Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1325-1340.doi: 10.3724/SP.J.1006.2024.24226

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of strip-mulching ridges on runoff and soil water use for sorghum in southwest yellow soil slope farmland

CHEN Yu-Zhang1,2,*(), WU Song-Guo3, LU Cheng-Lin1, LI Rui1,2, GONG Li-Juan1,2, WEN Yue1, NING Jia-Xin1, WU Yu-Han1   

  1. 1College of Bioengineering, Sichuan University of Science and Technology, Yibin 644005, Sichuan, China
    2Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 644005, Sichuan, China
    3Agricultural College, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2023-10-08 Accepted:2023-10-23 Online:2024-05-12 Published:2023-12-26
  • Contact: E-mail: jadayz@163.com
  • Supported by:
    Open Found of Sichuan Province Engineering Technology Research Center of Liquor-Making Grains(2021-05);Production-Learning-Research Cooperation Project of Wuliangye Yibin Co. Ltd.(CXY2021ZR010)

Abstract:

Aiming at the problems such as prominent seasonal drought, large loss of precipitation and runoff, low yield-benefit of sorghum in southwest sloping farmland in China. During 2020-2021, the 7° yellow soil gentle slope cultivated land of previous spring corn was taken as the research object in the southwestern mountains area of Guizhou Province. The effects of three different treatments of traditional open field plain cropping (CK), alternating plastic film strip mulching only on ridge and furrow planting (RFM), and alternating whole maize straw strip mulching only on ridge and furrow planting (RSM) on runoff, water consumption characteristics, water use efficiency, yield and net economic benefits of sorghum were studied under the Transverse Slope Planting Model (TSPM: crop row direction is perpendicular to slope direction). Compared with CK, both RFM and RSM treatments under the TSPM significantly decreased rain-runoff depth during the whole growth period by 27.3% and 42.1% on average, and the water intake coefficient increased by 9.5 and 14.6 percentage points on average, respectively. The water consumption during the growth period of sorghum was significantly increased by the two strip-mulching only on ridges and cross planting in furrows, and the water consumption during the jointing stage to heading stage and the grain-filling stage to maturity stage were significantly (r = 0.51*) and extremely significantly (r = 0.81**) positively correlated with the grain yield, respectively. Compared with CK, RFM and RSM significantly increased biomass, kernels per spike and 1000-grain weight at maturity, and grain yield for sorghum was significantly increased by 8.5% and 6.2%, respectively, while water use efficiency was significantly decreased by 12.6% and 21.4%, respectively. Strip-mulching ridge treatments could increase the soil water storage of 0-100 cm soil profile during the whole sorghum growth stage, increase water consumption amount from jointing to heading and from grain-filling to maturity stage. Strip-mulching also improved the growth and development of sorghum plants and the formation of grain yield. Compared with CK, the increase of sorghum straw yield (21.4%) in maturity was significantly higher than that of grain yield (7.3%). Although the increase of straw yield reduced the water use efficiency, it was an important guarantee for grain yield increase. Compared with CK, the average net economic benefit and the output/input for RSM treatment increased by 2962.9 Yuan hm-2 and 2.3%, respectively, while the average net economic benefit and the output/input for RFM treatment decreased by 1502.6 Yuan hm-2 and 32.6%, respectively, due to the obvious increase of labor intensity, mechanical and plastic film input. Therefore, RSM treatment can significantly improve effectiveness of precipitation and achieve double increase yield and net economic benefit, which is a feasible model to increase the yield-income of sorghum in yellow soil slope farmland in southwest China.

Key words: strip-mulching ridge, runoff, water utilization, sorghum yield, net economic benefit

Fig. 1

Schematic diagram of sorghum planting practices RFM: alternating plastic film mulching strip on ridges and cross slope planting in furrows; RSM: alternating whole maize straw strip mulching on ridges and cross slope planting in furrows; CK: cross slope planting and non-mulching."

Fig. 2

Schematic diagram of runoff observation in planting plots"

Fig. 3

Monthly precipitation during sorghum growing period in experimental fields in 2020 and 2021"

Table 1

Rainfall runoff characteristics and rain harvesting effect of different treatments during the sorghum growth period"

年份
Year
处理
Treatment
径流量
Runoff amount
(mm)
径流系数
Runoff coefficient
(%)
降雨土壤蓄水量
Soil water storage of rainfall
(mm)
纳水系数
Rainfall storage coefficient
(%)
2020 RFM 176.4±2.3 b 23.5±0.16 b 572.6±2.3 b 76.5±0.16 b
RSM 134.4±2.3 c 17.9±0.18 c 614.6±2.3 a 82.1±0.18 a
CK 252.7±1.4 a 33.7±0.19 a 496.3±1.4 c 67.3±0.19 c
2021 RFM 219.0±1.7 b 29.1±0.19 b 608.4±1.7 b 73.5±0.19 b
RSM 181.1±2.3 c 24.1±0.17 c 646.3±2.3 a 78.1±0.17 a
CK 291.9±1.5 a 38.8±0.19 a 535.5±1.5 c 64.7±0.19 c
2年平均
2-year average
RFM 197.7±2.1 b 25.0±0.13 b 590.5±2.2 b 75.0±0.13 b
RSM 157.8±2.2 c 19.9±0.16 c 630.5±2.4 a 80.1±0.16 a
CK 272.3±2.1 a 34.5±0.13 a 515.9±1.9 c 65.5±0.14 c

Fig. 4

Dynamics of soil water storage in 0-100 cm soil profile during the sorghum growing season TP: transplanting stage; JT: jointing stage; HD: heading stage; GF: grain-filling stage; MT: maturity stage. Mean value (n = 3) columns at each growth stage indicated with different lowercase letters are significant difference at P < 0.05. Treatments are the same as those given in Fig. 1."

Fig. 5

Soil weight water content in different soil layers at different growth stage of sorghum TP: transplanting stage; JT: jointing stage; HD: heading stage; GF: grain-filling stage; MT: maturity stage; PWC: Permanent wilting coefficient. * and ** besides the same soil layer indicate that the mean value (n = 3) of each treatment was significant difference at P < 0.05 and P < 0.01, respectively. Treatments are the same as those given in Fig. 1."

Table 2

Total field evapotranspiration and water use efficiency for sorghum"

年份
Year
处理
Treatment
农田耗水量
Field evapotranspiration
(mm)
降水量
Rainfall
(mm)
土壤贮水消耗量
Soil water consumption
(mm)
水分利用效率
Water use efficiency
(kg hm-2 mm-1)
2020 RFM 664.6±21.4 b 748.9 86.2±10.7 a 9.0±0.1 b
RSM 717.9±35.2 a 748.9 98.9±17.6 a 8.3±0.2 c
CK 529.8±15.7 c 748.9 26.9±7.8 b 10.5±0.2 a
2021 RFM 773.9±7.1 b 827.4 106.7±4.3 b 8.3±0.1 b
RSM 846.6±8.5 a 827.4 141.5±1.4 a 7.3±0.2 c
CK 629.6±6.3 c 827.4 45.3±1.7 c 9.3±0.2 a
2年平均
2-year average
RFM 719.2±9.3 b 788.2 96.4±10.8 b 8.6±0.1 b
RSM 782.3±15.8 a 788.2 120.2±18.2 a 7.8±0.2 c
CK 579.7±5.4 c 788.2 36.1±7.1 c 9.9±0.2 a

Table 3

Consumption of soil water storage in the 0-100 cm soil layer"

年份
Year
处理
Treatment
土层 Soil layer
0-20 cm 20-40 cm 40-60 cm 60-80 cm 80-100 cm
2020 RFM 14.9±0.9 a 10.7±0.8 b 21.7±1.1 b 17.6±0.4 a 21.3±0.8 a
RSM 13.6±0.4 ab 32.1±0.7 a 27.9±1.0 a 16.9±5.5 a 8.1±1.0 b
CK 12.8±1.2 b 10.6±0.3 b 11.3±0.6 c 1.3±0.4 b -9.1±1.5 c
2021 RFM 19.1±0.9 b 29.6±1.0 a 26.9±1.5 b 14.8±0.5 b 16.3±0.3 b
RSM 24.8±1.0 a 18.9±0.4 b 29.6±0.7 a 37.2±0.5 a 31.0±1.0 a
CK 16.6±0.8 c 9.0±0.2 c 16.0±0.7 c 2.6±0.2 c 1.1±1.6 c
2年平均
2-year average
RFM 17.0±0.8 b 20.2±0.7 b 24.3±0.6 b 16.2±0.4 b 18.8±0.3 a
RSM 19.2±0.5 a 25.5±0.2 a 28.7±0.6 a 27.1±3.0 a 19.5±0.1 a
CK 14.7±0.9 c 9.8±0.1 c 13.7±0.5 c 2.0±0.3 c -4.0±1.5 c

Table 4

Water consumption amounts and ratios to total water consumption in different periods of sorghum growth"

年份
Year
处理
Treatment
移栽至拔节
Transplanting to jointing
拔节至抽穗
Jointing to heading
抽穗至灌浆
Heading to grain-filling
灌浆至成熟
Grain-filling to maturity
数量
Amount
(mm)
比例
Ratio
(%)
数量
Amount
(mm)
比例
Ratio
(%)
数量
Amount
(mm)
比例
Ratio
(%)
数量
Amount
(mm)
比例
Ratio
(%)
2020 RFM 187.2±6.3 a 28.2±0.6 a 266.7±3.5 b 40.1±1.2 b -16.8±1.6 b -2.5±0.6 b 227.5±8.9a 34.2±1.4 a
RSM 155.8±5.1 b 21.7±0.8 b 345.9±8.4 a 48.2±0.4 a -1.6±1.4 a -0.2±0.4 a 217.8±6.8a 30.3±0.7 b
CK 91.7±4.9 c 17.3±0.9 c 252.7±8.5 c 47.7±2.6 a 1.5±3.4 a 0.3±1.4 a 184.2±4.8 b 34.8±1.4 a
2021 RFM 128.0±6.5 c 16.5±0.4 c 314.3±10.6 a 40.6±0.4 a 9.8±1.5 b 1.3±0.2 b 321.8±10.8 b 41.6±0.8 b
RSM 172.4±7.8 a 20.4±0.7 b 286.2±19.1 b 33.8±0.8 c 43.6±2.9 a 5.2±0.3 a 344.3±10.2 a 40.7±0.6 b
CK 151.8±9.3 b 24.1±0.6 a 226.6±12.5 c 35.9±0.7 b -23.9±1.2 c -3.8±0.2 c 275.7±9.5 c 43.8±1.0 a
2年平均
2-year average
RFM 157.6±1.4 b 21.9±0.2 a 290.5±4.8 b 40.4±0.3 b -3.5±0.3 b -0.05±0.1 b 274.6±8.5 a 38.2±0.8 a
RSM 164.1±2.5 a 21.0±0.5 b 316.0±9.6 a 40.4±0.4 b 21.0±1.2 a 2.7±0.2 a 281.1±9.7 a 35.9±0.3 b
CK 121.7±3.3 c 21.0±0.5 b 239.4±7.8 c 41.3±0.4 a -11.2±1.9 c -1.9±0.4 c 229.9±4.8 b 39.7±1.2 a

Table 5

Grain yield and agronomic traits of sorghum"

年份
Year
处理
Treat-
ment
籽粒产量
GY
(kg hm-2)
生物量
Biomass
(×104 kg hm-2)
千粒重
TKW
(g)
穗粒数
KPS
(grain spike-1)
收获指数
HI
(%)
单穗粒重
SKW
秸秆终产量
SYM
(kg hm-2)
2020 RFM 5970±292.4 a 2.24±0.29 a 18.7±0.5 ab 2649±179 a 26.6±0.4 b 49.2±2.1 a 16,447.0±313.1 a
RSM 5925±213.6 a 2.19±0.48 a 19.4±0.6 a 2594±200 b 27.0±0.6 b 50.9±2.8 b 16,007.0±469.2 a
CK 5553±306.6 b 1.87±0.06 b 18.4±0.5 b 2326±152 c 29.7±0.2 a 42.0±6.5 c 13,164.3±35.7 b
2021 RFM 6321±130.0 a 2.45±0.28 a 19.1±1.1 a 2776±151.1 a 26.1±0.3 b 53.1±1.5 a 18,113.4±284.7 a
RSM 6156±328.8 b 2.32±0.06 b 19.2±2.4 a 2787±276.2 a 26.5±0.2 b 53.4±2.7 a 17,060.3±84.0 b
CK 5830±245.7 b 2.05±0.34 b 18.3±2.1 b 2676±206.5 c 28.4±0.4 a 49.0±2.0 b 14,712.7±321.0 c
2年平均
2-year average
RFM 6178±121.3 a 2.35±0.16 a 18.9±0.1 b 2712±91.3 a 26.4±0.2 b 51.2±0.2 b 17,280.2±147.6 a
RSM 6040±93.2 b 2.26±0.24 b 19.3±0.1 a 2690±47.4 b 26.8±0.3 b 52.2±0.1 a 16,533.6±251.4 b
CK 5691±275.1 c 1.96±0.20 c 18.3±0.2 c 2500±78.5 c 29.0±0.2 a 45.5±0.4 c 13,938.5±173.5 c

Table 6

Correlation between grain yield of liquor-making sorghum, grain yield components soil water utilization (n = 18)"

指标
Index
GY SYM SKW TKW KPS HI WUE SWS 耗水量Water consumption
TWC I II III
SYM 0.91**
SKW 0.90** 0.85**
TKW 0.63** 0.69** 0.69**
KPS 0.88** 0.95** 0.95** 0.44
HI -0.86** -0.89** -0.89** -0.66** -0.83**
WUE -0.80** -0.94** -0.94** -0.74** -0.85** 0.83**
SWS 0.62** 0.78** 0.78** 0.82** 0.57* -0.80** -0.79**
TWC 0.87** 0.94** 0.94** 0.74** 0.86** -0.85** -0.98** 0.73**
I 0.39 0.62** 0.62** 0.31 0.65** -0.64** -0.63** 0.60** 0.53*
II 0.51* 0.53* 0.53* 0.85** 0.25 -0.58* -0.57* 0.85** 0.56* 0.11
III 0.44 0.42 0.42 0.53* 0.32 -0.35 -0.62** 0.27 0.69** 0.01 0.37
IV 0.81** 0.81** 0.81** 0.35 0.88** -0.62** -0.77** 0.29 0.83** 0.33 0.11 0.58*

Table 7

Analyses on economic benefits of sorghum under different treatments"

年份
Year
处理
Treatment
投入Cost (Yuan hm-2) 总收入
OR
(Yuan hm-2)
纯经济收益
NEB
(Yuan hm-2)
产投比
O/I
人工
Labor
地膜
Plastic
机械
Mechanization
总量
Total
2020 RFM 4500 1800 1500 13,166 45,368 32,202 3.45
RSM 2250 0 1050 8667 45,032 36,365 5.20
CK 1800 0 1050 8217 42,204 33,987 5.14
2021 RFM 4500 1800 1500 8667 48,308 39,641 5.57
RSM 2250 0 1050 8217 44,310 36,093 5.39
CK 1800 0 1050 9567 19,823 10,256 2.07
[1] 李顺国, 刘猛, 刘斐, 邹剑秋, 陆晓春, 刁现民. 中国高粱产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 471-482.
doi: 10.3864/j.issn.0578-1752.2021.03.002
Li S G, Liu M, Liu F, Zou J Q, Lu X C, Diao X M. Current status and future prospective of sorghum production and seed industry in China. Sci Agric Sin, 2021, 54: 471-482 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.002
[2] 刘晨阳, 张蕙杰, 辛翔飞. 中国高粱产业发展特征及趋势分析. 中国农业科技导报, 2020, 22(10): 1-9.
doi: 10.13304/j.nykjdb.2019.0706
Liu C Y, Zhang H J, Xin X F. Analysis of the development characteristics and trends of sorghum industry in China. J Agric Sci Technol, 2020, 22(10): 1-9 (in Chinese with English abstract).
[3] 国家统计局. 2021年中国高粱种植及生产情况. 腾讯[2022-09-06]. https://xw.qq.com/amphtml/20220411A01GCF00.
State Statistical Bureau. Sorghum cultivation and production in China in 2021. Tencent. [2022-09-06]. https://xw.qq.com/amphtml/20220411A01GCF00 (in Chinese).
[4] Liang S M, Cai R, Wang P J, Wang X T, Li Y S, Xu F H, Wang Y, Dai Y Q, Zhang L, Li X P, Zhan K, Yang Q F, Sui Q J. Improvements of emergence and tuber yield of potato in a seasonal spring arid region using plastic film mulching only on the ridge. Field Crops Res, 2018, 223: 57-65.
doi: 10.1016/j.fcr.2018.03.012
[5] 范成五, 罗益, 王文华, 张邦喜, 秦松, 蔡景行. 不同管理措施对黄壤坡耕地径流氮输出的控制效果. 农业环境科学学报, 2014, 33: 1948-1955.
Fan C W, Luo Y, Wang W H, Zhang B X, Qin S, Cai J H. Effects of different management practices on nitrogen runoff losses from sloping yellow soil. J Agro-Environ Sci, 2014, 33: 1948-1955 (in Chinese with English abstract).
[6] 代姝玮, 杨晓光, 赵孟, 李勇, 王文峰, 刘志娟. 气候变化背景下中国农业气候资源变化: II. 西南地区农业气候资源时空变化特征. 应用生态学报, 2011, 22: 442-452.
Dai S W, Yang X G, Zhao M, Li Y, Wang W F, Liu Z J. Changes of China agricultural climate resources under the background of climate change: II. Spatiotemporal change characteristics of agricultural climate resources in Southwest China. Chin J Appl Ecol, 2011, 22: 442-452 (in Chinese with English abstract).
[7] 高仁才, 陈松鹤, 马宏亮, 莫飘, 肖云, 张雪, 樊高琼. 秋闲期秸秆覆盖与氮肥减施对旱地冬小麦干物质积累、结实特性和产量的影响. 植物营养与肥料学报, 2022, 28: 426-439.
Gao R C, Chen S H, Ma H L, Mo P, Xiao Y, Zhang X, Fan G Q. Effects of straw mulching in autumn and reducing nitrogen application on dry matter accumulation, seed-setting characteristics and yield of dryland winter wheat. J Plant Nutr Fert, 2022, 28: 426-439 (in Chinese with English abstract).
[8] 陈尚洪, 陈红琳, 沈学善, 李丽君, 刘定辉. 不同覆盖方式对川中丘陵区春玉米干物质积累与转运的影响. 干旱地区农业研究, 2013, 31(5): 74-78.
Chen S H, Chen H L, Shen X S, Li L J, Liu D H. Study on dry matter accumulation and translocation of spring maize under different mulching methods in hilly area of central Sichuan Basin. Agric Res Arid Areas, 2013, 31 (5): 74-78 (in Chinese with English abstract).
[9] 赵甘霖, 丁祥祥, 刘天朋, 倪先林, 龙文靖, 汪小楷, 李元, 向箭宇. 四川省酿酒糯高粱高质量发展对策. 酿酒科技, 2021, (1): 138-141.
Zhao G L, Ding X X, Liu T P, Ni X L, Long W J, Wang X K, Li Y, Xiang J Y. High-quality development strategy of liquor-making glutinous sorghum in Sichuan. Liq-Mak Sci Technol, 2021, (1): 138-141 (in Chinese with English abstract).
[10] 邹剑秋, 王艳秋, 柯福来. 高粱产业发展现状及前景展望. 山西农业大学学报(自然科学版), 2020, 40(3): 2-8.
Zou J Q, Wang Y Q, Ke F L. Developing situation and prospect forecast of sorghum industry in China. J Shanxi Agric Univ (Nat Sci Edn), 2020, 40(3): 2-8 (in Chinese with English abstract).
[11] 蒋太明. 贵州喀斯特山区黄壤水分动态及其影响因素. 西南大学博士学位论文, 重庆, 2007.
Jiang T M. Moisture Dynamic in Yellow Soil and Its Environmental Factors in Karst Mountainous Area of Guizhou. PhD Dissertation of Southwest University, Chongqing, China, 2007 (in Chinese with English abstract).
[12] 王龙昌, 谢小玉, 张臻, 薛兰兰, 邹聪明, 胡小东. 论西南季节性干旱区节水型农作制度的构建. 西南大学学报(自然科学版), 2010, 32(2): 1-6.
Wang L C, Xie X Y, Zhang, Xue L L, Zou C M, Hu X D. On establishment of a water-saving farming system in seasonal drought regions of southwest China. J Southwest Univ (Nat Sci Edn), 2010, 32 (2): 1-6 (in Chinese with English abstract).
[13] 邢毅, 张抗萍, 王志远, 张小短, 武海燕, 冉泰霖, 向信华, 王龙昌. 西南旱地油菜田土壤水分和作物光合特征对覆盖材料和垄沟比的响应. 应用生态学报, 2020, 31: 3461-3472.
doi: 10.13287/j.1001-9332.202010.027
Xing Y, Zhang K P, Wang Z Y, Zhang X D, Wu H Y, Ran T L, Xiang X H, Wang L C. Responses of soil moisture and photosynthetic to mulching materials and ridge-to-furrow ratios in rapeseed fields in southwest dryland of China. Chin J Appl Ecol, 2020, 31: 3461-3472 (in Chinese with English abstract).
[14] 安龙龙, 郑子成, 王永东, 李廷轩, 杨李娇. 耕作措施对玉米生长期黄壤坡耕地径流及可溶性有机碳流失的影响. 水土保持学报, 2022, 36(5): 75-81.
An L L, Zheng Z C, Wang Y D, Li T X, Yang L J. Effects of tillage practices on runoff and dissolved organic carbon loss from yellow soil sloping farmland during maize growth periods. J Soil Water Conserv, 2022, 36(5): 75-81 (in Chinese with English abstract).
[15] 盖浩, 刘平奇, 张梦璇, 陈柏旭, 王迎春, 王立刚. 黑土坡耕地横坡垄作对减少径流及土壤有机碳流失的作用. 水土保持学报, 2022, 36(2): 300-304.
Gai H, Liu P Q, Zhang M X, Chen B X, Wang Y C, Wang L G. Effects of ridge planting on reducing runoff and soil organic carbon loss in black soil slope. J Soil Water Conserv, 2022, 36(2): 300-304 (in Chinese with English abstract).
[16] 程鹏, 廖超林, 肖其亮, 彭华, 简燕, 胥爱平, 朱坚. 横坡垄作和秸秆覆盖对红壤坡耕地氮磷流失的影响. 农业环境科学学报, 2022, 41: 1036-1046.
Cheng P, Liao C L, Xiao Q L, Peng H, Jian Y, Xu A P, Zhu J. Effects of cross slope ridge cultivation and straw mulching on nitrogen and phosphorus loss in red soil slope farmland. J Agro- Environ Sci, 2022, 41: 1036-1046 (in Chinese with English abstract).
[17] 殷清慧, 谢世友. 黔中喀斯特山区坡耕地产流产沙对无籽刺梨种植的响应. 水土保持学报, 2022, 36(5): 90-96.
Yin Q H, Xie S Y. Response of runoff and sediment yield of sloping farmland to rosa sterilis S.D. shiplanting in Karst Mountainous area of central Guizhou. J Soil Water Conserv, 2022, 36(5): 90-96 (in Chinese with English abstract).
[18] 刘灏, 伍燕翔, 徐麟叶, 叶贤贵, 王宗琼. 翠屏区高粱地膜覆盖膜侧栽培节水抗旱技术示范. 南方农业, 2015, 9(21): 74-75.
Liu H, Wu Y X, Xu Y L, Ye X G, Wang Z Q. Demonstration of water-saving and drought-resistant technology of sorghum in Cuiping district. South China Agric, 2015, 9(21): 74-75 (in Chinese).
[19] Qin Y Q, Chai Y W, Li R, Ma J T, Cheng H B, Chang L, Chai S X. Evaluation of straw and plastic film mulching on wheat production: a meta-analysis in Loess Plateau of China. Field Crops Res, 2022, 275: 108333.
doi: 10.1016/j.fcr.2021.108333
[20] 林超文, 罗春燕, 庞良玉, 付登伟, 黄晶晶, 涂仕华, 张新全. 不同覆盖和耕作方式对紫色土坡耕地降雨土壤蓄积量的影响. 水土保持学报, 2010, 24(3): 213-216.
Lin C W, Luo C Y, Pang L Y, Fu D W, Huang J J, Tu S H, Zhang Q X. Influence of mulching and tillage methods on the rainfall storage by soil in purple soil area. J Soil Water Conser, 2010, 24(3): 213-216 (in Chinese with English abstract).
[21] Hu Q, Li X Y, Gonçalves J M, Shi H B, Tian T, Chen N. Effects of residual plastic-film mulch on field corn growth and productivity. Sci Total Environ, 2020, 729: 138901.
doi: 10.1016/j.scitotenv.2020.138901
[22] Liu B S, Li W F, Pan X L, Zhang D Y. The persistently breaking trade-offs of three-decade plastic film mulching: microplastic pollution, soil degradation and reduced cotton yield. J Hazard Mater, 2022, 439: 129586.
doi: 10.1016/j.jhazmat.2022.129586
[23] Kader M A, Senge M, Mojid M A, Ito K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res, 2017, 168: 155-166.
doi: 10.1016/j.still.2017.01.001
[24] Yu Y Y, Turner N C, Gong Y H, Li F M, Fang C, Ge L J, Ye J S. Benefits and limitations to straw- and plastic-film mulch on maize yield and water use efficiency: a meta-analysis across hydrothermal gradients. Eur J Agron, 2018, 99: 138-147.
doi: 10.1016/j.eja.2018.07.005
[25] Lu X J, Li Z Z, Sun Z H, Bu Q G. Straw mulching reduces maize yield, water, and nitrogen use in northeastern China. Agron J, 2015, 107: 406-414.
doi: 10.2134/agronj14.0454
[26] Keesstra S D, Rodrigo-Comino J, Novara A, Giménez-Morera A, Pulido M, Prima S D, Cerdà A. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated Clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. Catena, 2019, 174: 95-103.
doi: 10.1016/j.catena.2018.11.007
[27] Wang J, Ghimire R, Fu X, Sainju U M, Liu W Z. Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield. Agric Water Manag, 2018, 206: 95-101.
doi: 10.1016/j.agwat.2018.05.004
[28] 陈玉章, 田慧慧, 李亚伟, 柴雨葳, 李瑞, 程洪波, 常磊, 柴守玺. 秸秆带状沟覆垄播对旱地马铃薯产量和水分利用效率的影响. 作物学报, 2019, 45: 714-727.
doi: 10.3724/SP.J.1006.2019.84097
Chen Y Z, Tian H H, Li Y W, Chai Y W, Li R, Cheng H B, Chang L, Chai S X. Effects of straw strip mulching on furrows and planting in ridges on water use efficiency and tuber yield in dryland potato. Acta Agron Sin, 2019, 45: 714-727 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.84097
[29] Chen Y Z, Chai S X, Tian H H, Chai Y W, Li Y W, Chang L, Cheng H B. Straw strips mulch on furrows improves water use efficiency and yield of potato in a rainfed semiarid area. Agric Water Manag, 2019, 211: 142-151.
doi: 10.1016/j.agwat.2018.09.048
[30] Wang Q, Wang X Y, Zhang D K, Zhou X J, Mak-Mensah E, Zhao X L, Zhao W C, Ghanney P, Haider F U, Liu Q L, Li G, Li X L, Li Y J, Majeed Y. Selection of suitable type and application rate of biochar for alfalfa (Medicago sativa L.) productivity in ridge-furrow rainwater-harvesting in semiarid regions of China. Field Crops Res, 2022, 277: 108428.
doi: 10.1016/j.fcr.2021.108428
[31] 牟廷森, 沈海鸥, 贺云锋, 李春丽, 郭聃, 刘殿民. 黑土区垄作方式对坡耕地土壤侵蚀的调控效果. 水土保持通报, 2022, 42(2): 22-30.
Mou T S, Shen H O, He Y F, Li C L, Guo D, Liu D M. Effects of ridge tillage patterns on soil erosion of sloping croplands in black soil region of northeastern China. Bull Soil Water Conser, 2022, 42(2): 22-30 (in Chinese with English abstract)
[32] 李菲, 李晓光. 不同水土保持耕作措施对降雨径流、产沙及土壤水蚀特性的影响. 乡村科技, 2022, 13(10): 142-146.
Li F, Li X G. Effects of different soil and water conservation tillage practices on rainfall runoff, sediment yield and soil water erosion characteristics. Rural Sci Technol, 2022, 13(10): 142-146 (in Chinese).
[33] 毛妍婷, 崔荣阳, 陈安强, 平凤超, 雷宝坤. 垄作方向对不同坡位红壤坡耕地耕层土壤水分特征曲线的影响. 土壤通报, 2022, 53: 308-314.
Mao Y T, Cui R Y, Chen A Q, Ping F C, Lei B K. Effects of ridge directions on water characteristic curves of cultivated top-layer soils in different slope positions. Chin J Soil Sci, 2022, 53: 308-314 (in Chinese with English abstract).
[34] 杨帅, 尹忠, 郑子成, 李廷轩. 四川黄壤区玉米季坡耕地自然降雨及其侵蚀产沙特征分析. 水土保持学报, 2016, 30(4): 7-12.
Yang S, Yin Z, Zheng Z C, Li T X. Characteristics of natural rainfall and sediment yield of sloping cropland of the yellow soil area in Sichuan during corn growth season. J Soil Water Conserv, 2016, 30(4): 7-12 (in Chinese with English abstract).
[35] 中华人民共和国水利部. (87)水电农水字第36号. 水土保持试验规范, 1988. pp 13-31.
Ministry of Water Resources of the people’s Republic of China. (87) Hydropower Nongshui Zi No. 36. Soil and Water Conservation Test Code, 1988. pp 13-31 (in Chinese).
[36] 盘礼东, 李瑞, 张玉珊, 黎庆贵, 高家勇, 袁江. 西南喀斯特区坡耕地秸秆覆盖对土壤生态化学计量特征及产量的影响. 生态学报, 2022, 42: 4428-4438.
Pan L D, Li R, Zhang Y S, Li Q G, Gao J Y, Yuan J. Effects of straw mulching on soil ecological stoichiometry characteristics and yield on sloping farmland in karst area, southwestern China. Acta Ecol Sin, 2022, 42: 4428-4438 (in Chinese with English abstract).
[37] 鲁耀, 胡万里, 雷宝坤, 段宗颜, 刘宏斌, 翟丽梅. 云南坡耕地红壤地表径流氮磷流失特征定位监测. 农业环境科学学报, 2012, 31: 1544-1553.
Lu Y, Hu W L, Lei B K, Duan Z Y, Liu H B, Zhai L M. The monitoring of nitrogen and phosphorus loss by surface runoff in sloping red soil fields of Yunnan province, China. J Agro-Environ Sci, 2012, 31:1544-1553 (in Chinese with English abstract).
[38] Bombino G, Denisi P, Gómez J A, Zema D A. Mulching as best management practice to reduce surface runoff and erosion in steep clayey olive groves. Int Soil Water Conser Res, 2021, 9: 26-36.
doi: 10.1016/j.iswcr.2020.10.002
[39] 周靖超, 张锡洲, 郑子成, 李廷轩. 夏玉米种植条件下黄壤坡耕地径流及磷素流失特征. 水土保持研究, 2023, 30(2): 81-86.
Zhou J C, Zhang X Z, Zheng Z C, Li T X. Characteristics of runoff and phosphorus loss from sloping farmland in yellow soil region under the condition of summer maize growth. Res Soil Water Conserv, 2023, 30(2): 81-86 (in Chinese with English abstract).
[40] Wang J L, Shi X, Li Z Z, Zhang Y, Liu Y Q, Peng Y X. Responses of runoff and soil erosion to planting pattern, row direction, and straw mulching on sloped farmland in the corn belt of northeast China. Agric Water Manag, 2021, 253: 106935.
doi: 10.1016/j.agwat.2021.106935
[41] 黎庆贵. 黔西北坡耕地覆盖措施的水土流失调控效应. 贵州师范大学硕士学位论文, 贵州贵阳, 2021.
Li Q G. Soil and Water Loss Control Effect of Sloping Farmland Mulching Measures in Northwest Guizhou. MS Thesis of Guizhou Normal University, Guiyang, Guizhou, China, 2021 (in Chinese with English abstract).
[42] Zheng H J, Nie X F, Liu Z, Mo M H, Song Y J. Identifying optimal ridge practices under different rainfall types on runoff and soil loss from sloping farmland in a humid subtropical region of southern China. Agric Water Manag, 2021, 255: 107043.
doi: 10.1016/j.agwat.2021.107043
[43] 王小康, 谷举, 刘刚, 师宏强. 横、顺坡垄作对黑土坡面侵蚀-沉积周期规律的影响. 土壤学报, 2022, 59: 430-439.
Wang X K, Gu J, Liu G, Shi H Q. The influence of transverse and longitudinal ridge tillage on soil erosion and deposition cycles for mollisol slope. Acta Pedol Sin, 2022, 59: 430-439 (in Chinese with English abstract).
[44] 沈海鸥, 温磊磊, 武佳龙, 王宇. 垄作与垄向区田技术对黑土区坡耕地土壤侵蚀影响的研究进展. 农业工程学报, 2022, 38(22): 52-62.
Shen H O, Wen L L, Wu J L, Wang Y. Review on the effects of ridge pattern and ridge-furrow intervals on soil erosion of sloping farmland in the black soil region. Trans CASE, 2022, 38(22): 52-62 (in Chinese with English abstract).
[45] 王龙昌, 谢小玉, 张赛, 赵永敢. 西南地区旱作农田节水型农作制度研究. 北京: 科学出版社, 2021. pp 221-248.
Wang L C, Xie X Y, Zhang S, Zhao Y G. Research on Water- Saving Farming System of Rainfed Farmlands in Southwest China. Beijing: Science Press, 2021. pp 221-248 (in Chinese).
[46] Naveen G, Humphreys E, Eberbach P L, Singh B, Yadav S, Kukal S S. Effects of tillage and mulch on soil evaporation in a dry seeded rice-wheat cropping system. Soil Tillage Res, 2021, 209: 104976.
doi: 10.1016/j.still.2021.104976
[47] 李富春, 王琦, 张登奎. 覆盖材料对垄沟集雨种植高粱生长特性及土壤水分、温度的影响. 草原与草坪, 2018, 38: 35-43.
Li F C, Wang Q, Zhang D K. Effects of furrow mulching materials on soil water, temperature and yield of sorghum in ridge-furrow rainwater harvesting production. Grassland Turf, 2018, 38: 35-43 (in Chinese with English abstract).
[1] DU Xiong;ZUO Qi-Hua;FENG Li-Xiao;ZHANG Wei-Hong;DOU Tie-Ling;BIAN Xiu-Ju;ZHANG Li-Feng. Effects of Nitrogen Application on Forage Maize Planted in Two Soil Types in Agriculture-Animal Husbandry Ecotone of North China [J]. Acta Agron Sin, 2008, 34(06): 1051-1059.
[2] Guo Xian-shi;Shan Lun. Effect of Drought Hardening in Earlier Growing Stage on Water Utilization Efficiency of Millet [J]. Acta Agron Sin, 1994, 20(03): 352-356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!