Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 969-981.doi: 10.3724/SP.J.1006.2025.44158

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping and candidate gene analysis of peanut pod yield-related traits

LIN Wei-Jin1,2(), GUO Ze-Jia1,2, LIU Hao1, LI Hai-Fen1, WANG Run-Feng1, HUANG Lu1, YU Qian-Xia1, CHEN Xiao-Ping1, HONG Yan-Bin1, LI Shao-Xiong1,*(), LU Qing1,*()   

  1. 1Crop Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of Crop Genetic Improvement / National Oilseed Crop Improvement Center Southern Peanut Subcenter, Guangzhou 510640, Guangdong, China
    2College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
  • Received:2024-09-19 Accepted:2024-12-12 Online:2025-04-12 Published:2024-12-19
  • Contact: E-mail: lishaoxiong@gdaas.cn; E-mail: luqing@gdaas.cn
  • Supported by:
    National Natural Science Foundation of China(32172051);National Natural Science Foundation of China(32301869);China Agriculture Research System of MOF and MARA(CARS-13);National Key R&D Program of China(2023YFD1202800);Special Funds for the Revitalization of Agriculture through Seed Industry under the Provincial Rural Revitalization Strategy(2024);Guangdong Provincial Key Research and Development Program-Modern Seed Industry(2022B0202060004);Guangdong Basic and Applied Basic Research Foundation(2023A1515010098);Guangdong Basic and Applied Basic Research Foundation(2024A1515010511)

Abstract:

Peanut (Arachis hypogaea L.) is an important economic and oilseed crop in China, with pod traits playing a critical role in determining yield. In this study, a recombinant inbred line (RIL) population derived from a cross between the large-pod local variety “Dongguan Banman (DB)” and the small-pod variety “ZLA” was used to construct a high-density genetic map with single nucleotide polymorphism (SNP) markers. This map was employed to identify quantitative trait loci (QTL) associated with pod traits across four distinct cultivation environments. A total of 30 QTLs were mapped to chromosomes A01, A03, A05, A06, A07, A08, B02, B04, B06, and B10, with logarithm of odds (LOD) values ranging from 4.04 to 34.17 and contribution rates from 3.10% to 33.52%. Among these, 13 major QTLs were associated with pod length, width, thickness, and 100-pod weight, showing LOD values between 4.41 and 34.17 and contribution rates between 11.21% and 33.52%. Notably, qPLA07 was consistently detected across all four environments, while qPWA08.1, qPWB02, and qPTB06 were stable in three environments. Additionally, 14 epistatic QTLs were identified, with LOD values ranging from 5.07 to 6.67 and phenotypic variation explained (PVE) from 4.21% to 21.84%. KEGG pathway enrichment analysis of genes within the QTL regions of qPWA08.1, qPWB02, and qPTB06 identified four candidate genes: Ahy_A08g039622, Ahy_B02g057642, Ahy_B06g085859, and Ahy_B06g085890, based on gene functional annotation and expression analysis across peanut tissues. These findings provide a theoretical foundation for identifying key genes regulating peanut pod yield and for developing molecular markers to facilitate breeding programs.

Key words: peanut, pod, QTL, candidate genes

Fig. 1

Phenotype of pods RIL: recombinant inbred lines."

Table 1

Descriptive statistical result of the RILs and their parents"

性状
Trait
环境
Environment
亲本 Parent RIL群体 RIL population
ZLA 东莞半蔓
Dongguan
Banman
最大值
Max.
最小值
Min.
变异系数
CV (%)
标准差
SD
平均值
Mean
偏度
Skewness
峰度
Kurtosis
荚果长
PL (mm)
E1 0.65 0.74** 52.57 23.30 0.18 6.13 33.40 0.695 0.480
E2 0.58 0.68** 42.09 22.16 0.14 4.35 32.21 -0.046 -0.416
E3 0.63 0.69** 53.04 23.63 0.17 5.81 34.51 0.673 0.491
E4 0.51 0.72** 50.59 21.23 0.16 5.07 32.37 0.560 1.009
荚果宽
PW (mm)
E1 0.61 0.82** 19.20 10.22 0.13 1.84 14.53 0.192 -0.004
E2 0.57 0.95** 18.76 8.76 0.16 2.10 13.40 0.370 -0.292
E3 0.60 0.63** 22.31 9.46 0.14 1.96 14.02 0.489 0.787
E4 0.53 0.87** 17.64 9.41 0.13 1.76 13.33 -0.005 -0.336
荚果厚
PT (mm)
E1 0.49 0.78** 18.98 9.69 0.13 1.91 14.25 0.166 -0.189
E2 0.42 0.69** 20.23 8.73 0.16 2.09 12.91 0.871 0.392
E3 0.55 0.81** 19.59 9.04 0.13 1.82 13.82 -0.016 0.218
E4 0.34 0.82** 16.91 8.91 0.12 1.62 13.52 -0.226 -0.353
百果重
HPW (mm)
E1 5.68 4.97** 314.00 61.40 0.29 44.96 155.85 0.583 0.024
E2 5.41 3.42** 227.00 63.00 0.29 37.60 130.54 0.257 -0.419
E3 4.32 3.01** 296.00 56.00 0.28 47.12 167.34 0.414 0.166
E4 4.26 5.51** 212.00 52.00 0.29 35.65 123.53 0.359 -0.225

Table 2

Correlation analysis of each trait in four environments"

环境Environment 性状Trait 荚果长PL 荚果宽PW 荚果厚PT
E1 荚果宽PW 0.349***
荚果厚PT 0.302*** 0.914***
百果重HPW 0.636*** 0.774*** 0.768***
E2 荚果宽PW 0.373***
荚果厚PT 0.363*** 0.854***
百果重HPW 0.532*** 0.788*** 0.670***
E3 荚果宽PW 0.171***
荚果厚PT 0.240*** 0.856***
百果重HP图W 0.574*** 0.610*** 0.697***
E4 荚果宽PW 0.312***
荚果厚PT 0.482*** 0.883***
百果重HPW 0.524*** 0.731*** 0.705***

Fig. 2

Frequency distribution for each trait of RIL population in four environments"

Table 3

Results of QTL analysis of related traits of peanut pod"

性状
Trait
位点
QTL
环境
Environment
染色体
Chr.
标记区间
Marker interval
LOD 贡献率
PVE (%)
加性效应
Additive
effect
置信区间
Confidence interval
荚果长
PL (mm)
qPLA01 E2 A01 A01_11204930-11352342 7.0403 15.2310 -1.8397 37.5-40.5
qPLA05 E2 A05 A05_8652005-11538045 4.5490 11.2089 -1.5964 192.0-203.5
qPLA06 E1 A06 A06_1765658-3081683 4.6951 8.7442 1.9602 0-8.5
qPLA07 E1 A07 A07_166832022-166955022 14.6721 31.2684 3.7220 488.5-491.0
E2 A07 9.1447 21.7858 2.2249 486.5-491.0
E3 A07 5.9719 16.2443 2.4481 484.5-491.0
E4 A07 6.3490 17.2817 2.1865 487.5-491.0
荚果宽
PW (mm)
qPWA03 E4 A03 A03_143317504-144635493 4.9992 9.3638 0.5257 354.0-363.0
qPWA06 E4 A06 A06_115549348-115817873 4.4243 7.9380 0.4776 197.0-199.0
qPWA08.1 E1 A08 A08_30048499-30366347 6.0062 15.6656 0.7732 64.5-65.5
E2 A08 7.6455 21.6332 0.9226 65.5-67.5
E4 A08 5.6550 10.5400 0.5522 65.5-67.5
qPWA08.2 E3 A08 A08_37177561-37928646 6.1705 3.3958 0.7702 77.5-78.5
qPWB02 E2 B02 B02_4887376-5205416
B02_5205416-6387357
6.0087 16.2445 0.8084 34.5-38.5
E3 B02 5.8390 3.0950 0.7437 34.5-37.5
E4 B02 6.6999 13.4146 0.6311 34.5-38.5
qPWB06 E1 B06 B06_138639856-140196491 5.9124 15.4844 0.7643 48.5-49.5
qPWB10 E3 B10 B10_33405033-32604657 34.1719 33.5202 -2.4344 63.5-64.5
荚果厚
PT (mm)
qPTA03 E4 A03 A03_143317504-144635493 4.1054 9.5411 0.4756 354-362.0
qPTA08 E4 A08 A08_30048499-30366347 4.2747 9.9395 0.4815 64.5-65.5
E1 A08 8.2452 15.9256 0.8437 65.5-66.5
qPTB02 E1 B02 B02_4887376-5205416 8.3107 15.8808 0.8525 34.5-37.5
qPTB04 E1 B04 B04_127248538-126884743 4.9720 9.6182 0.7093 88.5-89.0
qPTB06 E2 B06 B06_146907751-148783006 6.6930 18.5502 0.9310 70.5-77.0
E3 B06 4.2572 14.1986 0.6975 70.5-77.0
E4 B06 5.8566 15.7462 0.4526 71.5-77.0
百果重
HPW (g)
qHPWA03.1 E1 A03 A03_141234947-141092590 4.9493 14.1606 16.6366 339.0-342.0
qHPWA03.2 E2 A03 A03_139238268-139848157 6.7751 12.7953 15.2542 321.0-325.0
qHPWA06 E2 A06 A06_113190229-113520763 4.0418 7.0298 11.1996 185.0-192.0
qHPWB10 E1 B10 B10_145433611-145968886 4.4101 11.7996 14.5291 174.0-184.0

Fig. 3

QTL mapping results of peanut pod related traits Abbreviations are the same as those given in Table 1."

Table 4

Mapping of epistatic QTL for peanut pod traits"

性状
Trait
环境
Environment
上位性QTL
E-QTL
染色体
Chr.
位置1
Pos. 1
标记区间1
Marker interval 1
上位性QTL
E-QTL
染色体
Chr.
位置2
Pos. 2
标记区间2
Marker interval 2
LOD 贡献率
PVE (%)
荚果长
PL
(mm)
E3 E-qPLA03 A03 0 A03_71003-621044 E-qPLB04 B04 5 B04_1300271-2726314 5.40 21.84
E4 E-qPLA05 A05 210 A05_16823212-17149189 E-qPLB10 B10 205 B10_148392050-148148634 6.67 15.98
荚果宽
PW
(mm)
E1 E-qPWB04 B04 30 B04_4064597-8111568 E-qPWB05 B05 70 B05_28723528-31732034 5.39 16.03
E1 E-qPWA08 A08 65 A08_29556435-29781487 E-qPWB08 B08 65 B08_126197151-126599602 5.36 16.70
E2 E-qPWA04.1 A04 145 A04_108410606-108792245 E-qPWA07 A07 470 A07_164614645-164794252 5.12 13.85
E3 E-qPWA04.2 A04 145 A04_108410606-108792245 E-qPWA08 A08 40 A08_9856553-10239337 6.24 16.11
荚果厚
PT
(mm)
E1 E-qPTA04 A04 145 A04_108410606-108792245 E-qPTA07 A07 470 A07_164614645-164794252 5.99 19.36
E2 E-qPTA09 A09 115 A09_75588894-106054640 E-qPTA10 A10 125 A10_3847294-4076607 5.50 4.40
E2 E-qPTA08 A08 65 A08_29556435-29781487 E-qPTB01.1 B01 75 B01_31459252-41455928 6.33 5.01
E2 E-qPTA10 A10 125 A10_3847294-4076607 E-qPTB02.2 B01 75 B01_31459252-41455928 5.46 4.49
E2 E-qPTB01.1 B01 70 B01_31459252-41455928 E-qPTB04 B04 60 B04_77304078-87562376 5.07 4.33
E2 E-qPTB01.2 B01 75 B01_31459252-41455928 E-qPTB09 B09 80 B09_155190824-158481352 5.26 4.21
百果重
HPW
(g)
E3 E-qHPWA03 A03 0 A03_71003-621044 E-qHPWA05 A05 240 A05_28575794-29060303 6.47 18.17
E3 E-qHPWB02 B02 165 B02_34558390-102335914 E-qHPWAB08 B08 10 B08_2544346-2638685 5.24 13.54

Fig. 4

KEGG enrichment pathway of candidate genes in interval of QTL for qPWA08.1, qPWB02, and qPTB06"

Table 5

Analysis of candidate genes for three QTLs"

基因ID
Gene ID
染色体
Chr.
标记区间
Marker interval (bp)
基因家族
Gene family
基因功能注释
Gene functional description
Ahy_A08g039614 A08 30126461-30179893 legfed_v1_0.L_8Q8YMG 自噬相关蛋白8 Autophagy protein 8
Ahy_A08g039622 A08 30271630-30271880 legfed_v1_0.L_56M8PD 热休克蛋白90 Heat shock protein 90
Ahy_A08g039624 A08 30283347-30291196 legfed_v1_0.L_2H8YNS 顺乌头酸酶Aconitase
Ahy_B02g057589 B02 4893488-4896861 legfed_v1_0.L_Q5KQS5 吡哆胺-5'-磷酸氧化酶
Pyridoxamine 5'-phosphate oxidase
Ahy_B02g057608 B02 5171380-5171736 legfed_v1_0.L_9WDQD0 EF手型结构域钙结合蛋白
EF-hand calcium-binding proteins
Ahy_B02g057640 B02 5652666-5658241 legfed_v1_0.L_29W3YK 丝氨酸/苏氨酸蛋白激酶
Serine/Threonine kinase proteins
Ahy_B02g057642 B02 5756798-5758215 legfed_v1_0.L_KCL7Q5 b HLH转录因子
Basic helix-loop-helix transcription factor
Ahy_B02g057660 B02 5907035-5918712 legfed_v1_0.L_0C0SD2 BRO 1结构域蛋白
BRO domain-containing protein 1
Ahy_B02g057673 B02 6069768-6073611 legfed_v1_0.L_1GQHGD 3-酮酯酰-CoA合酶
3-ketoacyl-CoA synthases
Ahy_B06g085840 B06 147106411-147106976 legfed_v1_0.L_0JZZ84 聚酮环化酶2 Polyketide cylcases 2
Ahy_B06g085859 B06 147357241-147378643 legfed_v1_0.L_5MH5QP 早花3转录因子Early flowering 3
Ahy_B06g085890 B06 147787935-148593101 legfed_v1_0.L_YFP2RZ AP2类乙烯反应转录因子
AP2-like ethylene-responsive transcription factor

Fig. 5

Differential expression of candidate genes in QTLs in different tissues of peanuts"

[1] Akram N A, Shafiq F, Ashraf M. Peanut (Arachis hypogaea L.): a prospective legume crop to offer multiple health benefits under changing climate. Compr Rev Food Sci Food Saf, 2018, 17: 1325-1338.
[2] 杨瑶, 冯健, 吴传云. 我国花生生产面临的问题及机械化措施建议. 农机科技推广, 2021, (11): 24-26.
Yang Y, Feng J, Wu C Y. Problems faced by peanut production in China and suggestions on mechanization measures. Agric Mach Technol Ext, 2021, (11): 24-26 (in Chinese).
[3] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析. 作物学报, 2023, 49: 2160-2170.
doi: 10.3724/SP.J.1006.2023.24190
Li X, Yang H, Luo L, Li H D, Zhang K, Zhang X R, Li Y Y, Yu H Y, Wang T Y, Liu J Q, Wang Y, Liu F Z, Wan Y S. QTL mapping analysis of single kernel weight of cultivated peanut. Acta Agron Sin, 2023, 49: 2160-2170 (in Chinese with English abstract).
[4] 向道权, 曹海河, 曹永国, 杨俊品, 黄烈健, 王守才, 戴景瑞. 玉米SSR遗传图谱的构建及产量性状基因定位. 遗传学报, 2001, 28: 778-784.
Xiang D Q, Cao H H, Cao Y G, Yang J P, Huang L J, Wang S C, Dai J R. Construction of a genetic map and location of quantitative trait loci for yield component traits in maize by SSR markers. Acta Genet Sin, 2001, 28: 778-784 (in Chinese with English abstract).
[5] 孟鑫浩, 张靖男, 崔顺立, Chen C Y, 穆国俊, 侯名语, 杨鑫雷, 刘立峰. 花生荚果与种子相关性状QTL定位及与环境互作分析. 作物学报, 2021, 47: 1874-1890.
doi: 10.3724/SP.J.1006.2021.04216
Meng X H, Zhang J N, Cui S L, Chen C Y, Mu G J, Hou M Y, Yang X L, Liu L F. QTL mapping and QTL × Environment interaction analysis of pod and seed related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2021, 47: 1874-1890 (in Chinese with English abstract).
[6] 杨强. 花生高密度遗传连锁图谱构建及荚果大小相关性状QTL定位. 福建农林大学硕士学位论文, 福建福州, 2018.
Yang Q. Construction of High-Density Genetic Linkage Map and QTL Mapping of Pod Size-Related Traits in Peanut. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2018 (in Chinese with English abstract).
[7] Huang L, He H Y, Chen W G, Ren X P, Chen Y N, Zhou X J, Xia Y L, Wang X L, Jiang X G, Liao B S, et al. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128: 1103-1115.
doi: 10.1007/s00122-015-2493-1 pmid: 25805315
[8] 李振动, 李新平, 黄莉, 任小平, 陈玉宁, 周小静, 廖伯寿, 姜慧芳. 栽培种花生荚果大小相关性状QTL定位. 作物学报, 2015, 41: 1313-1323.
doi: 10.3724/SP.J.1006.2015.01313
Li Z D, Li X P, Huang L, Ren X P, Chen Y N, Zhou X J, Liao B S, Jiang H F. Mapping of QTLs for pod size related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2015, 41: 1313-1323 (in Chinese with English abstract).
[9] Luo H Y, Ren X P, Li Z D, Xu Z J, Li X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, et al. Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A 05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2017, 18: 58.
[10] Wang Z H, Huai D X, Zhang Z H, Cheng K, Kang Y P, Wan L Y, Yan L Y, Jiang H F, Lei Y, Liao B S. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018, 9: 827.
doi: 10.3389/fpls.2018.00827 pmid: 29997635
[11] Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, et al. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012, 12: 80.
doi: 10.1186/1471-2229-12-80 pmid: 22672714
[12] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[13] Huerta-Cepas J, Forslund K, Coelho L P, Szklarczyk D, Jensen L J, von Mering C, Bork P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol, 2017, 34: 2115-2122.
doi: 10.1093/molbev/msx148 pmid: 28460117
[14] Xia T M, Xiao D, Liu D, Chai W T, Gong Q Q, Wang N N. Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis. PLoS One, 2012, 7: e37217.
[15] Samakovli D, Roka L, Dimopoulou A, Plitsi P K, Žukauskait A, Georgopoulou P, Novák O, Milioni D, Hatzopoulos P. HSP 90 affects root growth in Arabidopsis by regulating the polar distribution of PIN1. New Phytol, 2021, 231: 1814-1831.
doi: 10.1111/nph.17528 pmid: 34086995
[16] 张文利, 沈文飚, 叶茂炳, 徐朗莱. 植物顺乌头酸酶及其生理功能. 植物生理学通讯, 2003, 39: 391-398.
Zhang W L, Shen W B, Ye M B, Xu L L. Aconitase and its physiological roles in plants. Plant Physiol Commun, 2003, 39: 391-398 (in Chinese with English abstract).
[17] Mohanta T K, Yadav D, Khan A L, Hashem A, Abd Allah E F, Al-Harrasi A. Molecular players of EF-hand containing calcium signaling event in plants. Int J Mol Sci, 2019, 20: 1476.
[18] 杨洪强, 接玉玲. 植物MAPK及其在病原信号传递中的作用. 植物病理学报, 2003, 33: 8-13.
Yang H Q, Jie Y L. The plant MAPK and its function in pathogen signaling cascades. Acta Phytopathol Sin, 2003, 33: 8-13 (in Chinese with English abstract).
[19] Alvarez J, Smyth D R. CRABS CLAW and SPATULA genes regulate growth and pattern formation during gynoecium development in Arabidopsis thaliana. Int J Plant Sci, 2002, 163: 17-41.
[20] Gremski K, Ditta G, Yanofsky M F. The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development, 2007, 134: 3593-3601.
[21] Kim J, Jung J H, Lee S B, Go Y S, Kim H J, Cahoon R, Markham J E, Cahoon E B, Suh M C. Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol, 2013, 162: 567-580.
[22] Meng L S, Wang Z B, Yao S Q, Liu A Z. The ARF2-ANT- COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in Arabidopsis. J Cell Sci, 2015, 128: 3922-3932.
[23] Jung J H, Barbosa A D, Hutin S, Kumita J R, Gao M J, Derwort D, Silva C S, Lai X L, Pierre E, Geng F, et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature, 2020, 585: 256-260.
[24] 马纳纳. 白木香结香转录组分析及其聚酮环化酶AsPKC1功能的初步验证. 海南大学硕士学位论文, 海南海口, 2020.
Ma N N. Transcriptome Analysis of Aquilaria Sinensis and Preliminary Verification of Its Polyketide Cyclase AsPKC1 Function. MS Thesis of Hainan University, Haikou, Hainan, China, 2020 (in Chinese with English abstract).
[25] 王亚琦. 花生荚果大小性状的遗传解析及候选基因挖掘. 沈阳农业大学博士学位论文, 辽宁沈阳, 2022.
Wang Y Q. Genetic Analysis and Candidate Gene Mining of Peanut Pod Size Traits. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2022 (in Chinese with English abstract).
[26] Lu Q, Liu H, Hong Y B, Li H F, Liu H Y, Li X Y, Wen S J, Zhou G Y, Li S X, Chen X P, Liang X Q. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.). BMC Genomics, 2018, 19: 887.
[27] Chen Y N, Ren X P, Zheng Y L, Zhou X J, Huang L, Yan L Y, Jiao Y Q, Chen W G, Huang S M, Wan L Y, et al. Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG 6375 of peanut (Arachis hypogaea L.). Mol Breed, 2017, 37: 17.
[28] Lu Q, Huang L, Liu H, Garg V, Gangurde S S, Li H F, Chitikineni A, Guo D D, Pandey M K, Li S X, et al. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet, 2024, 56: 530-540.
[29] 黄莉. 花生种子大小相关性状及基因表达QTL定位分析. 华中农业大学博士学位论文, 湖北武汉, 2019.
Huang L. QTL Mapping Analysis of Peanut Seed Size-Related Traits and Gene Expression. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[30] 曾新颖, 郭建斌, 赵姣姣, 陈伟刚, 邱西克, 黄莉, 罗怀勇, 周晓静, 姜慧芳, 黄家权. 花生籽仁大小相关性状QTL定位. 作物学报, 2019, 45: 1200-1207.
doi: 10.3724/SP.J.1006.2019.84173
Zeng X Y, Guo J B, Zhao J J, Chen W G, Qiu X K, Huang L, Luo H Y, Zhou X J, Jiang H F, Huang J Q. Identification of QTL related to seed size in peanut (Arachis hypogaea L.). Acta Agron Sin, 2019, 45: 1200-1207 (in Chinese with English abstract).
[31] Li L, Yang X L, Cui S L, Meng X H, Mu G J, Hou M Y, He M J, Zhang H, Liu L F, Chen C Y. Construction of high-density genetic map and mapping quantitative trait loci for growth habit- related traits of peanut (Arachis hypogaea L.). Front Plant Sci, 2019, 10: 745.
doi: 10.3389/fpls.2019.00745 pmid: 31263472
[32] Liu Y Y, Shao L B, Zhou J, Li R C, Pandey M K, Han Y, Cui F, Zhang J L, Guo F, Chen J, et al. Genomic insights into the genetic signatures of selection and seed trait loci in cultivated peanut. J Adv Res, 2022, 42: 237-248.
doi: 10.1016/j.jare.2022.01.016 pmid: 36513415
[33] Park C J, Seo Y S. Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J, 2015, 31: 323-333.
[34] Xia H, Zhao C Z, Hou L, Li A Q, Zhao S Z, Bi Y P, An J, Zhao Y X, Wan S B, Wang X J. Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genomics, 2013, 14: 517.
doi: 10.1186/1471-2164-14-517 pmid: 23895441
[35] Zhao C Z, Zhao S Z, Hou L, Xia H, Wang J S, Li C S, Li A Q, Li T T, Zhang X Y, Wang X J. Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages. BMC Plant Biol, 2015, 15: 188.
doi: 10.1186/s12870-015-0582-6 pmid: 26239120
[36] 刘霞. 花生花针期生长素的运输与分布及相关基因表达分析. 湖南农业大学博士学位论文, 湖南长沙, 2010.
Liu X. Transport and Distribution of Auxin and Analysis of Related Gene Expression in Peanut at Flowering Stage. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2010 (in Chinese with English abstract).
[37] Gao C, Sun J L, Wang C Q, Dong Y M, Xiao S H, Wang X J, Jiao Z G. Genome-wide analysis of basic/helix-loop-helix gene family in peanut and assessment of its roles in pod development. PLoS One, 2017, 12: e0181843.
[38] 郭永华, 郭护团, 李君, 张启华. 渭北旱原花生开花规律及对结实性的影响. 陕西农业科学, 2002, 48(7): 8-19.
Guo Y H, Guo H T, Li J, Zhang Q H. Regularity of flowering and its effects on the bearing habit of peanut in the north arid plateau of Weihe river. Shaanxi J Agric Sci, 2002, 48(7): 8-19 (in Chinese).
[1] CHI Xiao-Yuan, BI Jing-Nan, ZHAO Jian-Xin, CHEN Na, PAN Li-Juan, JIANG Xiao, YIN Xiang-Zhen, ZHAO Xu-Hong, MA Jun-Qing, XU Jing. Evaluation of mechanical properties of peanut pods and screening of early maturing germplasm [J]. Acta Agronomica Sinica, 2025, 51(4): 943-957.
[2] WANG Xiao-Lin, LIU Zhong-Song, KANG Lei, YANG Liu. Mapping of silique length and seeds per silique and transcriptome profiling of pod walls in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(4): 888-899.
[3] XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585.
[4] JIN Gao-Rui, WU Xiao-Li, DENG Li, CHEN Yu-Ning, YU Bo-Lun, GUO Jian-Bin, DING Ying-Bin, LIU Nian, LUO Huai-Yong, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, HUAI Dong-Xin, TAN Jia-Zhuang, JIANG Hui-Fang, REN Li, LEI Yong, LIAO Bo-Shou. Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production [J]. Acta Agronomica Sinica, 2025, 51(3): 687-895.
[5] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[6] ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556.
[7] YONG Rui, HU Wen-Jing, WU Di, WANG Zun-Jie, LI Dong-Sheng, ZHAO Die, YOU Jun-Chao, XIAO Yong-Gui, WANG Chun-Ping. Identification and validation of quantitative trait loci for grain number per spike showing pleiotropic effect on thousand grain weight in bread wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 312-323.
[8] HU Peng-Ju, GUO Song, SONG Ya-Hui, JIN Xin-Xin, SU Qiao, YANG Yong-Qing, WANG Jin. Genetic and QTL mapping analysis of oil content in peanut across multiple environments [J]. Acta Agronomica Sinica, 2025, 51(2): 324-333.
[9] GUO Shu-Hui, PAN Zhuan-Xia, ZHAO Zhan-Sheng, YANG Liu-Liu, HUANG-FU Zhang-Long, GUO Bao-Sheng, HU Xiao-Li, LU Ya-Dan, DING Xiao, WU Cui-Cui, LAN Gang, LYU Bei-Bei, TAN Feng-Ping, LI Peng-Bo. Genetic analysis of a major fiber length locus on chromosome D11 of upland cotton [J]. Acta Agronomica Sinica, 2025, 51(2): 383-394.
[10] WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404.
[11] YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272.
[12] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[13] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[14] ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121.
[15] HAN Li, TANG Sheng-Sheng, LI Jia, HU Hai-Bin, LIU Long-Long, WU Bin. Construction of SNP high-density genetic map and localization of QTL for β-glucan content in oats [J]. Acta Agronomica Sinica, 2024, 50(7): 1710-1718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!