Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Genome-wide association analysis for plant height in foxtail millet (Setaria italica L.) 

YANG Shi-Jie1,2,WANG Hua-Zhi1,2,PAN Yi-Min1,2,HUANG Rui2,HOU Sen2,QIN Hui-Bin2,MU Zhi-Xin2,*,WANG Hai-Gang2,*   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China; 2Center for Agricultural Genetic Resources Research, Shanxi Agricultural University / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, Shanxi, China
  • Received:2024-04-26 Revised:2024-08-15 Accepted:2024-08-15 Published:2024-08-29
  • Supported by:
    This study was supported by the Major Special Science and Technology Plan ‘Unveiling and Commanding’ Projects in Shanxi Province (202101140601027), the National Natural Science Foundation of China (32241041), and the Shanxi Agricultural University Biological Breeding Engineering (YZGC149).

Abstract:

A suitable plant height can effectively enhance the nutrient utilization efficiency and lodging resistance of millet. This study utilized 313 local millet varieties from Shanxi as an association group. Plant height was investigated in five different environments, followed by whole-genome deep resequencing. After quality control of the data, 3,160,066 SNP markers uniformly distributed across the nine chromosomes of millet were obtained for genome-wide association analysis (GWAS) of plant height. Eight QTL loci significantly associated with plant height were identified, with each locus explaining 7.13% to 12.08% of the phenotypic variation. Within the 25 kb upstream and downstream confidence intervals of these eight stable QTL loci, forty candidate genes were discovered. Integrating gene annotation information, six candidate genes were identified to be primarily involved in hormone synthesis, cell division regulation, signal transduction, and carbohydrate metabolism. Haplotype analysis revealed that the superior haplotype Hap2 of the candidate gene Millet_GLEAN_10031852 can effectively reduce plant height.

Key words: foxtail millet, plant height, genome-wide association analysis, haplotypes, candidate genes 

[1] 刘旭, 黎裕, 李立会, 贾继增. 作物种质资源学理论框架与发展战略. 植物遗传资源学报, 2023, 24: 1–10.

Liu X, Li Y, Li L H, Jia J Z. Theoretical framework and development strategy for the science of crop germplasm resources. J Plant Genet Resour, 2023, 24: 1–10 (in Chinese with English abstract).

[2] Khush G S. Green revolution: the way forward. Nat Rev Genet, 2001, 2: 815–822.

[3] 王海岗, 温琪汾穆志新乔治军山西谷子核心资源群体结构及主要农艺性状关联分析中国农业科学, 2019, 52: 4088–4099.

Wang H G, Wen Q F, Mu Z X, Qiao Z J. Population structure and association analysis of main agronomic traits of Shanxi core collection in foxtail millet. Sci Agric Sin, 2019, 52: 4088–4099 (in Chinese with English abstract).

[4] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167–1178.

[5] Diao X M, James S, Jeffrey L B, Li J Y. Initiation of Setaria as a model plant. Front Agr Sci Eng, 2014, 1: 16.

[6] Doust A N, Kellogg E A, Devos K M, Bennetzen J L. Foxtail millet: a sequence-driven grass model system. Plant Physiol, 2009, 149: 137–141.

[7] Li P H, Brutnell T P. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot, 2011, 62: 3031–3037.

[8] Hu H, Mauro-Herrera M, Doust A N. Domestication and improvement in the model C4 grass, Setaria. Front Plant Sci, 2018, 9: 719.

[9] Tian B H, Wang J G, Zhang L X, Li Y J, Wang S Y, Li H J. Assessment of resistance to lodging of landrace and improved cultivars in foxtail millet. Euphytica, 2010, 172: 295–302.

[10] Tian B H, Luan S R, Zhang L X, Liu Y L, Zhang L, Li H J. Penalties in yield and yield associated traits caused by stem lodging at different developmental stages in summer and spring foxtail millet cultivars. Field Crops Res, 2018, 217: 104–112.

[11] Ueguchi T M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M. Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 2000, 97: 11638–11643.

[12] Sasaki A, Itoh H, Gomi K, Ueguchi T M, Ishiyama K, Kobayashi M, Jeong D H, An G, Kitano H, Ashikari M, Matsuoka M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 2003, 299: 1896–1898.

[13] Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol, 2004, 54: 533–547.

[14] Lin H, Wang R X, Qian Q, Yan M X, Meng X B, Fu Z M, Yan C Y, Jiang B, Su Z, Li J Y, Wang Y H. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21: 1512–1525.

[15] Ferrero-Serrano Á, Cantos C, Assmann S M. The role of dwarfing traits in historical and modern agriculture with a focus on rice. Cold Spring Harb Biol, 2019, 11: a034645.

[16] Zegeye W A, Chen D B, Islam M, Wang H, Riaz A, Rani M H, Hussain K, Liu Q N, Zhan X D, Cheng S H, Cao L Y, Zhang Y X. OsFBK4, a novel GA insensitive gene positively regulates plant height in rice (Oryza Sativa L.). Ecol Genet Genom, 2022, 23: 100115.

[17] Liu T Z, Zhang X, Zhang H, Cheng Z J, Liu J, Zhou C L, Luo S, Luo W F, Li S, Xing X X, Chang Y Q, Shi C L, Ren Y L, Zhu S S, Lei C L, Guo X P, Wang J, Zhao Z C, Wang H Y, Zhai H Q, Lin Q B, Wan J M. Dwarf and high tillering1 represses rice tillering through mediating the splicing of D14 pre-mRNA. Plant Cell, 2022, 34: 3301–3318.

[18] Hill W G. Understanding and using quantitative genetic variation. Philos Trans R Soc Lond B Biol Sci, 2010, 365: 73–85.

[19] El-Soda M, Malosetti M, Zwaan B J, Koornneef M, Aarts M G M. Genotype×environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci, 2014, 19: 390–398.

[20] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900–2910.

[21] Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the Lamina joint. Plant Cell, 2000, 12: 1591–1606.

[22] Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S. Loss of an MDR transporter in compact stalks of maize Br2 and sorghum dw3 mutants. Science, 2003, 302: 81–84.

[23] Liu F, Wang P D, Zhang X B, Li X F, Yan X H, Fu D H, Wu G. The genetic and molecular basis of crop height based on a rice model. Planta, 2018, 247: 1–26.

[24] Diao X, Jia G. Genetics and Genomics of Setaria. Cham: Springer International Publishing, 2017. pp 93–113.

[25] Zhu M Y, He Q, Lyu M J, Shi T T, Gao Q, Zhi H, Wang H, Jia G Q, Tang S, Cheng X L, Wang R, Xu A D, Wang H G, Qiao Z J, Liu J, Diao X M, Gao Y. Integrated genomic and transcriptomic analysis reveals genes associated with plant height of foxtail millet. Crop J, 2023, 11: 593–604.

[26] Zhao M C, Zhi H, Zhang X, Jia G Q, Diao X M. Retrotransposon-mediated DELLA transcriptional reprograming underlies semi-dominant dwarfism in foxtail millet. Crop J, 2019, 7: 458–468.

[27] Xue C X, Zhi H, Fang X J, Liu X T, Tang S, Chai Y, Zhao B H, Jia G Q, Diao X M. Characterization and fine mapping of SiDWARF2 (D2) in foxtail millet. Crop Sci, 2016, 56: 95–103.

[28] Dineshkumar S P, Shashidhar V R, Ravikumar R L, Seetharam A, Gowda B T S. Indentification of true genetic dwarfing sources in foxtail millet (Setaria italica Beauv.). Euphytica, 1992, 60: 207–212.

[29] Qian J Y, Jia G Q, Zhi H, Li W, Wang Y F, Li H Q, Shang Z L, Doust A N, Diao X. Sensitivity to gibberellin of dwarf foxtail millet varieties. Crop Sci, 2012, 52: 1068–1075.

[30] Fan X K, Tang S, Zhi H, He M M, Ma W S, Jia Y C, Zhao B H, Jia G Q, Diao X M. Identification and fine mapping of SiDWARF3 (D3), a pleiotropic locus controlling environment-independent dwarfism in foxtail millet. Crop Sci, 2017, 57: 2431–2442.

[31] He Q, Zhi H, Tang S, Xing L, Wang S Y, Wang H G, Zhang A Y, Li Y H, Gao M, Zhang H J, Chen G Q, Dai S T, Li J X, Yang J J, Liu H F, Zhang W, Jia Y C, Li S J, Liu J R, Qiao Z J, Guo E H, Jia G Q, Liu J, Diao X M. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theor Appl Genet, 2021, 134: 557–572.

[32] 陆平. 谷子种质资源描述规范和数据标准. 北京中国农业出版社, 2006.

Lu P. Resource Description Specification and Date Standard of Foxtail Millet Germplasm. Beijing: China Agriculture Press, 2006 (in Chinese with English abstract).

[33] Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean Basis1. Crop Sci, 198525192194.

[34] Zhang G Y, Liu X, Quan Z W, Cheng S F, Xu X, Pan S K, Xie M, Zeng P, Yue Z, Wang W L, Tao Y, Bian C, Han C L, Xia Q J, Peng X H, Cao R, Yang X H, Zhan D L, Hu J C, Zhang Y X, Li H N, Li H, Li N, Wang J Y, Wang C C, Wang R Y, Guo T, Cai Y J, Liu C Z, Xiang H T, Shi Q X, Huang P, Chen Q C, Li Y R, Wang J, Zhao Z H, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012, 30: 549–554.

[35] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A R, Bender D, Maller J, Sklar P, de Bakker P I W, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81: 559–575.

[36] 翟俊鹏, 李海霞, 毕惠惠, 周思远, 罗肖艳, 陈树林, 程西永, 许海霞. 普通小麦主要农艺性状的全基因组关联分析. 作物学报, 2019, 45: 1488–1502.

Zhai J P, Li H X, Bi H H, Zhou S Y, Luo X Y, Chen S L, Cheng X Y, Xu H X. Genome-wide association study for main agronomic traits in common wheat. Acta Agron Sin, 2019, 45: 1488–1502 (in Chinese with English abstract).

[37] 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析. 作物学报, 2021, 47: 1891–1902.

Xie L, Ren Y, Zhang X Z, Wang J Q, Zhang Z H, Shi S B, Geng H W. Genome-wide association study of pre-harvest sprouting traits in wheat. Acta Agron Sin, 2021, 47: 1891–1902 (in Chinese with English abstract).

[38] Armstrong R A. When to use the bonferroni correction. Ophthalmic Physiol Opt, 2014, 34: 502–508.

[39] Fang C, Ma Y M, Wu S W, Liu Z, Wang Z, Yang R, Hu G H, Zhou Z K, Yu H, Zhang M, Pan Y, Zhou G A, Ren H X, Du W G, Yan H R, Wang Y P, Han D Z, Shen Y T, Liu S L, Liu T F, Zhang J X, Qin H, Yuan J, Yuan X H, Kong F J, Liu B H, Li J Y, Zhang Z W, Wang G D, Zhu B G, Tian Z X. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol, 2017, 18: 161.

[40] He Q, Wang C C, He Q, Zhang J, Liang H K, Lu Z F, Xie K, Tang S, Zhou Y H, Liu B, Zhi H, Jia G Q, Guo G G, Du H L, Diao X M. A complete reference genome assembly for foxtail millet and setaria-db, a comprehensive database for setaria. Mol Plant, 2024, 17: 219–222.

[41] Zhang R L, Jia G Q, Diao X M. GeneHapR: an R package for gene haplotypic statistics and visualization. BMC Bioinf, 2023, 24: 199.

[42] Chen H G, Zeng X L, Yang J, Cai X, Shi Y M, Zheng R R, Wang Z Q, Liu J Y, Yi X X, Xiao S W, Fu Q, Zou J J, Wang C Y. Whole-genome resequencing of osmanthus fragrans provides insights into flower color evolution. Hortic Res, 2021, 8: 98.

[43] 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用. 作物学报, 2024, 50: 265–279.

Diao X M, Wang L W, Zhi H, Zhang J, Li S G, Cheng R H. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet. Acta Agron Sin, 2024, 50: 265–279 (in Chinese with English abstract).

[44] Beavis W D, Grant D, Albertsen M, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 1991, 83: 141–145.

[45] Vanous A, Gardner C, Blanco M, Martin-Schwarze A, Lipka A E, Flint-Garcia S, Bohn M, Edwards J, Lübberstedt T. Association mapping of flowering and height traits in germplasm enhancement of maize doubled haploid (GEM-DH) lines. Plant Genome, 2018, 11: 170083

[46] Wang B B, Liu H, Liu Z P, Dong X M, Guo J J, Li W, Chen J, Gao C, Zhu Y B, Zheng X M, Chen Z L, Chen J, Song W B, Hauck A, Lai J S. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biol, 2018, 18: 17.

[47] Zhao Y, Wang H S, Bo C, Dai W, Zhang X G, Cai R H, Gu L J, Ma Q, Jiang H Y, Zhu J, Cheng B J. Genome-wide association study of maize plant architecture using F1 populations. Plant Mol Biol, 2019, 99: 1–15.

[48] 杨小红, 严建兵, 郑艳萍, 余建明, 李建生. 植物数量性状关联分析研究进展. 作物学报, 2007, 33: 523–530.

Yang X H, Yan J B, Zheng Y P, Yu J M, Li J S. Reviews of association analysis for quantitative traits in plants. Acta Agron Sin, 2007, 33: 523–530 (in Chinese with English abstract).

[49] Zhi H, He Q, Tang S, Yang J J, Zhang W, Liu H F, Jia Y C, Jia G Q, Zhang A Y, Li Y H, Guo E H, Gao M, Li S J, Li J X, Qin N, Zhu C C, Ma C Y, Zhang H J, Chen G Q, Zhang W F, Wang H G, Qiao Z J, Li S G, Cheng R H, Xing L, Wang S Y, Liu J, Liu J R, Diao X M. Genetic control and phenotypic characterization of panicle architecture and grain yield-related traits in foxtail millet (Setaria italica). Theor Appl Genet, 2021, 134: 3023–3036.

[50] Zhang K, Fan G Y, Zhang X X, Zhao F, Wei W, Du G H, Feng X L, Wang X M, Wang F, Song G L, Zou H F, Zhang X L, Li S D, Ni X M, Zhang G Y, Zhao Z H. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. G3 (Bethesda), 2017, 7: 1587–1594.

[51] Feldman M J, Paul R E, Banan D, Barrett J F, Sebastian J, Yee M C, Jiang H, Lipka A E, Brutnell T P, Dinneny J R, Leakey A D B, Baxter I. Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria. PLoS Genet, 2017, 13: e1006841.

[52] Peng S S, Liu Y C, Xu Y C, Zhao J H, Gao P, Liu Q, Yan S Y, Xiao Y H, Zuo S M, Kang H X. Genome-Wide association study identifies a plant-height-associated gene OsPG3 in a population of commercial rice varieties. Int J Mol Sci, 2023, 24: 11454.

[53] LeClere S, Tellez R, Rampey R A, Matsuda S P T, Bartel B. Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem, 2002, 277: 20446–20452.

[54] Xing A Q, Gao Y F, Ye L F, Zhang W P, Cai L C, Ching A, Llaca V, Johnson B, Liu L, Yang X H, Kang D M, Yan J B, Li J S. A rare SNP mutation in brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot, 2015, 66: 3791–3802.

[55] Della Rovere F, Airoldi C A, Falasca G, Ghiani A, Fattorini L, Citterio S, Kater M, Altamura M M. The Arabidopsis BET bromodomain factor GTE4 regulates the mitotic cell cycle. Plant Signal Behav, 2010, 5: 677–680.

[56] Airoldi C A, Rovere F D, Falasca G, Marino G, Kooiker M, Altamura M M, Citterio S, Kater M M. The Arabidopsis BET bromodomain factor GTE4 is involved in maintenance of the mitotic cell cycle during plant development. Plant Physiol, 2010, 152: 1320–1334.

[57] Li Y H, Yang Y Q, Liu Y, Li D X, Zhao Y H, Li Z J, Liu Y, Jiang D G, Li J, Zhou H, Chen J H, Zhuang C H, Liu Z L. Overexpression of OsAGO1b Induces adaxially rolled leaves by affecting leaf abaxial sclerenchymatous cell development in rice. Rice, 2019, 12: 60.

[58] Hu Y, Song S, Weng X Y, You A Q, Xing Y Z. The heading-date gene Ghd7 inhibits seed germination by modulating the balance between abscisic acid and gibberellins. Crop J, 2021, 9: 297–304.

[59] Zong W B, Ren D, Huang M H, Sun K L, Feng J L, Zhao J, Xiao D D, Xie W H, Liu S Q, Zhang H, Qiu R, Tang W J, Yang R Q, Chen H Y, Xie X R, Chen L T, Liu Y G, Guo J X. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol, 2021, 229: 1635–1649.

[60] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761–767.

[61] Wu L W, Ren D Y, Hu S K, Li G M, Dong G J, Jiang L, Hu X M, Ye W J, Cui Y T, Zhu L, Hu J, Zhang G H, Gao Z Y, Zeng D L, Qian Q, Guo L B. Down-regulation of a nicotinate phosphoribosyl transferase gene, OsNaPRT1, leads to withered leaf tips. Plant Physiol, 2016, 171: 1085–1098.

[62] Wang D F, Qin Y L, Fang J J, Yuan S J, Peng L X, Zhao J F, Li X Y. A missense mutation in the zinc finger domain of OsCESA7 deleteriously affects cellulose biosynthesis and plant growth in rice. PLoS One, 2016, 11: e0153993.

[63] 陈玲玲, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 大豆叶柄夹角相关基因GmILPA1单倍型分析. 植物遗传资源学报, 2021, 22: 1698–1707.

Chen L L, Liu T X, Gu Y Z, Song J, Wang J, Qiu L J. Haplotype analysis of petiole angle related gene GmILPAl in soybean. J Plant Genet Resour, 2021, 22: 1698–1707 (in Chinese with English abstract).

[64] Sanchez Carranza A P, Singh A, Steinberger K, Panigrahi K, Palme K, Dovzhenko A, Dal Bosco C. Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum. Sci Rep, 2016, 6: 24212.

[1] YAN Feng, DONG Yang, LI Qing-Quan, ZHAO Fu-Yang, HOU Xiao-Min, LIU Yang, LI Qing-Chao, ZHAO Lei, FAN Guo-Quan, LIU Kai. Comprehensively evaluation on cold tolerance of foxtail millet varieties at germination stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2207-2218.
[2] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[3] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[4] LI Bo-Yang, YE Yin, CHU Rui-Wen, JING Miao, ZHANG Sui-Qi, YAN Jia-Kun. Effects of biochar application on dry matter accumulation, transport, and distribution of foxtail millet and soil physicochemical properties [J]. Acta Agronomica Sinica, 2024, 50(3): 695-708.
[5] LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622.
[6] DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279.
[7] YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66.
[8] DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121.
[9] WAN Yi-Man, XIAO Sheng-Hui, BAI Yi-Chao, FAN Jia-Yin, WANG Yan, WU Chang-Ai. Establishment and optimization of a high-efficient hairy-root system in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 1758-1768.
[10] WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859.
[11] TIAN Min, LIU Xin-Chun, PAN Jia-Jia, LIANG Li-Jing, DONG Lei, LIU Mei-Chi, FENG Zong-Yun. Genome-wide association analysis of cellulose content and hemicellulose content in grains of barley [J]. Acta Agronomica Sinica, 2023, 49(6): 1726-1732.
[12] LIU Jia, ZOU Xiao-Yue, MA Ji-Fang, WANG Yong-Fang, DONG Zhi-Ping, LI Zhi-Yong, BAI Hui. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet [J]. Acta Agronomica Sinica, 2023, 49(6): 1480-1495.
[13] ZHU Zhi, LI Long, LI Chao-Nan, MAO Xin-Guo, HAO Chen-Yang, ZHU Ting, WANG Jing-Yi, CHANG Jian-Zhong, JING Rui-Lian. Transcription factor TaMYB5-3B is associated with plant height and 1000- grain weight in wheat [J]. Acta Agronomica Sinica, 2023, 49(4): 906-916.
[14] MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661.
[15] ZHAO Die, HU Wen-Jing, CHENG Xiao-Ming, WANG Shu-Ping, ZHANG Chun-Mei, LI Dong-Sheng, GAO De-Rong. Detection and verification of QTL for plant height in Yangmai 4/Yanzhan 1 recombinant inbred lines population and their genetic effects on Fusarium head blight resistance [J]. Acta Agronomica Sinica, 2023, 49(12): 3215-3226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!