Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 586-5897.doi: 10.3724/SP.J.1006.2025.44112

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification and expression analysis of SHMT gene family in foxtail millet (Setaria italica L.)

GUO Bing1(), QIN Jia-Fan3, LI Na1, SONG Meng-Yao1, WANG Li-Ming1, LI Jun-Xia2,*(), MA Xiao-Qian1,*()   

  1. 1College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
    2Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    3Luoyang Academy of Agricultural and Forestry Sciences, Luoyang 471023, Henan, China
  • Received:2024-07-09 Accepted:2024-10-25 Online:2025-03-12 Published:2024-10-30
  • Contact: *E-mail: lijunxia@126.com; E-mail: maxq20210812@163.com
  • Supported by:
    Henan Provincial Key Research and Development Project(231111110300);National Natural Science Foundation of China(32301841);National Natural Science Foundation of Henan Province(242300421320);Category A PhD Research Startup Foundation of Henan University of Science and Technology(13480103)

Abstract:

Serine hydroxymethyltransferase (SHMT) is involved in carbon metabolism and photorespiration, and is widely present in crops, playing a critical role in growth, development, and stress resistance. However, the SHMT genes in foxtail millet are largely unexplored. In this study, we identified the members of the SiSHMT gene family at the whole-genome level and systematically analyzed their gene structures, evolutionary relationships, chromosomal localizations, interspecies collinearity, cis-acting elements, expression patterns, and dominant haplotypes. Our results revealed five SiSHMT members in foxtail millet, with molecular weights ranging from 51.70 to 64.37 kD, and similar spatial structures. Phylogenetic analysis classified these genes into three groups, with members distributed across different chromosomes. The analysis of cis-acting elements in the gene promoters indicated the presence of numerous photo-responsive elements, anaerobic response elements, hormone response elements, and other cis-acting elements. Interspecies collinearity analysis showed that SiSHMT3 and SiSHMT4 exhibited collinearity with their orthologous genes in monocot crops such as rice, wheat, sorghum, and maize, with SiSHMT3 displaying multiple collinear pairs with rice, wheat, and maize. The expression levels of SiSHMT family members varied across different developmental stages and tissues of foxtail millet. Notably, SiSHMT4 was highly expressed in developing panicles and was significantly induced by drought, salt, and ABA treatments. Haplotype analysis of SiSHMT4 revealed that Hap1 was the dominant haplotype, significantly outperforming other haplotypes in panicle length, width, and weight. These findings provide valuable gene resources for improving drought and salt tolerance in foxtail millet and lay a theoretical foundation for the breeding of high-yield, stress-resistant foxtail millet varieties in the future.

Key words: foxtail millet, SHMTs, gene family, growth and development, abiotic stress

Table 1

qRT-PCR primers"

基因名称
Gene name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
SiSHMT1 TGCGACATGGCTCATATCAGT TGTGGGTGGTAGTGGTAATCAC
SiSHMT2 GGCCCTCACAATCACCAGAT GCATTCGCCTTCACTTGCTTT
SiSHMT3 TGGCGCATATCAGTGGTCTTG CCCTGAGGTTCTTGTGAGTAGTTG
SiSHMT4 CTGAGGGTGCTGTGTATGACTA GGTTGTGAGGACCACCTTGTAG
SiSHMT5 AGGCGGGCCTCATAACCATAC GCTCTTGATAAGCTCGGTACTCT
SiActin7 AACATTGTGCTCAGCGGTGG TGGAAGGTGCTAAGGGAGGC

Table 2

Main characteristics of SiSHMT gene family members"

基因名称
Gene name
基因号
Gene ID
蛋白长度
Protein length
分子量Molecular weight (kD) 等电点
pI
不稳定指数Instability index 亲水性系数Hydropathicity 亚细胞定位Subcellular
localization
SiSHMT1 SETIT_021684mg 543 58.64 7.65 41.21 -0.160 线粒体
Mitochondrion
SiSHMT2 SETIT_001011mg 523 57.27 8.52 46.02 -0.231 线粒体
Mitochondrion
SiSHMT3 SETIT_000781mg 591 64.37 6.61 44.03 -0.391 细胞质
Cytoplasmic
SiSHMT4 SETIT_026132mg 471 51.70 7.15 40.61 -0.274 细胞质
Cytoplasmic
SiSHMT5 SETIT_035240mg 513 56.52 8.58 39.75 -0.245 线粒体
Mitochondrion

Fig. 1

Phylogenetic tree of SHMT gene family members in foxtail millet, Arabidopsis, rice, and wheat SiSHMT: foxtail millet SHMT (red five-pointed star); AtSHMT: Arabidopsis SHMT (blue quadrilateral); OsSHMT: rice SHMT (yellow triangular star); TaSHMT: wheat SHMT (purple circle)."

Fig. 2

Phylogeny tree, gene structure, domain, and Motif analysis of SiSHMT gene family members A: SiSHMT phylogenetic tree; B: gene structure; C: structural domain; D: conservative motif."

Table 3

Secondary structure and tertiary structure of SiSHMT gene family members"

基因名称
Gene name
α-螺旋
Alpha helix
(%)
延长链Extended strand (%) 不规则卷曲
Random coil (%)
二级结构要素的分布
Distribution of secondary structure elements
三维结构
Three-dimensional structure
SiSHMT1 45.30 9.76 44.94
SiSHMT2 40.15 9.75 50.10
SiSHMT3 39.93 11.17 48.90
SiSHMT4 46.50 11.89 41.61
SiSHMT5 45.03 12.09 42.88

Fig. 3

Chromosome localization of SiSHMT gene family members Genes of the same color belong to the same group in evolutionary relationships."

Fig. 4

Collinearity between foxtail millet and rice, wheat, sorghum, and maize Gray line: collinearity of other genes in the genome; blue line: collinearity of SHMT genes."

Table S1

Analysis of selection pressure for homologous genes between species"

同源基因对
Homologous gene pairs
非同义替换率
Ka
同义替换率
Ks
非同义替换/同义替换
Ka/Ks
有效长度
Effective length
平均S位点
Average S-sites
SiSHMT3-Os01t0874900-01 0.0622 0.6008 0.1036 1758 424.1667
SiSHMT3-Os05t0429000-01 0.1357 0.8855 0.1533 1677 406.5000
SiSHMT4-Os11t0455800-01 0.0285 0.4216 0.0677 1413 341.0833
SSiSHMT3-EES01843 0.0359 0.3310 0.1085 1770 429.7500
SiSHMT4-EES08452 0.0132 0.2161 0.0609 1413 340.8333
SiSHMT3-TraesCS3A02G385600.1 0.0581 0.5998 0.0969 1749 423.4167
SiSHMT3-TraesCS3B02G417800.1 0.0508 0.6013 0.0845 1545 370.7500
SiSHMT3-TraesCS3D02G378700.1 0.0567 0.5694 0.0995 1743 423.5833
SiSHMT4-Zm00001eb170020_T001 0.0113 0.2477 0.0456 1413 341.3333
SiSHMT3-Zm00001eb146170_T002 0.0392 0.3823 0.1024 1764 427.3333
SiSHMT3-Zm00001eb366470_T002 0.0511 0.3953 0.1293 1749 425.0000

Fig. 5

Cis-acting elements of the upstream 2000 bp sequence of initiation codons of SiSHMT gene family members"

Fig. 6

Number of hormone elements contained of the SiSHMT gene family members ABA: abscisic acid; IAA: auxin; GA: gibberellin; MeJA: methyl jasmonate; SA: salicylic acid."

Fig. 7

Analysis of expression patterns of SiSHMT gene family members S: seedling stage; B: booting stage; H: heading period; SAM: shoot apical meristem; bf: before flowering; daf: days after flowering."

Fig. 8

Relative expression of abiotic stress in SiSHMT gene family members I: simulating drought stress; II: salt stress; III: abscisic acid stress; Abscissa: processing time; Ordinate: relative expression."

Fig. 9

SiSHMT4 gene dominant haplotype A: haplotype of the SiSHMT4 gene; B: different haplotype sites, the haplotype on the right side contains the number of samples."

[1] Moreno J I, Martín R, Castresana C. Arabidopsis SHMT1, a serine hydroxymethyl transferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J, 2005, 41: 451-463.
[2] Zhao X, Zeng Z D, Cao W J, Khan D, Ikram M, Yang K B, Chen L M, Li K Z. Co-overexpression of AtSHMT1 and AtFDH induces sugar synthesis and enhances the role of original pathways during formaldehyde metabolism in tobacco. Plant Sci, 2021, 305: 110829.
[3] McClung C R, Hsu M, Painter J E, Gagne J M, Karlsberg S D, Salomé P A. Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidopsis genes encoding serine hydroxymethyltransferase. Plant Physiol, 2000, 123: 381-392.
doi: 10.1104/pp.123.1.381 pmid: 10806255
[4] Bauwe H, Kolukisaoglu U. Genetic manipulation of Glycine decarboxylation. J Exp Bot, 2003, 54: 1523-1535.
[5] Rojas C M, Senthil-Kumar M, Tzin V, Mysore K S. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci, 2014, 5: 17.
doi: 10.3389/fpls.2014.00017 pmid: 24575102
[6] Igamberdiev A U, Kleczkowski L A. The glycerate and phosphorylated pathways of serine synthesis in plants: the branches of plant glycolysis linking carbon and nitrogen metabolism. Front Plant Sci, 2018, 9: 318.
doi: 10.3389/fpls.2018.00318 pmid: 29593770
[7] Calise S J, Purich D L, Nguyen T, Saleem D A, Krueger C, Yin J D, Chan E K L. ‘Rod and ring’ formation from IMP dehydrogenase is regulated through the one-carbon metabolic pathway. J Cell Sci, 2016, 129: 3042-3052.
doi: 10.1242/jcs.183400 pmid: 27343244
[8] Zhang Y, Sun K H, Sandoval F J, Santiago K, Roje S. One-carbon metabolism in plants: characterization of a plastid serine hydroxymethyl transferase. Biochem J, 2010, 430: 97-105.
doi: 10.1042/BJ20100566 pmid: 20518745
[9] Turner S R, Ireland R, Morgan C, Rawsthorne S. Identification and localization of multiple forms of serine hydroxymethyl transferase in pea (Pisum sativum) and characterization of a cDNA encoding a mitochondrial isoform. J Biol Chem, 1992, 267: 13528-13534.
pmid: 1618853
[10] Zhao G H, Li H, Liu W, Zhang W G, Zhang F, Liu Q, Jiao Q C. Preparation of optically active β-hydroxy-α-amino acid by immobilized Escherichia coli cells with serine hydroxymethyl transferase activity. Amino Acids, 2011, 40: 215-220.
[11] Bhuiyan N H, Liu W P, Liu G S, Selvaraj G, Wei Y D, King J. Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat. Plant Mol Biol, 2007, 64: 305-318.
doi: 10.1007/s11103-007-9155-x pmid: 17406792
[12] Voll L M, Jamai A, Renné P, Voll H, McClung C R, Weber A P M. The photorespiratory Arabidopsis shm1 mutant is deficient in SHM1. Plant Physiol, 2006, 140: 59-66.
[13] Jamai A, Salomé P A, Schilling S H, Weber A P M, McClung C R. Arabidopsis photorespiratory serine hydroxymethyl transferase activity requires the mitochondrial accumulation of ferredoxin- dependent glutamate synthase. Plant Cell, 2009, 21: 595-606.
doi: 10.1105/tpc.108.063289 pmid: 19223513
[14] Liu Y P, Mauve C, Lamothe-Sibold M, Guérard F, Glab N, Hodges M, Jossier M. Photorespiratory serine hydroxymethyl transferase 1 activity impacts abiotic stress tolerance and stomatal closure. Plant Cell Environ, 2019, 42: 2567-2583.
[15] Wang D K, Liu H Q, Li S J, Zhai G W, Shao J F, Tao Y Z. Characterization and molecular cloning of a serine hydroxymethyltransferase 1 (OsSHM1) in rice. J Integr Plant Biol, 2015, 57: 745-756.
[16] Mishra P, Jain A, Takabe T, Tanaka Y, Negi M, Singh N, Jain N, Mishra V, Maniraj R, Krishnamurthy S L, Sreevathsa R, Singh N K, Rai V. Heterologous expression of serine hydroxymethyltransferase-3 from rice confers tolerance to salinity stress in E. coli and Arabidopsis. Front Plant Sci, 2019, 10: 217.
[17] Yan M Y, Pan T, Zhu Y, Jiang X K, Yu M Z, Wang R Q, Zhang F, Luo S, Bao X H, Chen Y, Zhang B L, Jing R N, Cheng Z J, Zhang X, Lei C L, Lin Q B, Zhu S S, Guo X P, Ren Y L, Wan J M. FLOURY ENDOSPERM20 encoding SHMT4 is required for rice endosperm development. Plant Biotechnol J, 2022, 20: 1438-1440.
[18] Yan M Y, Zhou Z Y, Feng J L, Bao X H, Jiang Z R, Dong Z W, Chai M J, Tan M, Li L B, Cao Y L, Ke Z B, Wu J C, Feng Z, Pan T. OsSHMT4 is required for synthesis of rice storage protein and storage organelle formation in endosperm cells. Plants (Basel), 2023, 13: 81.
[19] Fang C X, Zhang P L, Li L L, Yang L K, Mu D, Yan X, Li Z, Lin W X. Serine hydroxymethyl transferase localised in the endoplasmic reticulum plays a role in scavenging H2O2 to enhance rice chilling tolerance. BMC Plant Biol, 2020, 20: 236.
[20] Xiong E H, Dong G J, Chen F, Zhang C, Li S, Zhang Y L, Shohag J I, Yang X E, Zhou Y H, Qian Q, Wu L M, Yu Y C. Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. Sci China Life Sci, 2021, 64: 720-738.
[21] Hu P, Song P W, Xu J, Wei Q C, Tao Y, Ren Y M, Yu Y A, Li D X, Hu H Y, Li C W. Genome-wide analysis of serine hydroxymethyl transferase genes in triticeae species reveals that TaSHMT3A-1 regulates fusarium head blight resistance in wheat. Front Plant Sci, 2022, 13: 847087.
[22] Liu H, Li N, Zhao Y, Kang G Z, Zhao Y H, Xu H W. Serine hydroxymethyl transferase (SHMT) gene family in wheat (Triticum aestivum L.): identification, evolution, and expression analysis. Agronomy, 2022, 12: 1346.
[23] Kito K, Tsutsumi K, Rai V, Theerawitaya C, Cha-Um S, Yamada- Kato N, Sakakibara S, Tanaka Y, Takabe T. Isolation and functional characterization of 3-phosphoglycerate dehydrogenase involved in salt responses in sugar beet. Protoplasma, 2017, 254: 2305-2313.
doi: 10.1007/s00709-017-1127-7 pmid: 28550469
[24] Ma Z K, Yang X Y, Zhang C, Sun Y G, Jia X. Early millet use in West Liaohe area during early-middle Holocene. Sci China Earth Sci, 2016, 59: 1554-1561.
[25] Diao X M, James S, Jeffrey L B, Li J Y. Initiation of Setaria as a model plant. Front Agric Sci Eng, 2014, 1: 16.
doi: 10.15302/J-FASE-2014011
[26] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
[27] Lakhssassi N, Patil G, Piya S, Zhou Z, Baharlouei A, Kassem M A, Lightfoot D A, Hewezi T, Barakat A, Nguyen H T, Meksem K. Genome reorganization of the GmSHMT gene family in soybean showed a lack of functional redundancy in resistance to soybean cyst nematode. Sci Rep, 2019, 9: 1506.
doi: 10.1038/s41598-018-37815-w pmid: 30728404
[28] 李童, 邓智超, 刘涛, 薛瑾, 李伟, 郭永峰. 烟草SHMT基因家族鉴定与非生物胁迫诱导表达分析. 分子植物育种, 网络首发[2024-01-03], https://link.cnki.net/urlid/46.1068.S.20240102.1407.008.
Li T, Deng Z C, Liu T, Xue J, Li W, Guo Y F. Identification of tobacco SHMT gene gamily and analysis of expression induced by abiotic stresses. Mol Plant Breed, Published online [2024-01-03], https://link.cnki.net/urlid/46.1068.S.20240102.1407.008 (in Chinese with English abstract).
[29] He Q, Wang C C, He Q, Zhang J, Liang H K, Lu Z F, Xie K, Tang S, Zhou Y H, Liu B, Zhi H, Jia G Q, Guo G G, Du H L, Diao X M. A complete reference genome assembly for foxtail millet and Setaria-db, a comprehensive database for Setaria. Mol Plant, 2024, 17: 219-222.
[30] Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J, Liu Y L, Feng J T, Chen H, He Y H, Xia R. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733-1742.
[31] Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L L, Tosatto S C E, Paladin L, Raj S, Richardson L J, Finn R D, Bateman A. Pfam: The protein families database in 2021. Nucleic Acids Res, 2021, 49: D412-D419.
[32] Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res, 2021, 49: D458-D460.
doi: 10.1093/nar/gkaa937 pmid: 33104802
[33] Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. Protein identification and Analysis Tools on the ExPASy Server//The Proteomics Protocols Handbook. Totowa, NJ: Humana Press, 2005. pp 571-607.
[34] Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-Collier C J, Nakai K T. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585-W587.
doi: 10.1093/nar/gkm259 pmid: 17517783
[35] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887
[36] Subramanian B, Gao S H, Lercher M J, Hu S N, Chen W H. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res, 2019, 47: W270-W275.
[37] Combet C, Blanchet C, Geourjon C, Deléage G. NPS@: network protein sequence analysis. Trends Biochem Sci, 2000, 25: 147-150.
doi: 10.1016/s0968-0004(99)01540-6 pmid: 10694887
[38] Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer F T, de Beer T A P, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46: W296-W303.
[39] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J Y, Li W W, Noble W S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
[40] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant Cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[41] Chao J T, Li Z Y, Sun Y H, Aluko O O, Wu X R, Wang Q, Liu G S. MG2C: a user-friendly online tool for drawing genetic maps. Mol Hortic, 2021, 1: 16.
doi: 10.1186/s43897-021-00020-x pmid: 37789491
[42] Tang S, Zhao Z Y, Liu X T, Sui Y, Zhang D D, Zhi H, Gao Y Z, Zhang H, Zhang L L, Wang Y N, Zhao M C, Li D D, Wang K, He Q, Zhang R L, Zhang W, Jia G Q, Tang W Q, Ye X G, Wu C Y, Diao X M. An E2-E3 pair contributes to seed size control in grain crops. Nat Commun, 2023, 14: 3091.
doi: 10.1038/s41467-023-38812-y pmid: 37248257
[43] Rao X Y, Huang X L, Zhou Z C, Lin X. An improvement of the 2ˆ (-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath, 2013, 3: 71-85.
[44] Liu Z S, Pan X J, Wang C L, Yun F H, Huang D J, Yao Y D, Gao R, Ye F J, Liu X J, Liao W B. Genome-wide identification and expression analysis of serine hydroxymethyl transferase (SHMT) gene family in tomato (Solanum lycopersicum). PeerJ, 2022, 10: e12943.
[45] Gao R, Luo Y Y, Pan X J, Wang C L, Liao W B. Genome-wide identification of SHMT family genes in cucumber (Cucumis sativus L.) and functional analyses of CsSHMTs in response to hormones and abiotic stresses. 3 Biotech, 2022, 12: 305.
[46] 赵玉琪, 周志林, 唐君, 姚改芳, 胡康棣, 张华. 甘薯、番茄和拟南芥中丝氨酸羟甲基转移酶基因家族功能研究. 合肥工业大学学报(自然科学版), 2022, 45: 1705-1714.
Zhao Y Q, Zhou Z L, Tang J, Yao G F, Hu K D, Zhang H. Study on the function of serine hydroxymethyl transferase gene family in sweet potato, tomato and Arabidopsis. J Hefei Univ Technol (Nat Sci), 2022, 45: 1705-1714 (in Chinese with English abstract).
[47] 周广灿, 刘夏婷, 王博, 杜晶晶. 牡丹SHMT基因的鉴定与生物信息学分析. 菏泽学院学报, 2023, 45(5): 106-114.
Zhou G C, Liu X T, Wang B, Du J J. Identification and bioinformatics analysis of peony SHMT genes. J Heze Univ, 2023, 45(5): 106-114 (in Chinese with English abstract).
[48] Chłosta I, Kozieradzka-Kiszkurno M, Kwolek D, Marcińska I, Sieprawska A, Popielarska-Konieczna M. Exogenous abscisic acid impacts the development of isolated immature endosperm in bread wheat. Plant Cell Tissue Organ Cult PCTOC, 2021, 147: 599-610.
[49] Zuo R J, Zhang Y Y, Yang Y B, Wang C F, Zhi H, Zhang L L, Tang S, Guan Y N, Li S G, Cheng R H, Shang Z L, Jia G Q, Diao X M. Haplotype variation and KASP markers for SiPSY1: a key gene controlling yellow kernel pigmentation in foxtail millet. Crop J, 2023, 11: 1902-1911.
[50] Liang H K, He Q, Zhang H, Zhi H, Tang S, Wang H L, Meng Q, Jia G Q, Chang J H, Diao X M. Identification and haplotype analysis of SiCHLI: a gene for yellow-green seedling as morphological marker to accelerate foxtail millet (Setaria italica) hybrid breeding. Theor Appl Genet, 2023, 136: 24.
[1] WANG Yuan, XU Jia-Yin, DONG Er-Wei, WANG Jin-Song, LIU Qiu-Xia, HUANG Xiao-Lei, JIAO Xiao-Yan. Effects of manure replacement of chemical fertilizer nitrogen on yield, nitrogen accumulation, and quality of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 149-160.
[2] MENG Fan-Hua, LIU Min, SHEN Ao, LIU Wei. Preliminary investigation of the SiLTP1: a lipid transfer protein gene involved in the salt tolerance of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 58-67.
[3] YAN Feng, DONG Yang, LI Qing-Quan, ZHAO Fu-Yang, HOU Xiao-Min, LIU Yang, LI Qing-Chao, ZHAO Lei, FAN Guo-Quan, LIU Kai. Comprehensively evaluation on cold tolerance of foxtail millet varieties at germination stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2207-2218.
[4] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[5] QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309.
[6] HE Dan-Dan, SHU Ya-Zhou, ZHOU Hai-Lian, WU Song-Guo, WEI Xiao-Shuang, YANG Ming-Chong, LI Bo, WU Zheng-Dan, HAN Shi-Jian, YANG Juan, WANG Ji-Bin, WANG Ling-Qiang. OsRPTA18 participated in the regulation of leaf inclination in rice [J]. Acta Agronomica Sinica, 2024, 50(8): 1934-1947.
[7] GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013.
[8] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[9] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[10] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
[11] ZHANG Li-Jie, ZHOU Hai-Yu, MUHAMMAD Zeshan, MUNSIF Ali Shad, YANG Ming-Chong, LI Bo, HAN Shi-Jian, ZHANG Cui-Cui, HU Li-Hua, WANG Ling-Qiang. Functional analysis of OsFLZ13, the gene encoding a small peptide zinc finger protein in rice [J]. Acta Agronomica Sinica, 2024, 50(3): 543-555.
[12] LI Bo-Yang, YE Yin, CHU Rui-Wen, JING Miao, ZHANG Sui-Qi, YAN Jia-Kun. Effects of biochar application on dry matter accumulation, transport, and distribution of foxtail millet and soil physicochemical properties [J]. Acta Agronomica Sinica, 2024, 50(3): 695-708.
[13] JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792.
[14] DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279.
[15] YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!