Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 969-981.doi: 10.3724/SP.J.1006.2025.44158
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LIN Wei-Jin1,2(), GUO Ze-Jia1,2, LIU Hao1, LI Hai-Fen1, WANG Run-Feng1, HUANG Lu1, YU Qian-Xia1, CHEN Xiao-Ping1, HONG Yan-Bin1, LI Shao-Xiong1,*(
), LU Qing1,*(
)
[1] | Akram N A, Shafiq F, Ashraf M. Peanut (Arachis hypogaea L.): a prospective legume crop to offer multiple health benefits under changing climate. Compr Rev Food Sci Food Saf, 2018, 17: 1325-1338. |
[2] | 杨瑶, 冯健, 吴传云. 我国花生生产面临的问题及机械化措施建议. 农机科技推广, 2021, (11): 24-26. |
Yang Y, Feng J, Wu C Y. Problems faced by peanut production in China and suggestions on mechanization measures. Agric Mach Technol Ext, 2021, (11): 24-26 (in Chinese). | |
[3] |
李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析. 作物学报, 2023, 49: 2160-2170.
doi: 10.3724/SP.J.1006.2023.24190 |
Li X, Yang H, Luo L, Li H D, Zhang K, Zhang X R, Li Y Y, Yu H Y, Wang T Y, Liu J Q, Wang Y, Liu F Z, Wan Y S. QTL mapping analysis of single kernel weight of cultivated peanut. Acta Agron Sin, 2023, 49: 2160-2170 (in Chinese with English abstract). | |
[4] | 向道权, 曹海河, 曹永国, 杨俊品, 黄烈健, 王守才, 戴景瑞. 玉米SSR遗传图谱的构建及产量性状基因定位. 遗传学报, 2001, 28: 778-784. |
Xiang D Q, Cao H H, Cao Y G, Yang J P, Huang L J, Wang S C, Dai J R. Construction of a genetic map and location of quantitative trait loci for yield component traits in maize by SSR markers. Acta Genet Sin, 2001, 28: 778-784 (in Chinese with English abstract). | |
[5] |
孟鑫浩, 张靖男, 崔顺立, Chen C Y, 穆国俊, 侯名语, 杨鑫雷, 刘立峰. 花生荚果与种子相关性状QTL定位及与环境互作分析. 作物学报, 2021, 47: 1874-1890.
doi: 10.3724/SP.J.1006.2021.04216 |
Meng X H, Zhang J N, Cui S L, Chen C Y, Mu G J, Hou M Y, Yang X L, Liu L F. QTL mapping and QTL × Environment interaction analysis of pod and seed related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2021, 47: 1874-1890 (in Chinese with English abstract). | |
[6] | 杨强. 花生高密度遗传连锁图谱构建及荚果大小相关性状QTL定位. 福建农林大学硕士学位论文, 福建福州, 2018. |
Yang Q. Construction of High-Density Genetic Linkage Map and QTL Mapping of Pod Size-Related Traits in Peanut. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2018 (in Chinese with English abstract). | |
[7] |
Huang L, He H Y, Chen W G, Ren X P, Chen Y N, Zhou X J, Xia Y L, Wang X L, Jiang X G, Liao B S, et al. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128: 1103-1115.
doi: 10.1007/s00122-015-2493-1 pmid: 25805315 |
[8] |
李振动, 李新平, 黄莉, 任小平, 陈玉宁, 周小静, 廖伯寿, 姜慧芳. 栽培种花生荚果大小相关性状QTL定位. 作物学报, 2015, 41: 1313-1323.
doi: 10.3724/SP.J.1006.2015.01313 |
Li Z D, Li X P, Huang L, Ren X P, Chen Y N, Zhou X J, Liao B S, Jiang H F. Mapping of QTLs for pod size related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2015, 41: 1313-1323 (in Chinese with English abstract). | |
[9] | Luo H Y, Ren X P, Li Z D, Xu Z J, Li X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, et al. Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A 05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2017, 18: 58. |
[10] |
Wang Z H, Huai D X, Zhang Z H, Cheng K, Kang Y P, Wan L Y, Yan L Y, Jiang H F, Lei Y, Liao B S. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018, 9: 827.
doi: 10.3389/fpls.2018.00827 pmid: 29997635 |
[11] |
Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, et al. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012, 12: 80.
doi: 10.1186/1471-2229-12-80 pmid: 22672714 |
[12] |
Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[13] |
Huerta-Cepas J, Forslund K, Coelho L P, Szklarczyk D, Jensen L J, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol, 2017, 34: 2115-2122.
doi: 10.1093/molbev/msx148 pmid: 28460117 |
[14] | Xia T M, Xiao D, Liu D, Chai W T, Gong Q Q, Wang N N. Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis. PLoS One, 2012, 7: e37217. |
[15] |
Samakovli D, Roka L, Dimopoulou A, Plitsi P K, Žukauskait A, Georgopoulou P, Novák O, Milioni D, Hatzopoulos P. HSP 90 affects root growth in Arabidopsis by regulating the polar distribution of PIN1. New Phytol, 2021, 231: 1814-1831.
doi: 10.1111/nph.17528 pmid: 34086995 |
[16] | 张文利, 沈文飚, 叶茂炳, 徐朗莱. 植物顺乌头酸酶及其生理功能. 植物生理学通讯, 2003, 39: 391-398. |
Zhang W L, Shen W B, Ye M B, Xu L L. Aconitase and its physiological roles in plants. Plant Physiol Commun, 2003, 39: 391-398 (in Chinese with English abstract). | |
[17] | Mohanta T K, Yadav D, Khan A L, Hashem A, Abd Allah E F, Al-Harrasi A. Molecular players of EF-hand containing calcium signaling event in plants. Int J Mol Sci, 2019, 20: 1476. |
[18] | 杨洪强, 接玉玲. 植物MAPK及其在病原信号传递中的作用. 植物病理学报, 2003, 33: 8-13. |
Yang H Q, Jie Y L. The plant MAPK and its function in pathogen signaling cascades. Acta Phytopathol Sin, 2003, 33: 8-13 (in Chinese with English abstract). | |
[19] | Alvarez J, Smyth D R. CRABS CLAW and SPATULA genes regulate growth and pattern formation during gynoecium development in Arabidopsis thaliana. Int J Plant Sci, 2002, 163: 17-41. |
[20] | Gremski K, Ditta G, Yanofsky M F. The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development, 2007, 134: 3593-3601. |
[21] | Kim J, Jung J H, Lee S B, Go Y S, Kim H J, Cahoon R, Markham J E, Cahoon E B, Suh M C. Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol, 2013, 162: 567-580. |
[22] | Meng L S, Wang Z B, Yao S Q, Liu A Z. The ARF2-ANT- COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in Arabidopsis. J Cell Sci, 2015, 128: 3922-3932. |
[23] | Jung J H, Barbosa A D, Hutin S, Kumita J R, Gao M J, Derwort D, Silva C S, Lai X L, Pierre E, Geng F, et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature, 2020, 585: 256-260. |
[24] | 马纳纳. 白木香结香转录组分析及其聚酮环化酶AsPKC1功能的初步验证. 海南大学硕士学位论文, 海南海口, 2020. |
Ma N N. Transcriptome Analysis of Aquilaria Sinensis and Preliminary Verification of Its Polyketide Cyclase AsPKC1 Function. MS Thesis of Hainan University, Haikou, Hainan, China, 2020 (in Chinese with English abstract). | |
[25] | 王亚琦. 花生荚果大小性状的遗传解析及候选基因挖掘. 沈阳农业大学博士学位论文, 辽宁沈阳, 2022. |
Wang Y Q. Genetic Analysis and Candidate Gene Mining of Peanut Pod Size Traits. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2022 (in Chinese with English abstract). | |
[26] | Lu Q, Liu H, Hong Y B, Li H F, Liu H Y, Li X Y, Wen S J, Zhou G Y, Li S X, Chen X P, Liang X Q. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.). BMC Genomics, 2018, 19: 887. |
[27] | Chen Y N, Ren X P, Zheng Y L, Zhou X J, Huang L, Yan L Y, Jiao Y Q, Chen W G, Huang S M, Wan L Y, et al. Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG 6375 of peanut (Arachis hypogaea L.). Mol Breed, 2017, 37: 17. |
[28] | Lu Q, Huang L, Liu H, Garg V, Gangurde S S, Li H F, Chitikineni A, Guo D D, Pandey M K, Li S X, et al. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet, 2024, 56: 530-540. |
[29] | 黄莉. 花生种子大小相关性状及基因表达QTL定位分析. 华中农业大学博士学位论文, 湖北武汉, 2019. |
Huang L. QTL Mapping Analysis of Peanut Seed Size-Related Traits and Gene Expression. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract). | |
[30] |
曾新颖, 郭建斌, 赵姣姣, 陈伟刚, 邱西克, 黄莉, 罗怀勇, 周晓静, 姜慧芳, 黄家权. 花生籽仁大小相关性状QTL定位. 作物学报, 2019, 45: 1200-1207.
doi: 10.3724/SP.J.1006.2019.84173 |
Zeng X Y, Guo J B, Zhao J J, Chen W G, Qiu X K, Huang L, Luo H Y, Zhou X J, Jiang H F, Huang J Q. Identification of QTL related to seed size in peanut (Arachis hypogaea L.). Acta Agron Sin, 2019, 45: 1200-1207 (in Chinese with English abstract). | |
[31] |
Li L, Yang X L, Cui S L, Meng X H, Mu G J, Hou M Y, He M J, Zhang H, Liu L F, Chen C Y. Construction of high-density genetic map and mapping quantitative trait loci for growth habit- related traits of peanut (Arachis hypogaea L.). Front Plant Sci, 2019, 10: 745.
doi: 10.3389/fpls.2019.00745 pmid: 31263472 |
[32] |
Liu Y Y, Shao L B, Zhou J, Li R C, Pandey M K, Han Y, Cui F, Zhang J L, Guo F, Chen J, et al. Genomic insights into the genetic signatures of selection and seed trait loci in cultivated peanut. J Adv Res, 2022, 42: 237-248.
doi: 10.1016/j.jare.2022.01.016 pmid: 36513415 |
[33] | Park C J, Seo Y S. Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J, 2015, 31: 323-333. |
[34] |
Xia H, Zhao C Z, Hou L, Li A Q, Zhao S Z, Bi Y P, An J, Zhao Y X, Wan S B, Wang X J. Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genomics, 2013, 14: 517.
doi: 10.1186/1471-2164-14-517 pmid: 23895441 |
[35] |
Zhao C Z, Zhao S Z, Hou L, Xia H, Wang J S, Li C S, Li A Q, Li T T, Zhang X Y, Wang X J. Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. BMC Plant Biol, 2015, 15: 188.
doi: 10.1186/s12870-015-0582-6 pmid: 26239120 |
[36] | 刘霞. 花生花针期生长素的运输与分布及相关基因表达分析. 湖南农业大学博士学位论文, 湖南长沙, 2010. |
Liu X. Transport and Distribution of Auxin and Analysis of Related Gene Expression in Peanut at Flowering Stage. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2010 (in Chinese with English abstract). | |
[37] | Gao C, Sun J L, Wang C Q, Dong Y M, Xiao S H, Wang X J, Jiao Z G. Genome-wide analysis of basic/helix-loop-helix gene family in peanut and assessment of its roles in pod development. PLoS One, 2017, 12: e0181843. |
[38] | 郭永华, 郭护团, 李君, 张启华. 渭北旱原花生开花规律及对结实性的影响. 陕西农业科学, 2002, 48(7): 8-19. |
Guo Y H, Guo H T, Li J, Zhang Q H. Regularity of flowering and its effects on the bearing habit of peanut in the north arid plateau of Weihe river. Shaanxi J Agric Sci, 2002, 48(7): 8-19 (in Chinese). |
[1] | CHI Xiao-Yuan, BI Jing-Nan, ZHAO Jian-Xin, CHEN Na, PAN Li-Juan, JIANG Xiao, YIN Xiang-Zhen, ZHAO Xu-Hong, MA Jun-Qing, XU Jing. Evaluation of mechanical properties of peanut pods and screening of early maturing germplasm [J]. Acta Agronomica Sinica, 2025, 51(4): 943-957. |
[2] | WANG Xiao-Lin, LIU Zhong-Song, KANG Lei, YANG Liu. Mapping of silique length and seeds per silique and transcriptome profiling of pod walls in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(4): 888-899. |
[3] | XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585. |
[4] | JIN Gao-Rui, WU Xiao-Li, DENG Li, CHEN Yu-Ning, YU Bo-Lun, GUO Jian-Bin, DING Ying-Bin, LIU Nian, LUO Huai-Yong, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, HUAI Dong-Xin, TAN Jia-Zhuang, JIANG Hui-Fang, REN Li, LEI Yong, LIAO Bo-Shou. Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production [J]. Acta Agronomica Sinica, 2025, 51(3): 687-895. |
[5] | JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811. |
[6] | ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556. |
[7] | YONG Rui, HU Wen-Jing, WU Di, WANG Zun-Jie, LI Dong-Sheng, ZHAO Die, YOU Jun-Chao, XIAO Yong-Gui, WANG Chun-Ping. Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 312-323. |
[8] | HU Peng-Ju, GUO Song, SONG Ya-Hui, JIN Xin-Xin, SU Qiao, YANG Yong-Qing, WANG Jin. Genetic and QTL mapping analysis of oil content in peanut across multiple environments [J]. Acta Agronomica Sinica, 2025, 51(2): 324-333. |
[9] | GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394. |
[10] | WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404. |
[11] | YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272. |
[12] | YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296. |
[13] | LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166. |
[14] | ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121. |
[15] | HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718. |
|