Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 568-585.doi: 10.3724/SP.J.1006.2025.44051
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
XU Jian-Xia(), DING Yan-Qing(
), CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi(
)
[1] | 唐三元, 谢旗. 高粱: 小作物大用途. 生物技术通报, 2019, 35(5): 1. |
Tang S Y, Xie Q. Sorghum-a small crop with great use. Biotechnol Bull, 2019, 35(5): 1. (in Chinese) | |
[2] | 高士杰, 刘晓辉, 李继洪. 高粱高产育种应重视株型和穗结构性状的改良. 种子, 2007, 26(3): 83-84. |
Gao S J, Liu X H, Li J H. Paying much attention to the improvement of plant type and spike structure in high-yielding breeding of Sorghum. Seed, 2007, 26(3): 83-84. (in Chinese with English abstract) | |
[3] |
郭海平, 孙高阳, 张晓祥, 闫鹏帅, 刘坤, 谢惠玲, 汤继华, 丁冬, 李卫华. 基于SSSL群体的玉米穗下节间长QTL分析. 作物学报, 2018, 44: 522-532.
doi: 10.3724/SP.J.1006.2018.00522 |
Guo H P, Sun G Y, Zhang X X, Yan P S, Liu K, Xie H L, Tang J H, Ding D, Li W H. QTL analysis of under-ear internode length based on SSSL population. Acta Agron Sin, 2018, 44: 522-532. (in Chinese with English abstract) | |
[4] | 苏舒, 董维, 游录鹏, 黄守程, 戚金亮, 陆桂华, 黄应华, 杨永华. 高粱株高性状的QTL定位初步分析. 江苏农业科学, 2012, 40(3): 19-21. |
Su S, Dong W, You L P, Huang S C, Qi J L, Lu G H, Huang Y H, Yang Y H. Preliminary analysis on QTL mapping of Sorghum plant height traits. Jiangsu Agric Sci, 2012, 40(3): 19-21. (in Chinese) | |
[5] | Kong W Q, Kim C, Zhang D, Guo H, Tan X, Jin H Z, Zhou C B, Shuang L S, Goff V, Sezen U, Pierce G, Compton R, Lemke C, Robertson J, Rainville L, Auckland S, Paterson A H. Genotyping by sequencing of 393 Sorghum bicolor BTx623 × IS3620C recombinant inbred lines improves sensitivity and resolution of QTL detection. G3 (Bethesda), 2018, 8: 2563-2572. |
[6] |
Kajiya-Kanegae H, Takanashi H, Fujimoto M, Ishimori M, Ohnishi N, Fiona W W, Omollo E A, Kobayashi M, Yano K, Nakano M, Kozuka T, Kusaba M, Iwata H, Tsutsumi N, Sakamoto W. RAD-seq-based high-density linkage map construction and QTL mapping of biomass-related traits in Sorghum using the Japanese Landrace takakibi NOG. Plant Cell Physiol, 2020, 61: 1262-1272.
doi: 10.1093/pcp/pcaa056 pmid: 32353144 |
[7] |
Takanashi H, Shichijo M, Sakamoto L, Kajiya-Kanegae H, Iwata H, Sakamoto W, Tsutsumi N. Genetic dissection of QTLs associated with spikelet-related traits and grain size in Sorghum. Sci Rep, 2021, 11: 9398.
doi: 10.1038/s41598-021-88917-x pmid: 33931706 |
[8] |
徐建霞, 丁延庆, 冯周, 曹宁, 程斌, 高旭, 邹桂花, 张立异. 基于Super-GBS的高粱株高和节间数QTL定位. 生物技术通报, 2023, 39(7): 185-194.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1510 |
Xu J X, Ding Y Q, Feng Z, Cao N, Cheng B, Gao X, Zou G H, Zhang L Y. QTL mapping of Sorghum plant height and internode numbers based on super-GBS technique. Biotechnol Bull, 2023, 39(7): 185-194. (in Chinese with English abstract) | |
[9] | Hilley J, Truong S, Olson S, Morishige D, Mullet J. Identification of Dw1, a regulator of Sorghum stem internode length. PLoS One, 2016, 11: e0151271. |
[10] |
Visscher P M, Wray N R, Zhang Q, Sklar P, McCarthy M I, Brown M A, Yang J. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet, 2017, 101: 5-22.
doi: S0002-9297(17)30240-9 pmid: 28686856 |
[11] | Liu H J, Yan J. Crop genome-wide association study: a harvest of biological relevance. Plant J: Cell Mol Biol, 2019, 97: 8-18. |
[12] | Enyew M, Feyissa T, Carlsson A S, Tesfaye K, Hammenhag C, Seyoum A, Geleta M. Genome-wide analyses using multi-locus models revealed marker-trait associations for major agronomic traits in Sorghum bicolor. Front Plant Sci, 2022, 13: 999692. |
[13] | Zhao J, Mantilla Perez M B, Hu J Y, Salas Fernandez M G. Genome-wide association study for nine plant architecture traits in Sorghum. Plant Genome, 2016, 9. DOI: 10.3835/plantgenome2015.06.0044. |
[14] | Wondimu Z, Dong H X, Paterson A H, Worku W, Bantte K. Genome-wide association study reveals genomic loci influencing agronomic traits in Ethiopian Sorghum (Sorghum bicolor (L.) Moench) landraces. Mol Breed, 2023, 43: 32. |
[15] |
Hirano K, Kawamura M, Araki-Nakamura S, Fujimoto H, Ohmae- Shinohara K, Yamaguchi M, Fujii A, Sasaki H, Kasuga S, Sazuka T. Sorghum DW1 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE 2. Sci Rep, 2017, 7: 126.
doi: 10.1038/s41598-017-00096-w pmid: 28273925 |
[16] |
Hilley J L, Weers B D, Truong S K, McCormick R F, Mattison A J, McKinley B A, Morishige D T, Mullet J E. Sorghum Dw2 encodes a protein kinase regulator of stem internode length. Sci Rep, 2017, 7: 4616.
doi: 10.1038/s41598-017-04609-5 pmid: 28676627 |
[17] | Li X, Li X R, Fridman E, Tesso T T, Yu J M. Dissecting repulsion linkage in the dwarfing gene Dw3 region for Sorghum plant height provides insights into heterosis. Proc Natl Acad Sci USA, 2015, 112: 11823-11828. |
[18] | 王平, 丛玲, 朱振兴, 张丽霞, 张曦. 高粱矮化基因Dw3/dw3对株高及其他农艺性状的影响. 辽宁农业科学, 2019, (5): 12-15. |
Wang P, Cong L, Zhu Z X, Zhang L X, Zhang X. Effects of dwarfing gene Dw3/dw3 on plant height and other agronomic traits of Sorghum bicolor. Liaoning Agric Sci, 2019, (5): 12-15. (in Chinese with English abstract) | |
[19] | Morris G P, Ramu P, Deshpande S P, Hash C T, Shah T, Upadhyaya H D, Riera-Lizarazu O, Brown P J, Acharya C B, Mitchell S E, Harriman J, Glaubitz J C, Buckler E S, Kresovich S. Population genomic and genome-wide association studies of agroclimatic traits in Sorghum. Proc Natl Acad Sci USA, 2013, 110: 453-458. |
[20] |
段国旗, 吕娜, 石颖怡, 张怀, 李斌峰, 侯留飞, 许文秀, 闫慧莉, 何振艳, 平俊爱. 高粱株高相关基因SbPH11分子标记的开发和应用. 植物遗传资源学报, 2024, 25: 111-119.
doi: 10.13430/j.cnki.jpgr.20230611002 |
Duan G Q, Lyu N, Shi Y Y, Zhang H, Li B F, Hou L F, Xu W X, Yan H L, He Z Y, Ping J A. Development and application of molecular markers of Sorghum plant height related gene SbPH11. J Plant Genet Resour, 2024, 25: 111-119. (in Chinese with English abstract) | |
[21] |
Zhang L Y, Xu J X, Ding Y Q, Cao N, Gao X, Feng Z, Li K Y, Cheng B, Zhou L B, Ren M J, Tao Y Z, Zou G H. GWAS of grain color and tannin content in Chinese Sorghum based on whole-genome sequencing. Theor Appl Genet, 2023, 136: 77.
doi: 10.1007/s00122-023-04307-z pmid: 36952041 |
[22] | 陆平. 高粱种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. |
Lu P. Descriptors and Data Standard for Sorghum [Sorghum bicolor (L.) Moench]. Beijing: China Agriculture Press, 2006. (in Chinese) | |
[23] |
曹永策, 李曙光, 张新草, 孔杰杰, 赵团结. 夏大豆重组自交系群体遗传图谱构建及开花期QTL分析. 中国农业科学, 2020, 53: 683-694.
doi: 10.3864/j.issn.0578-1752.2020.04.002 |
Cao Y C, Li S G, Zhang X C, Kong J J, Zhao T J. Construction of genetic map and mapping QTL for flowering time in A summer planting soybean recombinant inbred line population. Sci Agric Sin, 2020, 53: 683-694. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.04.002 |
|
[24] | 王萍. 大豆四向重组自交系株高和主茎节数及其密度响应的QTL/QTN定位. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2021. |
Wang P. QTL/QTN Mapping of Plant Height, Main Stem Nodes and Their Density Responses of Soybean Four-way Recombinant Inbred Lines. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2021. (in Chinese with English abstract) | |
[25] |
Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R, Group G P A. The variant call format and VCF tools. Bioinformatics, 2011, 27: 2156-2158.
doi: 10.1093/bioinformatics/btr330 pmid: 21653522 |
[26] |
Wang H S, Gu L J, Zhang X G, Liu M L, Jiang H Y, Cai R H, Zhao Y, Cheng B J. Global transcriptome and weighted gene co-expression network analyses reveal hybrid-specific modules and candidate genes related to plant height development in maize. Plant Mol Biol, 2018, 98: 187-203.
doi: 10.1007/s11103-018-0763-4 pmid: 30327994 |
[27] | Mizuno H, Kasuga S, Kawahigashi H. The Sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling. Biotechnol Biofuels, 2016, 9: 127. |
[28] | Zou G H, Zhai G W, Feng Q, Yan S, Wang A H, Zhao Q, Shao J F, Zhang Z P, Zou J Q, Han B, Tao Y Z. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in Sorghum under contrasting photoperiods. J Exp Bot, 2012, 63: 5451-5462. |
[29] | Guan Y N, Wang H L, Qin L, Zhang H W, Yang Y B, Gao F J, Li R Y, Wang H G. QTL mapping of bio-energy related traits in Sorghum. Euphytica, 2011, 182: 431-440. |
[30] | Parh D K. DNA-based Markers for Ergot Resistance in Sorghum. PhD Dissertation of the University of Queensland, Queensland, Australia, 2005. |
[31] | Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767. |
[32] | Zhang J, Liu X Q, Li S Y, Cheng Z K, Li C Y. The rice semi-dwarf mutant sd37, caused by a mutation in CYP96B4, plays an important role in the fine-tuning of plant growth. PLoS One, 2014, 9: e88068. |
[33] | Liu H H, Liu H Q, Zhou L N, Lin Z W. Genetic Architecture of domestication- and improvement-related traits using a population derived from Sorghum virgatum and Sorghum bicolor. Plant Sci, 2019, 283: 135-146. |
[34] | Iwamoto M, Baba-Kasai A, Kiyota S, Hara N, Takano M. ACO1 a gene for aminocyclopropane-1-carboxylate oxidase: effects on internode elongation at the heading stage in rice. Plant Cell Environ, 2010, 33: 805-815. |
[35] |
Itoh H, Izawa T. A study of phytohormone biosynthetic gene expression using a circadian clock-related mutant in rice. Plant Signal Behav, 2011, 6: 1932-1936.
doi: 10.4161/psb.6.12.18207 pmid: 22101345 |
[36] |
Harris-Shultz K R, Davis R F, Knoll J E, Anderson W, Wang H L. Inheritance and identification of a major quantitative trait locus (QTL) that confers resistance to Meloidogyne incognita and a novel QTL for plant height in sweet Sorghum. Phytopathology, 2015, 105: 1522-1528.
doi: 10.1094/PHYTO-06-15-0136-R pmid: 26574655 |
[37] | Bai C M, Wang C Y, Wang P, Zhu Z X, Cong L, Li D, Liu Y F, Zheng W J, Lu X C. QTL mapping of agronomically important traits in Sorghum (Sorghum bicolor L.). Euphytica, 2017, 213: 285. |
[38] |
王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究. 生物技术通报, 2023, 39(8): 43-51.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0504 |
Wang T Y, Wang R H, Wang X Q, Zhang R Y, Xu R B, Jiao Y Y, Sun X, Wang J D, Song W, Zhao J R. Research in maize dwarf genes and dwarf breeding. Biotechnol Bull, 2023, 39(8): 43-51. (in Chinese with English abstract) | |
[39] |
Nagaraja Reddy R, Madhusudhana R, Murali Mohan S, Chakravarthi D V N, Mehtre S P, Seetharama N, Patil J V. Mapping QTL for grain yield and other agronomic traits in post-rainy Sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet, 2013, 126: 1921-1939.
doi: 10.1007/s00122-013-2107-8 pmid: 23649648 |
[40] |
Sawers R J H, Linley P J, Farmer P R, Hanley N P, Costich D E, Terry M J, Brutnell T P. Elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiol, 2002, 130: 155-163.
pmid: 12226496 |
[41] | Wu S Y, Xie Y R, Zhang J J, Ren Y L, Zhang X, Wang J L, Guo X P, Wu F Q, Sheng P K, Wang J, Wu C Y, Wang H Y, Huang S J, Wan J M. VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice. Plant Cell, 2015, 27: 2829-2845. |
[42] |
Mocoeur A, Zhang Y M, Liu Z Q, Shen X, Zhang L M, Rasmussen S K, Jing H C. Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet Sorghum (Sorghum bicolour). Theor Appl Genet, 2015, 128: 1685-1701.
doi: 10.1007/s00122-015-2538-5 pmid: 25982132 |
[43] |
Song X Q, Zhang B C, Zhou Y H. Golgi-localized UDP-glucose transporter is required for cell wall integrity in rice. Plant Signal Behav, 2011, 6: 1097-1100.
doi: 10.4161/psb.6.8.16379 pmid: 21822061 |
[44] | Girma G, Nida H, Seyoum A, Mekonen M, Nega A, Lule D, Dessalegn K, Bekele A, Gebreyohannes A, Adeyanju A, Tirfessa A, Ayana G, Taddese T, Mekbib F, Belete K, Tesso T, Ejeta G, Mengiste T. A large-scale genome-wide association analyses of Ethiopian Sorghum Landrace collection reveal loci associated with important traits. Front Plant Sci, 2019, 10: 691. |
[45] | Madhusudhana R, Patil J V. A major QTL for plant height is linked with bloom locus in Sorghum [Sorghum bicolor (L.)] Moench. Euphytica, 2013, 191: 259-268. |
[46] |
Srinivas G, Satish K, Madhusudhana R, Reddy R N, Mohan S M, Seetharama N. Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in Sorghum. Theor Appl Genet, 2009, 118: 1439-1454.
doi: 10.1007/s00122-009-0993-6 pmid: 19274449 |
[47] |
Bouchet S, Olatoye M O, Marla S R, Perumal R, Tesso T, Yu J M, Tuinstra M, Morris G P. Increased power to dissect adaptive traits in global Sorghum diversity using a nested association mapping population. Genetics, 2017, 206: 573-585.
doi: 10.1534/genetics.116.198499 pmid: 28592497 |
[48] |
Feltus F A, Hart G E, Schertz K F, Casa A M, Kresovich S, Abraham S, Klein P E, Brown P J, Paterson A H. Alignment of genetic maps and QTLs between inter- and intra-specific Sorghum populations. Theor Appl Genet, 2006, 112: 1295-1305.
pmid: 16491426 |
[49] |
Luo A D, Qian Q, Yin H F, Liu X Q, Yin C X, Lan Y, Tang J Y, Tang Z S, Cao S Y, Wang X J, Xia K, Fu X D, Luo D, Chu C C. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol, 2006, 47: 181-191.
doi: 10.1093/pcp/pci233 pmid: 16306061 |
[50] | Ma H L, Zhang S B, Ji L, Zhu H B, Yang S L, Fang X J, Yang R C. Fine mapping and in silico isolation of the EUI1 gene controlling upper internode elongation in rice. Plant Mol Biol, 2006, 60: 87-94. |
[51] | Dai C, Xue H W. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO J, 2010, 29: 1916-1927. |
[52] | Suzuki M, Latshaw S, Sato Y, Settles A M, Koch K E, Hannah L C, Kojima M, Sakakibara H, McCarty D R. The maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiol, 2008, 146: 1193-1206. |
[53] |
Van der Knaap E, Kim J H, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol, 2000, 122: 695-704.
doi: 10.1104/pp.122.3.695 pmid: 10712532 |
[54] | Duan P G, Rao Y C, Zeng D L, Yang Y L, Xu R, Zhang B L, Dong G J, Qian Q, Li Y H. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J, 2014, 77: 547-557. |
[55] |
邹桂花, 丁延庆, 徐建霞, 曹宁, 陈合云, 刘合芹, 郑学强, 张立异. 高粱千粒重全基因组关联分析和候选基因预测. 核农学报, 2022, 36: 2124-2136.
doi: 10.11869/j.issn.100-8551.2022.11.2124 |
Zou G H, Ding Y Q, Xu J X, Cao N, Chen H Y, Liu H Q, Zheng X Q, Zhang L Y. Genome-wide association analysis of thousand grain weight and candidate gene prediction in a Sorghum sequenced association panel. J Nucl Agric Sci, 2022, 36: 2124-2136. (in Chinese with English abstract) | |
[56] |
丁延庆, 汪灿, 徐建霞, 高旭, 程斌, 曹宁, 张立异. 基于高密度遗传图谱对高粱穗部性状的QTL定位. 植物遗传资源学报, 2023, 24: 1122-1132.
doi: 10.13430/j.cnki.jpgr.20230201002 |
Ding Y Q, Wang C, Xu J X, Gao X, Cheng B, Cao N, Zhang L Y. QTL identifying for panicle architecture-related traits in Sorghum based on high-density genetic map. J Plant Genet Resour, 2023, 24: 1122-1132. (in Chinese with English abstract) |
[1] | JIANG You, MA Xue-Rong, ZHANG Bo, LI Chen-Jian. Evaluation of salt tolerance and screening of salt-tolerant germplasm of Sorghum sudanese during seed germination period [J]. Acta Agronomica Sinica, 2025, 51(3): 835-844. |
[2] | YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296. |
[3] | QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727. |
[4] | MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103. |
[5] | CHEN Yu-Zhang, WU Song-Guo, LU Cheng-Lin, LI Rui, GONG Li-Juan, WEN Yue, NING Jia-Xin, WU Yu-Han. Effects of strip-mulching ridges on runoff and soil water use for sorghum in southwest yellow soil slope farmland [J]. Acta Agronomica Sinica, 2024, 50(5): 1325-1340. |
[6] | LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835. |
[7] | LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622. |
[8] | WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685. |
[9] | DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279. |
[10] | YANG Shi-Jie, WANG Hua-Zhi, PAN Yi-Min, HUANG Rui, HOU Sen, QIN Hui-Bin, MU Zhi-Xin, WANG Hai-Gang. Genome-wide association analysis for plant height in foxtail millet (Setaria italica L.) germplasm resources in Shanxi, China [J]. Acta Agronomica Sinica, 2024, 50(12): 2984-2997. |
[11] | CHEN Chen, CHENG Yu-Kun, WANG Wei, REN Yi, ZHANG Hai-Yan, CHEN Hui-Bo, GENG Hong-Wei. QTL mapping of stay-green-related traits in wheat under drought condition [J]. Acta Agronomica Sinica, 2024, 50(11): 2684-2698. |
[12] | ZHAO Yang, LI Long, YANG Jin-Wen, JING Rui-Lian, SUN Dai-Zhen, WANG Jing-Yi. An E3 ubiquitin ligase gene TaSINA-3A is associated with plant height and 1000-grain weight in various environments in wheat [J]. Acta Agronomica Sinica, 2024, 50(10): 2654-2664. |
[13] | YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66. |
[14] | HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343. |
[15] | FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538. |
|