Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (10): 2654-2664.doi: 10.3724/SP.J.1006.2024.41008

• RESEARCH NOTES • Previous Articles    

An E3 ubiquitin ligase gene TaSINA-3A is associated with plant height and 1000-grain weight in various environments in wheat

ZHAO Yang1,2(), LI Long2, YANG Jin-Wen1, JING Rui-Lian2, SUN Dai-Zhen1,*(), WANG Jing-Yi2,*()   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-02-04 Accepted:2024-05-21 Online:2024-10-12 Published:2024-06-30
  • Contact: *E-mail: sdz64@126.com;E-mail: wangjingyi0507@163.com
  • Supported by:
    National Key R&D Program of China(2022YFD1200201);China Agriculture Research System of MOF and MARA(CARS-03)

Abstract:

The SINA (seven in absentia) family of E3 ubiquitin ligases is involved in plant growth and development, immune symbiosis and response to stresses. In this study, we cloned the TaSINA-3A gene located on chromosome 3A in wheat. The TaSINA-3A genome sequence spans 3897 bp, including a 2001 bp promoter region and a 1896 bp coding region. The TaSINA-3A genome encods 244 amino acids, and contains a conserved RING (really interesting new gene) domain at amino acids 50-91. Sequence polymorphism analysis revealed the presence of 33 single nucleotide polymorphisms (SNPs) in the promoter region and 4 SNPs in the coding region. Quantitative analysis showed that the TaSINA-3A gene exhibited tissue-specific expression during different developmental stages of wheat. Molecular markers based on the SNP loci SNP-159, SNP-418, and SNP-1286 in the promoter region were developed to genotype the natural population of wheat. Association analysis between genotypes and phenotypic traits revealed significant associations between molecular marker CAPS-159 and penultimate internode length (PIL) and plant height (PH) under various environmental conditions, and Association analysis between genotypes and phenotypic traits revealed significant associations between molecular marker dCAPS-418 and spike length (SL) and 1000-grain weight (TGW) under various environmental conditions. Among these associations, the allelic variant SNP-159-C was associated with shorter PIL and PH, while SNP-418-A was associated with longer SL and higher TGW. TaSINA-3A was found to negatively regulate spike and grain development, and its expression may be suppressed by the MYC transcription factor. In the context of wheat breeding in China, SNP-418-A has been positively selected and its frequency in modern cultivars has gradually increased; however, its full potential has not been fully utilized. These results provide valuable insights for further exploration of the mechanisms underlying penultimate internode length, plant height, spike length, and grain yield. Moreover, they provide genetic resources for breeding new varieties with high yield, stable yield and wide suitability.

Key words: molecular marker, plant height, spike length, 1000-grain weight, association analysis

Table 1

Thirty diverse wheat accessions"

序号Number 材料名称Accession name 序号Number 材料名称Accession name
1 沧麦6001 Cangmai 6001 16 泰山23 Taishan 23
2 冬协2号 Dongxie 2 17 泰山24 Taishan 24
3 丰产1号 Fengchan 1 18 太原566 Taiyuan 566
4 衡5229 Heng 5229 19 温麦6号 Wenmai 6
5 葫芦头 Hulutou 20 西农688 Xinong 688
6 冀麦30 Jimai 30 21 西峰9号 Xifeng 9
7 冀麦6号 Jimai 6 22 小白麦 Xiaobaimai
8 冀麦9号 Jimai 9 23 小山8号 Xiaoshan 8
9 京品3号 Jingpin 3 24 烟农21 Yannong 21
10 京品11 Jingpin 11 25 原冬847 Yuandong 847
11 洛旱11 Luohan 11 26 运旱20410 Yunhan 20410
12 临旱935 Linhan 935 27 运旱23-35 Yunhan 23-35
13 兰天15号 Lantian 15 28 偃展1号 Yanzhan 1
14 秦麦3号 Qinmai 3 29 中7902 Zhong 7902
15 山农优麦2号 Shannongyoumai 2 30 中作60064 Zhongzuo 60064

Table 2

Primers"

名称Name 序列Sequence (5'-3')
TaSINA-3A-F GCCAAAAAGTGTGTTGACACACGAACAC
TaSINA-3A-R CTTTTTGGCGACTCCACTGGGG
SINA-3A-159-Age I-F CAACCTCCCGCATCGGTGTTC
SINA-3A-159-Age I-R GGAGGTTGACATCCGATGATAGTCGC
TaSINA-3A-418-Sph I-F GACCAACCAGAGGTTCTTAAAAAGGAAAAAG
TaSINA-3A-418-Sph I-R TGCGCTCATGAAGACGACTGATGAAA
TaSINA-3A-1286-Alu I-F CCCGTACAAGCAAAGAATTTATCTAGGCTTTC
TaSINA-3A-1286-Alu I-R TATCTTGACCGTTTCGACGAGACGAAC
TaSINA-3A-RT-F CTTTGCCGGCACAACTGACAAG
TaSINA-3A-RT-R AAAGAAGGGACGTGGGTTCTCCAC
TaSINA-3A-0800-F CGGTATCGATAAGCTTCCAGTGGAGTCGCCAAAAAG
TaSINA-3A-0800-R GCGAGAGGGAGAGGGAAGGGCCATGGAAGACGCCAA
TaTUB-F CGTGCTGTCTTTGTAGATCTCG
TaTUB-R GACCAGTGCAGTTGTCTGAAAG

Fig. 1

Schematic diagram of TaSINA-3A gene and protein sequence A: schematic diagram of gene structure; B: schematic diagram of protein domains."

Fig. 2

Prediction of TaSINA-3A protein properties A: the hydrophilicity analysis; B: phosphorylation site prediction."

Fig. 3

Prediction of cis-acting elements in TaSINA-3A promoter"

Fig. 4

Analysis of expression pattern of TaSINA-3A genes in wheat Expression pattern of TaSINA-3A genes at booting stage (A), heading stage (B), and flowering stage (C). P: peduncle; PI: penultimate inter- node; AI: antepenultimate internode; S: spike; R: root. Values are the means ± SD."

Fig. 5

Polymorphism analysis of TaSINA-3A A: polymorphism sites of TaSINA-3A. B-D: the development of the molecular markers CAPS-159 (B), dCAPS-418 (C), and dCAPS-1286 (D). The red letters represent two bases of the polymorphic sites, red rectangles indicate the restriction sites, and red dots indicate mismatched bases. E-G: gel assay of PCR products with molecular markers CAPS-159 (E), dCAPS-418 (F), and dCAPS-1286 (G)."

Table 3

Analysis of associations between TaSINA-3A marker CAPS-159 and agronomic traits in wheat"

年份
Year
地点
Site
处理
Treatment
性状Trait
倒二节长 PIL 株高 PH
2015 顺义 Shunyi DS 0.00110** 0.00007***
DS+HS 0.01154* 0.00339**
WW 0.00002*** 0.00001***
WW+HS 0.00050*** 0.00092***
2016 顺义 Shunyi DS 0.00003*** 0.00003***
DS+HS 0.00023*** 0.00018***
WW 0.00138** 0.00008***
WW+HS 0.00024*** 0.00004***
昌平 Changping DS 0.00429** 0.00049***
WW 0.00007*** 0.00002***
2017 顺义 Shunyi DS 0.00013*** 0.00008***
DS+HS 0.00140** 0.00006***
WW 0.00025*** 0.00012***
WW+HS 0.00037*** 0.00004***
昌平 Changping DS 0.00605** 0.00067***
WW 0.00069*** 0.00004***

Fig. 6

Comparison of agronomic traits between accessions with two different allelic variations of TaSINA-3A marker CAPS-159 in wheat A-B: comparison of PIL (penultimate internode length) (A) and PH (plant height) (B) between accessions with two different allelic variations identified by marker CAPS-159 in 16 environments. E: environment; E1: 15-SY-DS; E2: 15-SY-DS-HS; E3: 15-SY-WW; E4: 15-SY-WW-HS; E5: 16-SY-DS; E6: 16-SY-DS-HS; E7: 16-SY-WW; E8: 16-SY-WW-HS; E9: 16-CP-DS; E10: 16-CP-WW; E11: 17-SY-DS; E12: 17-SY-DS-HS; E13: 17-SY-WW; E14: 17-SY-WW-HS; E15: 17-CP-DS; E16: 17-CP-WW. 15: 2015; 16: 2016; 17: 2017. SY: Shunyi; CP: Changping. WW: well-watered; DS: drought stress (rainfed); HS: heat stress. Significance of data is tested by Student’s t-test. Values are the means ± SD. *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 probability levels, respectively."

Table 4

Analysis of associations between TaSINA-3A marker dCAPS-418 and agronomic traits in wheat"

年份
Year
地点
Site
处理
Treatment
性状Trait
穗长 SL 千粒重 TGW
2015 顺义 Shunyi DS 0.01312* 0.03559*
DS+HS 0.00318** ns
WW 0.00152** 0.00433**
WW+HS 0.02498* 0.01210*
2016 顺义 Shunyi DS 0.01424* 0.00031***
DS+HS 0.01662* 0.02247*
WW 0.00451** 0.00016***
WW+HS 0.00847** 0.00442**
昌平 Changping DS 0.02585* 0.00138**
WW 0.00098*** 0.04618*
2017 顺义 Shunyi DS 0.02237* 0.00993**
DS+HS ns 0.03062*
WW 0.02425* 0.00097***
WW+HS 0.00494** 0.03238*
昌平 Changping DS 0.03690* 0.00095***
WW 0.00218** 0.01735*

Fig. 7

Comparison of agronomic traits between accessions with two different allelic variations of TaSINA-3A marker dCAPS-418 in wheat A-B: comparison of spike length (SL) (A) and 1000-grain weight (TGW) (B) between accessions with two different allelic variations identi- fied by marker dCAPS-418 in 16 environments. *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 probability levels, respectively."

Fig. 8

Expression patterns of different allelic variants of TaSINA-3A A: Expression levels of two allelic-variant wheat corresponding to the TaSINA-3A gene marker CAPS-159; B: Expression levels of two allelic-variant wheat corresponding to the TaSINA-3A gene marker dCAPS-418. Values are the means ± SD. ** indicates significant difference at the 0.01 probability level."

Fig. 9

Promoter activity analysis of different allelic variants of TaSINA-3A A: LUC activity of TaSINA-3A promoter in two allelic variants of SNP-159; B: LUC activity of TaSINA-3A promoter in two allelic variants of SNP-418. Values are the means ± SD. Different letters (a, b, c) above the bars indicate significant difference at the 0.05 probability level."

Fig. 10

Distribution of allelic variations of TaSINA-3A gene in ten wheat production zones of China A-B: the distribution of two allelic variations detected by CAPS-159 marker of TaSINA-3A gene in 157 landraces (A) and 394 modern culti-vars (B) across ten Chinese wheat production zones. C-D: the distribution of two allelic variations detected by dCAPS-418 marker of TaSINA-3A gene in 157 landraces (C) and 394 modern cultivars (D) across ten Chinese wheat production zones. I: Northern Winter Wheat Zone; II: Yellow and Huai River Valleys Facultative Wheat Zone; III: Middle and Low Yangtze Valleys Autumn-Sown Spring Wheat Zone; IV: Southwestern Autumn-Sown Spring Wheat Zone; V: Southern Autumn-Sown Spring Wheat Zone; VI: Northeastern Spring Wheat Zone; VII: Northern Spring Wheat Zone; VIII: Northwestern Spring Wheat Zone; IX: Qinghai-Tibetan Plateau Spring-Winter Wheat Zone; X: Xinjiang Winter-Spring Wheat Zone."

Fig. 11

Utilization trend of superior allelic variation of dCAP-418 in Chinese modern cultivars A: 1000-grain weight (TGW) and spike length (SL) of modern cultivars released in different decades. B: the frequency of two allelic varia-tions in varieties of different decades. Pre-1950: Before the 1950s; 1950: During the 1950s. 1960: During the 1960s; 1970: During the 1970s; 1980: During the 1980s; 1990: During the 1990s."

[1] Erenstein O, Jaleta M, Mottaleb K A, Sonder K, Donovan J, Braun H J. Global Trends in Wheat Production, Consumption and Trade. Berlin: Springer International Publishing Cham, 2022. pp 47-66.
[2] Hedden P. The genes of the green revolution. Trends Genet, 2003, 19: 5-9.
doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241
[3] Koppolu R, Schnurbusch T. Developmental pathways for shaping spike inflorescence architecture in barley and wheat. J Integr Plant Biol, 2019, 61: 278-295.
doi: 10.1111/jipb.12771
[4] Cao S H, Xu D A, Hanif M, Xia X C, He Z H. Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet, 2020, 133: 1811-1823.
doi: 10.1007/s00122-020-03562-8 pmid: 32062676
[5] Wang J P, Li C N, Mao X G, Wang J Y, Li L, Li J L, Fan Z P, Zhu Z, He L H, Jing R L. The wheat basic helix-loop-helix gene TabHLH123 positively modulates the formation of crown roots and is associated with plant height and 1000-grain weight under various conditions. J Exp Bot, 2023, 74: 2542-2555.
[6] 姚琦馥, 周界光, 王健, 陈黄鑫, 杨瑶瑶, 刘倩, 闫磊, 王瑛, 周景忠, 崔凤娟, 蒋云, 马建. 小麦穗长QTL鉴定及其遗传分析. 中国农业科学, 2023, 56: 4814-4825.
doi: 10.3864/j.issn.0578-1752.2023.24.002
Yao Q F, Zhou J G, Wang J, Chen H X, Yang Y Y, Liu Q, Yan L, Wang Y, Zhou J Z, Cui F J, Jiang Y, Ma J. Identification and genetic analysis of QTL for spike length in wheat. Sci Agric Sin, 2023, 56: 4814-4825 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.24.002
[7] 董继梓, 陈林渠, 郭浩儒, 张梦宇, 刘志霄, 韩磊, 田赵飒爽, 徐宁浩, 郭庆杰, 黄振洁, 杨傲宇, 赵春华, 吴永振, 孙晗, 秦冉, 崔法. 小麦穗长主效QTL-qSl-2D的遗传和育种选择效应解析. 中国农业科学, 2023, 56: 3917-3930.
doi: 10.3864/j.issn.0578-1752.2023.20.001
Dong J Z, Chen L Q, Guo H R, Zhang M Y, Liu Z X, Han L, Tian Z S S, Xu N H, Guo Q J, Huang Z J, Yang A Y, Zhao C H, Wu Y Z, Sun H, Qin R, Cui F. Analysis of genetic and breeding selection effects of a major QTL-qSl-2D for wheat spike length. Sci Agric Sin, 2023, 56: 3917-3930 (in Chinese with English abstract).
[8] 张有富. TaTAP46基因对小麦千粒重和籽粒大小的影响. 甘肃农业大学博士学位论文, 甘肃兰州, 2021.
Zhang Y F. Effect of TaTAP46 Gene on Thousand Kernel Weight and Kernel Size in Wheat. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2021 (in Chinese with English abstract).
[9] Vierstra R D. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol, 2009, 10: 385-397.
[10] Xu F Q, Xue H W. The ubiquitin-proteasome system in plant responses to environments. Plant Cell Environ, 2019, 42: 2931-2944.
[11] 田爱梅, 于晖, 曹家树. 植物E3泛素连接酶的分类与功能. 中国细胞生物学学报, 2020, 42: 907-915.
Tian A M, Yu H, Cao J S. Classification and function of E3 ubiquitin ligase in plants. Chin J Cell Biol, 2020, 42: 907-915 (in Chinese with English abstract).
[12] Sun J Q, Huang S Y, Lu Q, Li S, Zhao S Z, Zheng X J, Zhou Q, Zhang W X, Li J, Wang L L, Zhang K, Zheng W Y, Feng X Z, Liu B H, Kong F J, Xiang F N. UV-B irradiation-activated E3 ligase GmILPA1 modulates gibberellin catabolism to increase plant height in soybean. Nat Commun, 2023, 14: 6262.
doi: 10.1038/s41467-023-41824-3 pmid: 37805547
[13] Zhang J L, Li C N, Li L, Xi Y J, Wang J Y, Mao X G, Jing R L. RING finger E3 ubiquitin ligase gene TaAIRP2-1B controls spike length in wheat. J Exp Bot, 2023, 74: 5014-5025.
[14] Wang J Y, Wang R T, Mao X G, Zhang J L, Liu Y N, Xie Q, Yang X Y, Chang X P, Li C N, Zhang X Y, Jing R L. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. J Exp Bot, 2020, 71: 5377-5388.
[15] Zhang C Y, Hao Z Y, Ning Y S, Wang G L. SINA E3 ubiquitin ligases: versatile moderators of plant growth and stress response. Mol Plant, 2019, 12: 610-612.
[16] Li L, Peng Z, Mao X G, Wang J Y, Chang X P, Reynolds M, Jing R L. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Ann Bot, 2019, 124: 993-1006.
[17] Hao C Y, Wang L F, Ge H M, Dong Y C, Zhang X Y. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One, 2011, 6: e17279.
[18] Li L, Mao X G, Wang J Y, Chang X P, Reynolds M, Jing R L. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell Environ, 2019, 42: 2540-2553.
[19] Xie Q, Guo H S, Dallman G, Fang S, Weissman A M, Chua N H. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature, 2002, 419: 167-170.
[20] Nolan T M, Brennan B, Yang M R, Chen J N, Zhang M C, Li Z H, Wang X L, Bassham D C, Walley J, Yin Y H. Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Dev Cell, 2017, 41: 33-46.
doi: S1534-5807(17)30166-1 pmid: 28399398
[21] Yang M R, Li C X, Cai Z Y, Hu Y M, Nolan T, Yu F F, Yin Y H, Xie Q, Tang G L, Wang X L. SINAT E3 ligases control the light-mediated stability of the brassinosteroid-activated transcription factor BES1 in Arabidopsis. Dev Cell, 2017, 41: 47-58.
[22] Ning Y S, Jantasuriyarat C, Zhao Q Z, Zhang H W, Chen S B, Liu J L, Liu L J, Tang S Y, Park C H, Wang X J, Liu X L, Dai L Y, Xie Q, Wang G L. The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol, 2011, 157: 242-255.
doi: 10.1104/pp.111.180893 pmid: 21719639
[23] Bao Y, Wang C T, Jiang C M, Pan J, Zhang G B, Liu H, Zhang H X. The tumor necrosis factor receptor-associated factor (TRAF)-like family protein SEVEN IN ABSENTIA 2 (SINA2) promotes drought tolerance in an ABA-dependent manner in Arabidopsis. New Phytol, 2014, 202: 174-187.
doi: 10.1111/nph.12644 pmid: 24350984
[24] Xue Y H, Wang J Y, Mao X G, Li C N, Li L, Yang X, Hao C Y, Chang X P, Li R Z, Jing R L. Association analysis revealed that TaPYL4 genes are linked to plant growth related traits in multiple environments. Front Plant Sci, 2021, 12: 641087.
[25] 范子培, 李龙, 史雨刚, 孙黛珍, 李超男, 景蕊莲. 小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发. 作物学报, 2024, 50: 403-413.
doi: 10.3724/SP.J.1006.2024.31016
Fan Z P, Li L, Shi Y G, Sun D Z, Li C N, Jing R L. Cloning of TabHLH112-2B gene and development of its functional marker associated with the number of spikelets per spike in wheat. Acta Agron Sin, 2024, 50: 403-413 (in Chinese with English abstract).
[26] Gao C H, Qi S H, Liu K G, Li D, Jin C Y, Li Z W, Huang G Q, Hai J B, Zhang M, Chen M X. MYC2, MYC3, and MYC4 function redundantly in seed storage protein accumulation in Arabidopsis. Plant Physiol Biochem, 2016, 108: 63-70.
[27] Wang W J, Fan Y H, Niu X L, Miao M, Kud J, Zhou B J, Zeng L R, Liu Y S, Xiao F M. Functional analysis of the seven in absentia ubiquitin ligase family in tomato. Plant Cell Environ, 2018, 41: 689-703.
[28] Kim J H, Khan I U, Lee C W, Kim D Y, Jang C S, Lim S D, Park Y C, Kim J H, Seo Y W. Identification and analysis of a differentially expressed wheat RING-type E3 ligase in spike primordia development during post-vernalization. Plant Cell Rep, 2021, 40: 543-558.
doi: 10.1007/s00299-020-02651-8 pmid: 33423075
[29] Lyu Q, Li L Q, Meng Y, Sun H M, Chen L P, Wang B X, Li X J. Wheat E3 ubiquitin ligase TaGW2-6A degrades TaAGPS to affect seed size. Plant Sci, 2022, 320: 111274.
[30] 李淑敏. 泛素E3连接酶TaGW2调控小麦抗逆性的分子机制研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2023.
Li S M. The Molecular Mechanism of E3 Ubiquitin Ligase TaGW2 in Regulating Wheat Stress Resistance. PhD Dissertation of Northwest Agriculture and Forestry University, Yangling, Shaanxi, China, 2023 (in Chinese with English abstract).
[1] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[2] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[3] ZHENG Xue-Qing, WANG Xing-Rong, ZHANG Yan-Jun, GONG Dian-Ming, QIU Fa-Zhan. Mapping of QTL for ear-related traits and prediction of key candidate genes in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1435-1450.
[4] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[5] LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622.
[6] FAN Zi-Pei, LI Long, SHI Yu-Gang, SUN Dai-Zhen, LI Chao-Nan, JING Rui-Lian. Cloning of TabHLH112-2B gene and development of its functional marker associated with the number of spikelet per spike in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 403-413.
[7] DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279.
[8] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[9] TIAN Chun-Yan, BIAN Xin, LANG Rong-Bin, YU Hua-Xian, TAO Lian-An, AN Ru-Dong, DONG Li-Hua, ZHANG Yu, JING Yan-Fen. Association analysis of three breeding traits with SSR markers and exploration of elite alleles in sugarcane [J]. Acta Agronomica Sinica, 2024, 50(2): 310-324.
[10] CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339.
[11] TAN Dan, CHEN Jia-Ting, GAO Yu, ZHANG Xiao-Jun, LI Xin, YAN Gui-Yun, LI Rui, CHEN Fang, CHANG Li-Fang, ZHANG Shu-Wei, GUO Hui-Juan, CHANG Zhi-Jian, QIAO Lin-Yi. Discovery of auxin pathway genes involving spike type and association analysis between TaARF23-A and spikelet number in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 506-513.
[12] LU Zong-Hui, SI Er-Jing, YE Pei-Yin, WANG Jun-Cheng, YAO Li-Rong, MA Xiao-Le, LI Bao-Chun, WANG Hua-Jun, SHANG Xun-Wu, MENG Ya-Xiong. Genome-wide association analysis and candidate genes prediction of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2024, 50(10): 2483-2492.
[13] YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66.
[14] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[15] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!