Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (12): 2984-2997.doi: 10.3724/SP.J.1006.2024.44070

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide association analysis for plant height in foxtail millet (Setaria italica L.) germplasm resources in Shanxi, China

YANG Shi-Jie1,2(), WANG Hua-Zhi1,2, PAN Yi-Min1,2, HUANG Rui2, HOU Sen2, QIN Hui-Bin2, MU Zhi-Xin2,*(), WANG Hai-Gang2,*()   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Center for Agricultural Genetic Resources Research, Shanxi Agricultural University / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture and Rural Affairs, Taiyuan 030031, Shanxi, China
  • Received:2024-04-26 Accepted:2024-08-15 Online:2024-12-12 Published:2024-08-29
  • Contact: *E-mail: muzx2008@sina.com; E-mail: wanghg@sxau.edu.cn
  • Supported by:
    Major Special Science and Technology Plan ‘Unveiling and Commanding’ Projects in Shanxi Province(202101140601027);National Natural Science Foundation of China(32241041);Shanxi Agricultural University Biological Breeding Engineering(YZGC149)

Abstract:

A suitable plant height can effectively enhance the nutrient utilization efficiency and lodging resistance of millet. This study utilized 313 local millet varieties from Shanxi as an association group. Plant height was investigated in five different environments, followed by whole-genome deep resequencing. After quality control of the data, 3,160,066 SNP markers uniformly distributed across the nine chromosomes of millet were obtained for genome-wide association analysis (GWAS) of plant height. Eight QTL loci significantly associated with plant height were identified, with each locus explaining 7.13% to 12.08% of the phenotypic variation. Within the 25 kb upstream and downstream confidence intervals of these eight stable QTL loci, forty candidate genes were discovered. Integrating gene annotation information, six candidate genes were identified to be primarily involved in hormone synthesis, cell division regulation, signal transduction, and carbohydrate metabolism. Haplotype analysis revealed that the superior haplotype Hap2 of the candidate gene Millet_GLEAN_10031852 can effectively reduce plant height.

Key words: foxtail millet, plant height, genome-wide association analysis, haplotypes, candidate genes

Table 1

Statistical analysis of plant height phenotypic data"

环境
Environment
均值±标准差
Mean ± SD
变异系数
CV (%)
变异范围
Range
偏度
Skewness
峰度
Kurtosis
遗传力
H2
18JZ 118.71±19.06 16.06 44.20-167.20 -0.63 0.24 0.96
19JZ 109.57±16.33 14.90 55.80-156.80 -0.38 -0.09
20JZ 118.33±20.82 17.59 70.00-154.00 -0.50 -0.03
20DT 120.39±15.57 12.93 40.80-163.60 -0.57 0.06
20YC 124.84±14.63 11.71 66.30-164.40 -0.62 0.84

Fig. 1

Histogram of frequency distribution of plant height trait in different environments Abbreviations are the same as those given in Table 1."

Fig. 2

Genotypic characteristics of 313 foxtail millet based on SNP variation information a: a line chart of K-values performed by structure harvester software; b: principal component analysis of 313 foxtail millet accessions; c: the attenuation distance of the linkage disequilibrium of foxtail millet; d: phylogenetic tree and population structure map."

Fig. 3

Significance analysis of plant height traits in seven subgroups under different environments Abbreviations are the same as those given in Table 1. BLUE: best linear unbiased estimate. Different lowercase letters indicate significant difference at the 0.05 probability level."

Fig. 4

GWAS analysis of plant height (PH) Abbreviations are the same as those given in Table 1. BLUE: best linear unbiased estimate."

Table 2

Stable QTL loci and the candidate genes identified in this study"

QTL标记
QTL marker
染色体
Chr.
QTL 区间
QTL region (bp)
QTN标记
QTN marker
P
P-value
性状环境
Trait environment
表型解释率
Phenotypic variation explained (%)
候选基因
Candidate gene
基因功能注释
Gene annotation
qPM3_1 3 18,916,296-18,966,346 PMG_18941296 7.45E-06 18JZ/19JZ/20JZ/20DT/BLUE 9.69 Millet_GLEAN_10028058 Myb DNA结构域
Myb-like DNA-binding domain
PMG_18941340 5.59E-07 18JZ/19JZ/20JZ/20DT/BLUE 9.69
PMG_18941346 5.59E-07 18JZ/19JZ/20JZ/20DT/BLUE 9.69
qPM5_2 5 1,178,009-1,236,158 PMG_1203009 9.72E-07 20YC/BLUE 10.78 Millet_GLEAN_10034090 细胞分裂素反应因子4
Cytokinin response factor 4
PMG_1207247 8.24E-06 20YC/BLUE 9.71 Millet_GLEAN_10034089 s位点凝集素蛋白激酶家族蛋白
s-locus lectin protein kinase family protein
PMG_1208529 7.19E-08 20YC/BLUE 9.63 Millet_GLEAN_10034086 s位点凝集素蛋白激酶家族蛋白
s-locus lectin protein kinase family protein
PMG_1210670 7.22E-07 20YC/BLUE 8.42 Millet_GLEAN_10034085 富亮氨酸重复蛋白激酶家族蛋白
Leucine-rich repeat protein kinase family protein
PMG_1210687 7.22E-07 20YC/BLUE 8.40 Millet_GLEAN_10034088 s位点凝集素蛋白激酶家族蛋白
s-locus lectin protein kinase family protein
PMG_1210696 7.19E-08 20DT/20YC/BLUE 8.43
PMG_1210700 7.19E-08 20DT/20YC/BLUE 8.43
PMG_1211104 7.22E-07 20YC/BLUE 9.63
PMG_1211147 7.22E-07 20YC/BLUE 9.12
PMG_1211158 7.22E-07 20YC/BLUE 9.12
qPM6_2 6 29,775,230-29,825,230 PMG_29800230 6.82E-06 20JZ/20DT/BLUE 8.39 Millet_GLEAN_10001507 受体样蛋白41
Receptor like protein 41
Millet_GLEAN_10001508 转移酶家族
Transferase family
Millet_GLEAN_10001510 转移酶家族
Transferase family
Millet_GLEAN_10001511 QWRF家族
QWRF family
qPM7_1 7 13,431,973-13,481,973 PMG_13456973 6.18E-09 18JZ/19JZ/20JZ/20DT/BLUE 9.69 Millet_GLEAN_10031850 LEA富含羟基脯氨酸糖蛋白家族
LEA hydroxyproline-rich glycoprotein family
Millet_GLEAN_10031851 肽酶M20/M25/M40家族蛋白
Peptidase M20/M25/M40 family protein
Millet_GLEAN_10031852 肽酶M20/M25/M40家族蛋白
Peptidase M20/M25/M40 family protein
Millet_GLEAN_10031853 肽酶M20/M25/M40家族蛋白
Peptidase M20/M25/M40 family protein
Millet_GLEAN_10031849 NDR1/HIN1-蛋白2
NDR1/HIN1-like protein 2
Millet_GLEAN_10031855 Dcp1 脱酶家族
Dcp1-like decapping family
qPM7_2 7 29,921,803-29,971,803 PMG_29946803 6.82E-06 19JZ/20JZ/BLUE 8.17 Millet_GLEAN_10037443 抗病蛋白
Disease resistance protein
Millet_GLEAN_10037449 蛋白酪氨酸激酶
Protein tyrosine kinase
Millet_GLEAN_10037450 含有LRR和NB-ARC结构域的抗病蛋白
LRR and NB-ARC domains-containing disease resistance protein
Millet_GLEAN_10037452 含NB-ARC结构域的抗病蛋白
NB-ARC domain-containing disease resistance protein
Millet_GLEAN_10037453 溴域末端外转录调控
Bromodomain extra-terminal - transcription regulation
qPM8_1 8 32,285,639-32,335,639 PMG_32310639 7.45E-06 18JZ/19JZ/20JZ/20DT/BLUE 9.68 Millet_GLEAN_10007111 BURP 域
BURP domain
Millet_GLEAN_10007109 多铜氧化酶家族
The multicopper oxidase family
Millet_GLEAN_10007108 蛋白激酶结构域
Protein kinase domain
Millet_GLEAN_10007107 BURP结构域蛋白
BURP domain-containing protein
Millet_GLEAN_10007105 胞苷转移酶
Cytidylyltransferase-like
qPM9_1 9 906,306-956,306 PMG_931306 6.40E-10 18JZ/20YC/BLUE 12.08 Millet_GLEAN_10004992 Prolycopene异构酶
Prolycopene isomerase
Millet_GLEAN_10004994 FAD/NAD(P)结合氧化还原酶家族蛋白
FAD/NAD(P)-binding oxidoreductase family protein
Millet_GLEAN_10004995 蛋白激酶超家族
The protein kinase superfamily
Millet_GLEAN_10004996 SPFH域/ Band 7家族
SPFH domain / Band 7 family
Millet_GLEAN_10004999 磷脂酶D
Phospholipase D delta
Millet_GLEAN_10004993 肽酶C13家族
Peptidase C13 family
qPM9_2 9 1,033,570-1,109,794 PMG_1058570 8.46E-06 19JZ/20JZ/BLUE 7.17 Millet_GLEAN_10005900 肽酶抑制剂I9
Peptidase inhibitor I9
PMG_1073463 10.65 Millet_GLEAN_10005901 铵转运蛋白家族
Ammonium Transporter Family
PMG_1076745 7.57 Millet_GLEAN_10005902 丝氨酸苏氨酸蛋白激酶
Serine threonine-protein kinase
PMG_1076759 7.57 Millet_GLEAN_10005904 argonaute家族
the argonaute family
PMG_1077324 7.94 Millet_GLEAN_10005905 丝氨酸苏氨酸蛋白激酶
Serine threonine-protein kinase
PMG_1077758 7.13 Millet_GLEAN_10005908 转录因子GHD7
Transcription factor GHD7
PMG_1083194 10.60 Millet_GLEAN_10005911 烟酸转磷酸核糖基酶
Nicotinate phosphoribosyl transferase
PMG_1084794 8.43 Millet_GLEAN_10005912 植物纤维素合成酶
Plant cellulose synthase subfamily

Fig. 5

Gene structure, haplotype analysis, and significance difference map of the candidate gene Millet_GLEAN_10031852 Abbreviations are the same as those given in Table1. BLUE: best linear unbiased estimate. *, **, ***, and **** indicate significant difference at the 0.05, 0.01, 0.001, and 0.0001 probability levels, respectively. ns: no significant difference."

[47] Zhao Y, Wang H S, Bo C, Dai W, Zhang X G, Cai R H, Gu L J, Ma Q, Jiang H Y, Zhu J, Cheng B J. Genome-wide association study of maize plant architecture using F1 populations. Plant Mol Biol, 2019, 99: 1-15.
[48] 杨小红, 严建兵, 郑艳萍, 余建明, 李建生. 植物数量性状关联分析研究进展. 作物学报, 2007, 33: 523-530.
Yang X H, Yan J B, Zheng Y P, Yu J M, Li J S. Reviews of association analysis for quantitative traits in plants. Acta Agron Sin, 2007, 33: 523-530 (in Chinese with English abstract).
[49] Zhi H, He Q, Tang S, Yang J J, Zhang W, Liu H F, Jia Y C, Jia G Q, Zhang A Y, Li Y H, Guo E H, Gao M, Li S J, Li J X, Qin N, Zhu C C, Ma C Y, Zhang H J, Chen G Q, Zhang W F, Wang H G, Qiao Z J, Li S G, Cheng R H, Xing L, Wang S Y, Liu J, Liu J R, Diao X M. Genetic control and phenotypic characterization of panicle architecture and grain yield-related traits in foxtail millet (Setaria italica). Theor Appl Genet, 2021, 134: 3023-3036.
doi: 10.1007/s00122-021-03875-2 pmid: 34081150
[50] Zhang K, Fan G Y, Zhang X X, Zhao F, Wei W, Du G H, Feng X L, Wang X M, Wang F, Song G L, Zou H F, Zhang X L, Li S D, Ni X M, Zhang G Y, Zhao Z H. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. G3: Gen Genom Genet (Bethesda), 2017, 7: 1587-1594.
[51] Feldman M J, Paul R E, Banan D, Barrett J F, Sebastian J, Yee M C, Jiang H, Lipka A E, Brutnell T P, Dinneny J R, Leakey A D B, Baxter I. Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria. PLoS Genet, 2017, 13: e1006841.
[52] Peng S S, Liu Y C, Xu Y C, Zhao J H, Gao P, Liu Q, Yan S Y, Xiao Y H, Zuo S M, Kang H X. Genome-wide association study identifies a plant-height-associated gene OsPG3 in a population of commercial rice varieties. Int J Mol Sci, 2023, 24: 11454.
[53] LeClere S, Tellez R, Rampey R A, Matsuda S P T, Bartel B. Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem, 2002, 277: 20446-20452.
doi: 10.1074/jbc.M111955200 pmid: 11923288
[54] Xing A Q, Gao Y F, Ye L F, Zhang W P, Cai L C, Ching A, Llaca V, Johnson B, Liu L, Yang X H, Kang D M, Yan J B, Li J S. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot, 2015, 66: 3791-3802.
[55] Della Rovere F, Airoldi C A, Falasca G, Ghiani A, Fattorini L, Citterio S, Kater M, Altamura M M. The Arabidopsis BET bromodomain factor GTE4 regulates the mitotic cell cycle. Plant Signal Behav, 2010, 5: 677-680.
[56] Airoldi C A, Rovere F D, Falasca G, Marino G, Kooiker M, Altamura M M, Citterio S, Kater M M. The Arabidopsis BET bromodomain factor GTE4 is involved in maintenance of the mitotic cell cycle during plant development. Plant Physiol, 2010, 152: 1320-1334.
doi: 10.1104/pp.109.150631 pmid: 20032077
[57] Li Y H, Yang Y Q, Liu Y, Li D X, Zhao Y H, Li Z J, Liu Y, Jiang D G, Li J, Zhou H, Chen J H, Zhuang C X, Liu Z L. Overexpression of OsAGO1b Induces adaxially rolled leaves by affecting leaf abaxial sclerenchymatous cell development in rice. Rice (N Y), 2019, 12: 60.
[58] Hu Y, Song S, Weng X Y, You A Q, Xing Y Z. The heading-date gene Ghd7 inhibits seed germination by modulating the balance between abscisic acid and gibberellins. Crop J, 2021, 9: 297-304.
[59] Zong W B, Ren D, Huang M H, Sun K L, Feng J L, Zhao J, Xiao D D, Xie W H, Liu S Q, Zhang H, Qiu R, Tang W J, Yang R Q, Chen H Y, Xie X R, Chen L T, Liu Y G, Guo J X. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol, 2021, 229: 1635-1649.
doi: 10.1111/nph.16946 pmid: 33089895
[60] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767.
doi: 10.1038/ng.143 pmid: 18454147
[61] Wu L W, Ren D Y, Hu S K, Li G M, Dong G J, Jiang L, Hu X M, Ye W J, Cui Y T, Zhu L, Hu J, Zhang G H, Gao Z Y, Zeng D L, Qian Q, Guo L B. Down-regulation of a nicotinate phosphoribosyl transferase gene, OsNaPRT1, leads to withered leaf tips. Plant Physiol, 2016, 171: 1085-1098.
[62] Wang D F, Qin Y L, Fang J J, Yuan S J, Peng L X, Zhao J F, Li X Y. A missense mutation in the zinc finger domain of OsCESA7 deleteriously affects cellulose biosynthesis and plant growth in rice. PLoS One, 2016, 11: e0153993.
[63] 陈玲玲, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 大豆叶柄夹角相关基因GmILPA1单倍型分析. 植物遗传资源学报, 2021, 22: 1698-1707.
doi: 10.13430/j.cnki.jpgr. 20210419003
Chen L L, Liu T X, Gu Y Z, Song J, Wang J, Qiu L J. Haplotype analysis of petiole angle related gene GmILPAl in soybean. J Plant Genet Resour, 2021, 22: 1698-1707 (in Chinese with English abstract).
[64] Sanchez Carranza A P, Singh A, Steinberger K, Panigrahi K, Palme K, Dovzhenko A, Dal Bosco C. Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum. Sci Rep, 2016, 6: 24212.
doi: 10.1038/srep24212 pmid: 27063913
[1] 刘旭, 黎裕, 李立会, 贾继增. 作物种质资源学理论框架与发展战略. 植物遗传资源学报, 2023, 24: 1-10.
doi: 10.13430/j.cnki.jpgr.20221127001
Liu X, Li Y, Li L H, Jia J Z. Theoretical framework and development strategy for the science of crop germplasm resources. J Plant Genet Resour, 2023, 24: 1-10 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.20221127001
[2] Khush G S. Green revolution: the way forward. Nat Rev Genet, 2001, 2: 815-822.
doi: 10.1038/35093585 pmid: 11584298
[3] 王海岗, 温琪汾, 穆志新, 乔治军. 山西谷子核心资源群体结构及主要农艺性状关联分析. 中国农业科学, 2019, 52: 4088-4099.
doi: 10.3864/j.issn.0578-1752.2019.22.013
Wang H G, Wen Q F, Mu Z X, Qiao Z J. Population structure and association analysis of main agronomic traits of Shanxi core collection in foxtail millet. Sci Agric Sin, 2019, 52: 4088-4099 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.22.013
[4] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
[5] Diao X M, James S, Jeffrey L B, Li J Y. Initiation of Setaria as a model plant. Front Agric Sci Eng, 2014, 1: 16.
doi: 10.15302/J-FASE-2014011
[6] Doust A N, Kellogg E A, Devos K M, Bennetzen J L. Foxtail millet: a sequence-driven grass model system. Plant Physiol, 2009, 149: 137-141.
doi: 10.1104/pp.108.129627 pmid: 19126705
[7] Li P H, Brutnell T P. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot, 2011, 62: 3031-3037.
[8] Hu H, Mauro-Herrera M, Doust A N. Domestication and improvement in the model C4 grass, Setaria. Front Plant Sci, 2018, 9: 719.
[9] Tian B H, Wang J G, Zhang L X, Li Y J, Wang S Y, Li H J. Assessment of resistance to lodging of landrace and improved cultivars in foxtail millet. Euphytica, 2010, 172: 295-302.
[10] Tian B H, Luan S R, Zhang L X, Liu Y L, Zhang L, Li H J. Penalties in yield and yield associated traits caused by stem lodging at different developmental stages in summer and spring foxtail millet cultivars. Field Crops Res, 2018, 217: 104-112.
[11] Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M. Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 2000, 97: 11638-11643.
doi: 10.1073/pnas.97.21.11638 pmid: 11027362
[12] Sasaki A, Itoh H, Gomi K, Ueguchi-Tananka M, Ishiyama K, Kobayashi M, Jeong D H, An G, Kitano H, Ashikari M, Matsuoka M. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 2003, 299: 1896-1898.
doi: 10.1126/science.1081077 pmid: 12649483
[13] Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol, 2004, 54: 533-547.
doi: 10.1023/B:PLAN.0000038261.21060.47 pmid: 15316288
[14] Lin H, Wang R X, Qian Q, Yan M X, Meng X B, Fu Z M, Yan C Y, Jiang B, Su Z, Li J Y, Wang Y H. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21: 1512-1525.
doi: 10.1105/tpc.109.065987 pmid: 19470589
[15] Ferrero-Serrano Á, Cantos C, Assmann S M. The role of dwarfing traits in historical and modern agriculture with a focus on rice. Cold Spring Harb Perspect Biol, 2019, 11: a034645.
[16] Zegeye W A, Chen D B, Islam M, Wang H, Riaz A, Rani M H, Hussain K, Liu Q N, Zhan X D, Cheng S H, Cao L Y, Zhang Y X. OsFBK4, a novel GA insensitive gene positively regulates plant height in rice (Oryza Sativa L.). Ecol Genet Genom, 2022, 23: 100115.
[17] Liu T Z, Zhang X, Zhang H, Cheng Z J, Liu J, Zhou C L, Luo S, Luo W F, Li S, Xing X X, Chang Y Q, Shi C L, Ren Y L, Zhu S S, Lei C L, Guo X P, Wang J, Zhao Z C, Wang H Y, Zhai H Q, Lin Q B, Wan J M. Dwarf and High Tillering1 represses rice tillering through mediating the splicing of D14 pre-mRNA. Plant Cell, 2022, 34: 3301-3318.
[18] Hill W G. Understanding and using quantitative genetic variation. Philos Trans R Soc Lond B Biol Sci, 2010, 365: 73-85.
[19] El-Soda M, Malosetti M, Zwaan B J, Koornneef M, Aarts M G M. Genotype×environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci, 2014, 19: 390-398.
[20] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900-2910.
doi: 10.1105/tpc.014712 pmid: 14615594
[21] Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the Lamina joint. Plant Cell, 2000, 12: 1591-1606.
doi: 10.1105/tpc.12.9.1591 pmid: 11006334
[22] Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S. Loss of an MDR transporter in compact stalks of maize Br2 and sorghum dw3 mutants. Science, 2003, 302: 81-84.
doi: 10.1126/science.1086072 pmid: 14526073
[23] Liu F, Wang P D, Zhang X B, Li X F, Yan X H, Fu D H, Wu G. The genetic and molecular basis of crop height based on a rice model. Planta, 2018, 247: 1-26.
doi: 10.1007/s00425-017-2798-1 pmid: 29110072
[24] Diao X, Jia G. Genetics and Genomics of Setaria. Cham: Springer International Publishing, 2017. pp 93-113.
[25] Zhu M Y, He Q, Lyu M J, Shi T T, Gao Q, Zhi H, Wang H, Jia G Q, Tang S, Cheng X L, Wang R, Xu A D, Wang H G, Qiao Z J, Liu J, Diao X M, Gao Y. Integrated genomic and transcriptomic analysis reveals genes associated with plant height of foxtail millet. Crop J, 2023, 11: 593-604.
doi: 10.1016/j.cj.2022.09.003
[26] Zhao M C, Zhi H, Zhang X, Jia G Q, Diao X M. Retrotransposon-mediated DELLA transcriptional reprograming underlies semi-dominant dwarfism in foxtail millet. Crop J, 2019, 7: 458-468.
doi: 10.1016/j.cj.2018.12.008
[27] Xue C X, Zhi H, Fang X J, Liu X T, Tang S, Chai Y, Zhao B H, Jia G Q, Diao X M. Characterization and fine mapping of SiDWARF2 (D2) in foxtail millet. Crop Sci, 2016, 56: 95-103.
[28] Dineshkumar S P, Shashidhar V R, Ravikumar R L, Seetharam A, Gowda B T S. Indentification of true genetic dwarfing sources in foxtail millet (Setaria italica Beauv.). Euphytica, 1992, 60: 207-212.
[29] Qian J Y, Jia G Q, Zhi H, Li W, Wang Y F, Li H Q, Shang Z L, Doust A N, Diao X M. Sensitivity to gibberellin of dwarf foxtail millet varieties. Crop Sci, 2012, 52: 1068-1075.
[30] Fan X K, Tang S, Zhi H, He M M, Ma W S, Jia Y C, Zhao B H, Jia G Q, Diao X M. Identification and fine mapping of SiDWARF3 (D3), a pleiotropic locus controlling environment-independent dwarfism in foxtail millet. Crop Sci, 2017, 57: 2431-2442.
[31] He Q, Zhi H, Tang S, Xing L, Wang S Y, Wang H G, Zhang A Y, Li Y H, Gao M, Zhang H J, Chen G Q, Dai S T, Li J X, Yang J J, Liu H F, Zhang W, Jia Y C, Li S J, Liu J R, Qiao Z J, Guo E H, Jia G Q, Liu J, Diao X M. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. Theor Appl Genet, 2021, 134: 557-572.
doi: 10.1007/s00122-020-03714-w pmid: 33128073
[32] 陆平. 谷子种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
Lu P. Resource Description Specification and Date Standard of Foxtail Millet Germplasm. Beijing: China Agriculture Press, 2006 (in Chinese).
[33] Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean Basis1. Crop Sci, 1985, 25: 192-194.
[34] Zhang G Y, Liu X, Quan Z W, Cheng S F, Xu X, Pan S K, Xie M, Zeng P, Yue Z, Wang W L, Tao Y, Bian C, Han C L, Xia Q J, Peng X H, Cao R, Yang X H, Zhan D L, Hu J C, Zhang Y X, Li H N, Li H, Li N, Wang J Y, Wang C C, Wang R Y, Guo T, Cai Y J, Liu C Z, Xiang H T, Shi Q X, Huang P, Chen Q C, Li Y R, Wang J, Zhao Z H, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012, 30: 549-554.
doi: 10.1038/nbt.2195 pmid: 22580950
[35] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A R, Bender D, Maller J, Sklar P, de Bakker P I W, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81: 559-575.
doi: 10.1086/519795 pmid: 17701901
[36] 翟俊鹏, 李海霞, 毕惠惠, 周思远, 罗肖艳, 陈树林, 程西永, 许海霞. 普通小麦主要农艺性状的全基因组关联分析. 作物学报, 2019, 45: 1488-1502.
doi: 10.3724/SP.J.1006.2019.91002
Zhai J P, Li H X, Bi H H, Zhou S Y, Luo X Y, Chen S L, Cheng X Y, Xu H X. Genome-wide association study for main agronomic traits in common wheat. Acta Agron Sin, 2019, 45: 1488-1502 (in Chinese with English abstract).
[37] 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析. 作物学报, 2021, 47: 1891-1902.
doi: 10.3724/SP.J.1006.2021.01078
Xie L, Ren Y, Zhang X Z, Wang J Q, Zhang Z H, Shi S B, Geng H W. Genome-wide association study of pre-harvest sprouting traits in wheat. Acta Agron Sin, 2021, 47: 1891-1902 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.01078
[38] Armstrong R A. When to use the bonferroni correction. Ophthalmic Physiol Opt, 2014, 34: 502-508.
[39] Fang C, Ma Y M, Wu S W, Liu Z, Wang Z, Yang R, Hu G H, Zhou Z K, Yu H, Zhang M, Pan Y, Zhou G A, Ren H X, Du W G, Yan H R, Wang Y P, Han D Z, Shen Y T, Liu S L, Liu T F, Zhang J X, Qin H, Yuan J, Yuan X H, Kong F J, Liu B H, Li J Y, Zhang Z W, Wang G D, Zhu B G, Tian Z X. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol, 2017, 18: 161.
doi: 10.1186/s13059-017-1289-9 pmid: 28838319
[40] He Q, Wang C C, He Q, Zhang J, Liang H K, Lu Z F, Xie K, Tang S, Zhou Y H, Liu B, Zhi H, Jia G Q, Guo G G, Du H L, Diao X M. A complete reference genome assembly for foxtail millet and Setaria-db, a comprehensive database for Setaria. Mol Plant, 2024, 17: 219-222.
[41] Zhang R L, Jia G Q, Diao X M. geneHapR: an R package for gene haplotypic statistics and visualization. BMC Bioinf, 2023, 24: 199.
[42] Chen H G, Zeng X L, Yang J, Cai X, Shi Y M, Zheng R R, Wang Z Q, Liu J Y, Yi X X, Xiao S W, Fu Q, Zou J J, Wang C Y. Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution. Hortic Res, 2021, 8: 98.
[43] 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用. 作物学报, 2024, 50: 265-279.
doi: 10.3724/SP.J.1006.2024.34131
Diao X M, Wang L W, Zhi H, Zhang J, Li S G, Cheng R H. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet. Acta Agron Sin, 2024, 50: 265-279 (in Chinese with English abstract).
[44] Beavis W D, Grant D, Albertsen M, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 1991, 83: 141-145.
doi: 10.1007/BF00226242 pmid: 24202349
[45] Vanous A, Gardner C, Blanco M, Martin-Schwarze A, Lipka A E, Flint-Garcia S, Bohn M, Edwards J, Lübberstedt T. Association mapping of flowering and height traits in germplasm enhancement of maize doubled haploid (GEM-DH) lines. Plant Genome, 2018, 11: 170083
[46] Wang B B, Liu H, Liu Z P, Dong X M, Guo J J, Li W, Chen J, Gao C, Zhu Y B, Zheng X M, Chen Z L, Chen J, Song W B, Hauck A, Lai J S. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biol, 2018, 18: 17.
doi: 10.1186/s12870-018-1233-5 pmid: 29347909
[1] WANG Yuan, XU Jia-Yin, DONG Er-Wei, WANG Jing-Song, LIU Qiu-Xia, HUANG Xiao-Lei, JIAO Xiao-Yan. Effects of manure replacement of chemical fertilizer nitrogen on yield, nitrogen accumulation, and quality of foxtail millet  [J]. Acta Agronomica Sinica, 2025, 51(1): 149-160.
[2] MENG Fan-Hua, LIU Min, SHEN Ao, LIU Wei. Preliminary investigation of the SiLTP1: a lipid transfer protein gene involved in the salt tolerance of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 58-67.
[3] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[4] YAN Feng, DONG Yang, LI Qing-Quan, ZHAO Fu-Yang, HOU Xiao-Min, LIU Yang, LI Qing-Chao, ZHAO Lei, FAN Guo-Quan, LIU Kai. Comprehensively evaluation on cold tolerance of foxtail millet varieties at germination stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2207-2218.
[5] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[6] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[7] MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103.
[8] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[9] LI Bo-Yang, YE Yin, CHU Rui-Wen, JING Miao, ZHANG Sui-Qi, YAN Jia-Kun. Effects of biochar application on dry matter accumulation, transport, and distribution of foxtail millet and soil physicochemical properties [J]. Acta Agronomica Sinica, 2024, 50(3): 695-708.
[10] LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622.
[11] DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279.
[12] CHEN Chen, CHENG Yu-Kun, WANG Wei, REN Yi, ZHANG Hai-Yan, CHEN Hui-Bo, GENG Hong-Wei. QTL mapping of stay-green-related traits in wheat under drought condition [J]. Acta Agronomica Sinica, 2024, 50(11): 2684-2698.
[13] LU Zong-Hui, SI Er-Jing, YE Pei-Yin, WANG Jun-Cheng, YAO Li-Rong, MA Xiao-Le, LI Bao-Chun, WANG Hua-Jun, SHANG Xun-Wu, MENG Ya-Xiong. Genome-wide association analysis and candidate genes prediction of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2024, 50(10): 2483-2492.
[14] ZHAO Yang, LI Long, YANG Jin-Wen, JING Rui-Lian, SUN Dai-Zhen, WANG Jing-Yi. An E3 ubiquitin ligase gene TaSINA-3A is associated with plant height and 1000-grain weight in various environments in wheat [J]. Acta Agronomica Sinica, 2024, 50(10): 2654-2664.
[15] XUE Ya-Peng, XIN Xu-Xia, WANG Ruo-Nan, YU Xiao-Han, LIU Shao-Xiong, WANG Rui-Yun, LIU Min-Xuan. Analysis of agronomic, quality traits and genetic diversity of domestic and foreign foxtail millet resources [J]. Acta Agronomica Sinica, 2024, 50(10): 2468-2482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .