut (Arachis hypogaea L.) through GWAS analysis. Theor Appl Genet, 2020, 133: 2051–2061. [25] Wang J, Yan C X, Shi D C, Zhao X B, Yuan C L, Sun Q X, Mou Y F, Chen H N, Li Y, Li C J, Shan S H. The genetic base for peanut height-related traits revealed by a meta-analysis. Plants (Basel), 2021, 10: 1058. [26] Lu Q, Huang L, Liu H, Garg V, Gangurde S S, Li H F, Chitikineni A, Guo D D, Pandey M K, Li S X, Liu H Y, Wang R F, Deng Q Q, Du P X, Varshney R K, Liang X Q, Hong Y B, Chen X P. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet, 2024, 56: 530–540. [27] 姜慧芳, 段乃雄. 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 65–67. Jiang H F, Duan N X. Descriptors and Data Standard for Peanut (Arachis spp.). Beijing: China Agriculture Press, 2006. pp 65–67 (in Chinese). [28] Chen X P, Lu Q, Liu H, Zhang J N, Hong Y B, Lan H F, Li H F, Wang J P, Liu H Y, Li S X, Pandey M K, Zhang Z K, Zhou G Y, Yu J G, Zhang G Q, Yuan J Q, Li X Y, Wen S J, Meng F B, Yu S L, Wang X Y, Siddique K H M, Liu Z J, Paterson A H, Varshney R K, Liang X Q. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant, 2019, 12: 920–934. [29] Wang J B, Zhang Z W. GAPIT version 3: boosting power and accuracy for genomic association and prediction. Genom Proteom Bioinform, 2021, 19: 629–640. [30] Li Y J, Li L Z, Zhang X R, Zhang K, Ma D C, Liu J Q, Wang X J, Liu F Z, Wan Y S. QTL mapping and marker analysis of main stem height and the first lateral branch length in peanut (Arachis hypogaea L.). Euphytica, 2017, 213: 57. [31] Huerta-Cepas J, Forslund K, Coelho L P, Szklarczyk D, Jensen L J, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol, 2017, 34: 2115–2122.
[32] 于彦丽, 李艳娇, 庞凯元, 张发军, 孙琦, 李文才, 孟昭东. 植物FKBP基因家族的结构及生物学功能. 遗传, 2014, 36: 536–546. [33] 李鹏云. FKBP家族相关蛋白晶体结构及功能研究. 清华大学博士学位论文, 北京, 2003. Li P Y. Study on Crystal Structure and Function of FKBP Family Related Proteins. PhD Dissertation of Tsinghua University, Beijing, China, 2003 (in Chinese with English abstract). [34] Harding M W, Galat A, Uehling D E, Schreiber S L. A receptor for the immunosuppressant FK506 is a Cis-trans peptidyl-prolyl isomerase. Nature, 1989, 341: 758–760. [35] Henrichs S, Wang B J, Fukao Y, Zhu J S, Charrier L, Bailly A, Oehring S C, Linnert M, Weiwad M, Endler A, Nanni P, Pollmann S, Mancuso S, Schulz A, Geisler M. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J, 2012, 31: 2965–2980. [36] Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J, Molino D, Lima A, Bach L, Morin H, Tellier F, Palauqui J C, Bellec Y, Renne C, Miquel M, Dacosta M, Vignard J, Rochat C, Markham J E, Moreau P, Napier J, Faure J D. Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell, 2010, 22: 364–375. [37] Huang L, Ren X P, Wu B, Li X P, Chen W G, Zhou X J, Chen Y N, Pandey M K, Jiao Y Q, Luo H Y, Lei Y, Varshney R K, Liao B S, Jiang H F. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Sci Rep, 2016, 6: 39478. [38] Li L, Yang X L, Cui S L, Meng X H, Mu G J, Hou M Y, He M J, Zhang H, Liu L F, Chen C Y. Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Front Plant Sci, 2019, 10: 745. [39] Lyu J W, Liu N, Guo J B, Xu Z J, Li X P, Li Z D, Luo H Y, Ren X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, Tu J X, Jiang H F, Liao B S. Stable QTLs for plant height on chromosome A09 identified from two mapping populations in peanut (Arachis hypogaea L.). Front Plant Sci, 2018, 9: 684. |
[1] | WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404. |
[2] | HU Peng-Ju, GUO Song, SONG Ya-Hui, JIN Xin-Xin, SU Qiao, YANG Yong-Qing, WANG Jin. Genetic and QTL mapping analysis of oil content in peanut across multiple environments [J]. Acta Agronomica Sinica, 2025, 51(2): 324-333. |
[3] | LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166. |
[4] | ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121. |
[5] | YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854. |
[6] | ZHANG Hong-Mei, ZHANG Wei, WANG Qiong, JIA Qian-Ru, MENG Shan, XIONG Ya-Wen, LIU Xiao-Qing, CHEN Xin, CHEN Hua-Tao. Genome-wide association study for vitamin E content in soybean (Glycine max L.) seed [J]. Acta Agronomica Sinica, 2024, 50(5): 1223-1235. |
[7] | LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943. |
[8] | LU Qing, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 969-980. |
[9] | ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542. |
[10] | HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602. |
[11] | WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632. |
[12] | YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164. |
[13] | JIN Xin-Xin, SU Qiao, SONG Ya-Hui, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Metabolome and transcriptome analysis of flavonoids in peanut testa [J]. Acta Agronomica Sinica, 2024, 50(12): 2950-2961. |
[14] | ZHAO Wei, HU Xiao-Na, ZHENG Yan, LIANG Na, ZHENG Bin, WANG Xiao-Xiao, WANG Jiang-Tao, LIU Ling, FU Guo-Zhan, SHI Zhao-Yong, JIAO Nian-Yuan. Characteristics of AMF community in maize and peanut rhizosphere soil and its response to phosphate application [J]. Acta Agronomica Sinica, 2024, 50(11): 2896-2907. |
[15] | ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, LI Xiong-Cai, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, HONG Yan-Bin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Analysis of genetic model of sucrose content in peanut [J]. Acta Agronomica Sinica, 2024, 50(1): 32-41. |
|