Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 568-585.doi: 10.3724/SP.J.1006.2025.44051

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum

XU Jian-Xia(), DING Yan-Qing(), CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi()   

  1. Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
  • Received:2024-03-19 Accepted:2024-10-25 Online:2025-03-12 Published:2024-11-28
  • Contact: *E-mail: lyzhang1997@hotmail.com
  • About author:

    **Contributed equally to this work

  • Supported by:
    Guizhou Provincial Basic Research Program (Natural Science)(QKH Foundation-[2024] Youth 077);Guizhou Provincial Science and Technology Program Project(QKH Foundation-ZK [2023] General 169);Guizhou Provincial Science and Technology Program Project(QKH Foundation-ZK [2022] General 235);National Natural Science Foundation of China(32160459);Innovation Capacity Building Project for Breeding Research Platforms in Guizhou Province(QKH Enterprise Service[2022] 014);Innovation Capacity Building Project for Research Institutions(QKH Enterprise Service[2022] 007);Guizhou Academy of Agricultural Sciences Project(QNK Germplasm Resources[2023] 06)

Abstract:

An appropriate reduction in plant height is essential for improving nutrient utilization efficiency and lodging resistance, both of which significantly contribute to achieving high and stable yields. This study investigated 242 Chinese sorghum accessions to elucidate the genetic mechanisms underlying plant height. A genome-wide association study (GWAS) was performed using 2,015,850 single nucleotide polymorphisms (SNPs) to analyze plant height, internode number, and internode length across seven environments. The results showed that the phenotypic variation coefficients for plant height, internode number, and internode length ranged from 13.47% to 30.06%, with absolute skewness and kurtosis values less than 1 under all conditions. Using two association models (Blink and FarmCPU), the GWAS identified 118 quantitative trait nucleotides (QTNs) significantly associated with the three traits across 10 chromosomes. Specifically, 60, 37, and 32 QTNs were significantly associated with plant height, internode number, and internode length, respectively. Eight QTNs were co-located for both plant height and internode number, while three QTNs were co-located for internode length. Through sequence analysis and functional annotation of candidate genes, 14 genes related to plant height and internode number were identified within or near the confidence intervals of 12 QTNs. These genes were homologous to those involved in sugar metabolism, hormone synthesis and signaling, and cell division in rice and maize. Selective sweep analysis revealed strong selection pressure on the candidate gene Sobic.001G510400 on chromosome 1 in Chinese sorghum populations, resulting in the formation of Hap1, which is dominant in northern dwarf sorghum, and Hap2, which is dominant in southern tall sorghum. Significant expression differences of this gene were observed between the northern accession 871255 (Hap1) and the southern accession Hongyingzi (Hap2). These findings provide a theoretical foundation for the genetic improvement of plant height in Chinese sorghum varieties.

Key words: sorghum, plant height, internode number, genome-wide association analysis, GWAS, candidate genes

Table 1

Sources and number of tested materials"

来源地
Originated location
材料份数
Number of materials
来源地
Originated location
材料份数
Number of materials
辽宁Liaoning 39 吉林Jilin 5
山西Shanxi 28 贵州Guizhou 37
内蒙古Inner Mongolia 17 云南Yunnan 21
陕西Shaanxi 17 四川Sichuan 19
山东Shandong 12 湖北Hubei 10
河北Hebei 12 安徽Anhui 3
北京Beijing 11 广西Guangxi 2
黑龙江Heilongjiang 8 江苏Jiangsu 1

Table 2

Phenotypic statistical analysis of plant height, internode number, and internode length"

性状
Trait
环境
Environment
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
株高
PH
2018贵阳 2018GY 104.60 342.10 219.04 50.93 23.25 0.07 -0.46
2019贵阳 2019GY 98.67 346.33 220.02 49.95 22.70 0.02 -0.41
2019杭州 2019HZ 110.80 437.63 263.27 69.22 26.29 0.18 -0.38
2019陵水 2019LS 104.33 316.00 195.05 39.77 20.39 0.41 0.14
2020贵阳 2020GY 110.43 439.33 279.04 66.53 23.84 -0.25 -0.22
2020乐东 2020LD 109.13 280.50 186.82 32.35 17.32 0.19 0.09
2021贵阳 2021GY 128.50 375.33 244.60 52.89 21.63 -0.05 -0.35
节间数IN 2018贵阳 2018GY 3.80 10.50 6.58 1.45 21.99 0.35 -0.50
2019贵阳 2019GY 3.00 11.75 6.54 1.56 23.92 0.28 -0.02
2019杭州 2019HZ 4.00 15.33 9.00 2.70 30.06 0.45 -0.26
2019陵水 2019LS 4.33 11.00 7.01 1.09 15.57 0.33 0.69
2020贵阳 2020GY 5.14 13.33 9.04 1.38 15.26 -0.24 0.14
2020乐东 2020LD 3.50 9.63 6.46 1.07 16.56 0.12 0.32
2021贵阳 2021GY 4.80 12.75 7.90 1.40 17.74 0.49 0.98
节间
长度
IL
2018贵阳 2018GY 19.62 49.72 33.68 6.10 18.11 -0.02 -0.52
2019贵阳 2019GY 17.88 50.92 33.95 7.77 22.89 0.25 -0.53
2019杭州 2019HZ 17.92 50.60 30.34 4.62 15.24 0.88 2.31
2019陵水 2019LS 17.60 45.88 27.93 4.83 17.31 0.62 0.50
2020贵阳 2020GY 13.14 47.13 30.77 5.76 18.73 -0.16 0.04
2020乐东 2020LD 18.12 40.33 29.10 3.92 13.47 0.02 -0.23
2021贵阳 2021GY 14.26 42.54 31.14 5.38 17.29 -0.36 -0.11

Fig. 1

Frequency distribution of plant height, internode number, and internode length The cloud and rain charts depict the frequency distribution of plant height (Fig.1-A), internode number (Fig.1-B) and internode length (Fig.1-C) in different environments. Yellow, light blue, green, purple, light yellow, light purple and light green represent the phenotypes under the environments of 2018 Guiyang, 2019 Guiyang, 2020 Guiyang, 2021 Guiyang, 2019 Hangzhou, 2019 Lingshui, and 2020 Ledong, respectively."

Fig. 2

Correlation analysis of plant height, internode number and internode length in seven environments ** indicates significant correlation at 0.01 level; * indicates significant correlation at 0.05 level. The phenotypes in different environments are represented by “year + location _ trait” among them, 18, 19, 20, and 21 represent 2018, 2019, 2020, and 2021, respectively; GY, HZ, LS and LD represent Guiyang, Hangzhou, Lingshui, and Ledong, respectively; PH, IN, and IL represent plant height, internode number, and internode length, respectively."

Table 3

Variance analysis and broad heritability of plant height, internode numbers, and internode length"

性状
Trait
均方 Mean square 方差Variance FF-value 广义遗传力Broad-sense heritability
基因型
Genotype
环境
Environment
基因型
×环境
G×E
基因型
Genotype
环境
Environment
基因型
×环境
G×E
基因型
Genotype
环境
Environment
基因型
×环境
G×E
株高 PH 46,407.51 813,299.34 1867.31 2248.60 1155.41 551.77 196.32** 3440.49** 7.89** 0.90
节间数 IN 30.45 868.82 4.00 1.33 1.26 1.17 58.64** 1673.40** 7.71** 0.79
节间长度 IL 483.50 25,339.99 97.47 19.52 36.89 19.47 12.02** 629.91** 2.42** 0.71

Table 4

Summary of significantly associated loci for plant height, internode number, and internode length across different environments"

数量性状
核苷酸
QTN
染色体
Chr.
位置
Position
次等等位基因频率
MAF
效应值
Effect
-log10(P)-
value
性状
Trait
环境+模型
Environment + Model
QTN1.2405118 Chr.01 2,405,118 0.29 -0.27 8.62 IN 2018GY (FarmCPU)
QTN1.2551955 Chr.01 2,551,955 0.49 -0.14 7.90 IN BLUP (FarmCPU)
QTN1.4569288 Chr.01 4,569,288 0.02 -1.36 15.28 IN 2019HZ (FarmCPU)
QTN1.5144542 Chr.01 5,144,542 0.30 12.59 8.33 PH 2020GY (FarmCPU)
QTN1.5629263 Chr.01 5,629,263 0.20 10.10 8.22 PH BLUP (FarmCPU)
QTN1.7184266 Chr.01 7,184,266 0.01 1.86 9.32 IN 2019LS (FarmCPU), 2021GY (Blink, FarmCPU)
QTN1.19414155 Chr.01 19,414,155 0.25 1.64 8.20 IL 2021GY (FarmCPU)
QTN1.23001725 Chr.01 23,001,725 0.01 2.16 7.36 IN 2019LS (FarmCPU)
QTN1.52105747 Chr.01 52,105,747 0.01 -39.48 7.42 PH 2018GY (FarmCPU)
QTN1.57894341 Chr.01 57,894,341 0.23 0.55 18.60 IN 2021GY (FarmCPU)
QTN1.73232722 Chr.01 73,232,722 0.08 17.86 8.08 PH BLUP (FarmCPU)
QTN1.75754022 Chr.01 75,754,022 0.02 NA 9.10 PH 2019HZ (Blink)
QTN1.75986905 Chr.01 75,986,905 0.18 8.14 8.77 PH 2020LD (FarmCPU)
QTN1.77964551 Chr.01 77,964,551 0.48 NA 11.19 PH 2019GY (Blink), 2020GY (FarmCPU), 2021GY (Blink, FarmCPU)
QTN2.5369719 Chr.02 5,369,719 0.38 -10.54 8.52 PH 2018GY (FarmCPU)
QTN2.5571151 Chr.02 5,571,151 0.45 11.61 13.47 PH BLUP (FarmCPU, Blink)
QTN2.10544191 Chr.02 10,544,191 0.08 NA 7.72 IL 2019HZ (Blink)
QTN2.36051465 Chr.02 36,051,465 0.11 -1.98 7.83 IL 2021GY (FarmCPU)
QTN2.61222038 Chr.02 61,222,038 0.15 0.45 13.64 IN 2018GY (FarmCPU), 2020LD (FarmCPU)
PH 2019HZ (Blink), 2020LD (FarmCPU), BLUP (FarmCPU)
QTN2.61553618 Chr.02 61,553,618 0.07 0.59 9.66 IN 2020GY (FarmCPU), 2021GY (FarmCPU)
QTN2.71720401 Chr.02 71,720,401 0.05 NA 7.22 PH 2019HZ (Blink)
QTN3.3169459 Chr.03 3,169,459 0.06 -27.36 12.20 PH 2018GY (Blink, FarmCPU)
QTN3.3838811 Chr.03 3,838,811 0.04 3.35 7.39 IL 2020GY (FarmCPU)
QTN3.9730138 Chr.03 9,730,138 0.17 -1.64 6.77 IL 2021GY (FarmCPU)
QTN3.27015392 Chr.03 27,015,392 0.01 41.33 6.75 PH 2021GY (FarmCPU)
QTN3.36482112 Chr.03 36,482,112 0.08 -26.89 8.80 PH 202119 (FarmCPU)
QTN3.47562291 Chr.03 47,562,291 0.05 NA 6.69 PH 2019GY (Blink)
QTN3.51305296 Chr.03 51,305,296 0.02 -45.60 7.36 PH 2020GY (FarmCPU)
QTN3.52695022 Chr.03 52,695,022 0.17 NA 8.14 IN BLUP(Blink)
QTN3.53396433 Chr.03 53,396,433 0.18 NA 13.06 IN 2020GY (Blink, FarmCPU)
QTN3.53699753 Chr.03 53,699,753 0.15 0.78 14.87 PH 2019GY(FarmCPU)
IN 2019HZ (FarmCPU)
QTN3.66783610 Chr.03 66,783,610 0.25 0.31 7.84 IN 2020LD (FarmCPU)
QTN3.67461402 Chr.03 67,461,402 0.03 2.74 11.86 IN 2019GY (FarmCPU)
QTN3.69982563 Chr.03 69,982,563 0.07 0.52 18.31 IN BLUP (Blink, FarmCPU)
QTN3.71309333 Chr.03 71,309,333 0.44 0.69 9.21 IL BLUP (FarmCPU)
QTN3.72489056 Chr.03 72,489,056 0.03 NA 8.78 IL 2020LD
QTN3.72974611 Chr.03 72,974,611 0.24 NA 7.06 PH 2019GY (Blink)
QTN4.21358166 Chr.04 21,358,166 0.03 -7.55 6.91 IL 2021GY (FarmCPU)
QTN4.24740647 Chr.04 24,740,647 0.03 -7.58 6.94 IL 2020GY (FarmCPU)
QTN4.39744627 Chr.04 39,744,627 0.06 -3.06 10.06 IL 2019LS (Blink), 2019LS (FarmCPU), 2021GY (FarmCPU)
QTN4.51304388 Chr.04 51,304,388 0.19 -16.98 9.16 PH 2019GY (FarmCPU)
QTN4.56405572 Chr.04 56,405,572 0.44 0.17 6.87 IN 2020LD (FarmCPU)
QTN4.57121231 Chr.04 57,121,231 0.15 -1.48 9.36 IL 2021GY (FarmCPU)
PH 2019LS (Blink)
QTN4.62261029 Chr.04 62,261,029 0.50 1.22 9.06 IL 2020GY (FarmCPU)
QTN4.63570248 Chr.04 63,570,248 0.04 -0.36 7.12 IN BLUP (FarmCPU)
QTN4.65266850 Chr.04 65,266,850 0.43 11.00 12.76 PH 2018GY (FarmCPU)
IL 2020LD (FarmCPU), BLUP (FarmCPU)
QTN4.65863171 Chr.04 65,863,171 0.4 14.04 13.22 IN BLUP (FarmCPU)
PH 2020GY (Blink, FarmCPU), 2021GY (FarmCPU), BLUP (FarmCPU)
QTN5.225941 Chr.05 225,941 0.06 -29.88 9.55 PH 2018GY (FarmCPU)
QTN5.17438732 Chr.05 17,438,732 0.06 2.29 7.77 IL 2021GY (FarmCPU)
QTN5.20666756 Chr.05 20,666,756 0.01 78.55 9.92 PH 2019GY (FarmCPU)
QTN5.35025393 Chr.05 35,025,393 0.15 1.66 7.36 IL 2021GY (FarmCPU)
QTN5.61015103 Chr.05 61,015,103 0.24 -16.48 7.93 PH 2021GY (FarmCPU)
QTN5.65444056 Chr.05 65,444,056 0.01 -56.28 7.83 PH 2018GY (FarmCPU)
QTN5.70860912 Chr.05 70,860,912 0.25 -18.44 11.54 PH 2018GY (FarmCPU), 2019GY (FarmCPU), 2021GY (FarmCPU)
IN 2018GY (FarmCPU)
QTN6.6070840 Chr.06 6,070,840 0.01 1.54 7.26 IN 2019HZ (FarmCPU)
QTN6.6720303 Chr.06 6,720,303 0.05 -3.41 8.91 IL 2020GY (FarmCPU)
QTN6.11512672 Chr.06 11,512,672 0.08 -21.11 9.44 PH 2018GY (FarmCPU)
QTN6.14112048 Chr.06 14,112,048 0.03 NA 9.66 IL 2021GY (Blink)
QTN6.17354113 Chr.06 17,354,113 0.10 -0.89 12.69 IN 2019HZ (FarmCPU)
QTN6.19368812 Chr.06 19,368,812 0.03 0.47 7.00 IN BLUP (FarmCPU)
QTN6.20384517 Chr.06 20,384,517 0.04 3.43 8.71 IL 2020GY (FarmCPU,Blink)
QTN6.21804125 Chr.06 21,804,125 0.12 -0.52 8.37 IN 2019HZ (FarmCPU)
QTN6.30195457 Chr.06 30,195,457 0.01 NA 10.43 IN 2018GY (Blink)
QTN6.39969911 Chr.06 39,969,911 0.31 NA 7.65 IN 2018GY (Blink)
QTN6.47858747 Chr.06 47,858,747 0.17 NA 7.38 PH BLUP (Blink)
QTN6.51781734 Chr.06 51,781,734 0.34 1.58 10.43 IL 2021GY (FarmCPU)
QTN6.58083889 Chr.06 58,083,889 0.07 2.31 7.53 IL 2021GY (FarmCPU)
QTN7.1772505 Chr.07 1,772,505 0.31 1.09 7.83 IL 2021GY (FarmCPU)
QTN7.2186032 Chr.07 2,186,032 0.07 NA 9.09 PH 2019LS (Blink)
QTN7.26630649 Chr.07 26,630,649 0.01 54.39 17.39 PH 2020LD (Blink, FarmCPU)
QTN7.42714173 Chr.07 42,714,173 0.15 -1.03 8.73 IL BLUP (FarmCPU)
PH 2018GY (FarmCPU)
QTN7.49687684 Chr.07 49,687,684 0.09 NA 8.32 IL 2019HZ (FarmCPU, Blink)
QTN7.55183398 Chr.07 55,183,398 0.04 -3.34 6.92 IL 2020GY (FarmCPU)
QTN7.56139617 Chr.07 56,139,617 0.01 NA 10.10 IN 2019HZ (Blink, FarmCPU)
QTN7.58438538 Chr.07 58,438,538 0.34 0.51 10.74 IN 2018GY (FarmCPU)
QTN7.59393707 Chr.07 59,393,707 0.02 NA 12.03 PH BLUP (Blink)
QTN7.59653890 Chr.07 59,653,890 0.20 NA 10.82 PH 2019LS (Blink), 2020LD (FarmCPU)
QTN7.59721216 Chr.07 59,721,216 0.15 21.54 7.48 PH 2019GY (FarmCPU), 2020GY (FarmCPU), BLUP (FarmCPU)
QTN7.60501279 Chr.07 60,501,279 0.04 26.10 10.81 PH 2018GY (Blink, FarmCPU)
QTN7.60940816 Chr.07 60,940,816 0.10 -1.92 8.70 IL 2020GY (FarmCPU)
QTN7.62144455 Chr.07 62,144,455 0.06 -4.42 14.15 IL 2021GY (FarmCPU)
QTN8.2105446 Chr.08 2,105,446 0.11 -18.15 8.47 PH BLUP (FarmCPU)
QTN8.4977795 Chr.08 4,977,795 0.07 27.21 11.93 PH 2018GY (FarmCPU), 2019HZ (Blink), 2021GY (FarmCPU)
QTN08.8249188 Chr.08 8,249,188 0.34 13.21 9.24 PH BLUP (FarmCPU)
QTN8.8955240 Chr.08 8,955,240 0.01 72.34 11.00 PH 2020GY (FarmCPU)
QTN8.13232192 Chr.08 13,232,192 0.04 -97.42 7.04 PH 2020GY (FarmCPU)
QTN8.13747177 Chr.08 13,747,177 0.12 -17.00 10.04 PH 2020LD (FarmCPU)
QTN8.18073491 Chr.08 18,073,491 0.18 0.36 8.72 IN 2020LD (FarmCPU)
QTN8.46279959 Chr.08 46,279,959 0.24 15.75 6.66 PH 2021GY (FarmCPU)
QTN8.50392737 Chr.08 50,392,737 0.41 10.55 10.18 PH 2018GY (FarmCPU)
QTN8.57976551 Chr.08 57,976,551 0.38 6.20 8.01 PH 2020LD (FarmCPU)
IN BLUP (Blink)
QTN8.59708198 Chr.08 59,708,198 0.46 22.46 20.80 PH 2019GY (Blink, FarmCPU), 2020GY (Blink, FarmCPU), 2021GY (FarmCPU), BLUP (FarmCPU)
IN 2018GY (FarmCPU), 2019GY (Blink), 2019HZ (FarmCPU), 2020GY (FarmCPU), 2021GY
(FarmCPU), BLUP (FarmCPU)
QTN8.60514221 Chr.08 60,514,221 0.04 4.24 11.16 IL 2021GY (FarmCPU)
QTN8.61141049 Chr.08 61,141,049 0.10 NA 6.72 PH 2020LD (Blink)
QTN9.9011331 Chr.09 9,011,331 0.04 NA 8.04 IL 2021GY (Blink)
QTN9.9723995 Chr.09 9,723,995 0.02 -1.26 9.13 IN 2020GY (FarmCPU)
QTN9.13457659 Chr.09 13,457,659 0.02 -2.20 7.58 IL BLUP (FarmCPU)
QTN9.14023575 Chr.09 14,023,575 0.04 -6.79 7.28 IL 2019GY (FarmCPU)
QTN9.16091197 Chr.09 16,091,197 0.03 4.48 6.90 IN 2019HZ (Blink)
QTN9.21770577 Chr.09 21,770,577 0.04 21.71 6.75 PH BLUP (FarmCPU)
QTN9.24272625 Chr.09 24,272,625 0.03 -92.74 7.08 IN 2019LS (FarmCPU)
QTN9.26282863 Chr.09 26,282,863 0.12 -21.59 7.89 PH 2019GY (FarmCPU)
QTN9.40913786 Chr.09 40,913,786 0.06 NA 9.21 PH 2019HZ (Blink)
QTN9.45916233 Chr.09 45,916,233 0.06 2.86 7.86 IL 2020GY (FarmCPU)
QTN9.51292519 Chr.09 51,292,519 0.01 -63.41 7.17 PH 2019GY (FarmCPU)
QTN9.53210328 Chr.09 53,210,328 0.05 31.32 6.94 PH 2020GY (FarmCPU)
QTN9.59349793 Chr.09 59,349,793 0.49 2.91 9.54 IL 2020GY (FarmCPU), BLUP (FarmCPU, Blink)
QTN10.1694341 Chr.10 1,694,341 0.19 0.96 14.00 IN 2019GY (FarmCPU)
PH 2018GY (Blink, FarmCPU)
QTN10.3945045 Chr.10 3,945,045 0.07 NA 8.06 IN BLUP (Blink)
QTN10.12448273 Chr.10 12,448,273 0.11 -0.53 10.57 PH 2019GY (FarmCPU)
IN 2020GY (Blink, FarmCPU), 2021GY (Blink), BLUP (FarmCPU)
QTN10.12598609 Chr.10 12,598,609 0.15 16.40 10.00 PH 2020GY (FarmCPU, Blink)
QTN10.13745644 Chr.10 13,745,644 0.01 52.08 8.78 PH 2018GY (FarmCPU)
QTN10.19774145 Chr.10 19,774,145 0.02 41.69 9.73 PH 2018GY (FarmCPU)
QTN10.26748555 Chr.10 26,748,555 0.02 47.76 8.41 PH 2020GY (FarmCPU)
QTN10.34601077 Chr.10 34,601,077 0.04 0.33 7.74 IN BLUP (FarmCPU)
QTN10.55997217 Chr.10 55,997,217 0.45 -0.16 9.49 IN BLUP (FarmCPU)
QTN10.57784636 Chr.10 57,784,636 0.04 29.25 7.78 PH 2019GY (FarmCPU)
QTN10.60576093 Chr.10 60,576,093 0.01 31.62 6.62 PH 2020LD (FarmCPU)

Fig. S1-A

Manhattan and QQ-plots of plant height across the Blink (a) and FarmCPU (b) models Abbreviationsof the environmental treatment are the same as those given in Table 2."

Fig. S1-B

Manhattan and QQ-plots for internode number across the Blink (a) and FarmCPU (b) models Abbreviationsof the environmental treatment are the same as those given in Table 2."

Fig. S1-C

Manhattan and QQ-plots for internode length across the Blink (a) and FarmCPU (b) models Abbreviationsof the environmental treatment are the same as those given in Table 2."

Table 5

Functional annotation of candidate genes in important QTN intervals"

QTN 候选基因
Candidate gene
基因组位置
Genomic location
同源基因
Orthologous gene
基因名称
Gene name
蛋白注释
Proteins annotation
相似性
Similarity (%)

QTN1.4569288
Sobic.001G060100 Chr01:4502760−4511929 LOC_Os03g57940 CKI 酪蛋白激酶;抽穗期基因Casein kinase; heading stage gene 89
Sobic.001G062900 Chr01:4700933−4706989 Zm00001d034383 VP8 调控分生组织发育 Regulate meristem development 95
QTN1.57894341 Sobic.001G298400 Chr01:57918398−57922897 LOC_Os07g15770 Ghd7 每穗粒数、株高和抽穗期多效性控制基因; 氮肥利用率Grains, height, and heading date gene; nitrogen utilization efficiency 58
QTN1.77964551 Sobic.001G510400 Chr01:77810869−77813714 LOC_Os03g04680 OsCYP96B4 细胞色素P450; 半矮秆 Cytochrome P450; semi-dwarf 77
QTN2.61222038 Sobic.002G221900 Chr02:61366555−61368022 LOC_Os09g27820 OsACO1 1-氨基环丙烷-1-羧酸氧化酶基因
1-aminocyclopropane-1-carboxylate oxidase gene
89
QTN3.3838811 Sobic.003G040900 Chr03:3821972−3830666 LOC_Os01g08700 OsGI 生物钟相关Gigantea 95.6
QTN3.67461402 Sobic.003G358400 Chr03:67621227−67632849 Zm00001d042843 NA1 油菜素内酯早期生物合成
Early step in brassinosteroid biosynthesis
95
QTN3.72974611 Sobic.003G425300 Chr03:72974769−72978763 Zm00001d011876 ELM1 光敏色素合成Photosensitive pigment synthesis 91
Sobic.003G427600 Chr03:73106228−73116438 LOC_Os03g24220 VLN2 绒毛蛋白Villin 94
QTN4.56405572 Sobic.004G214100 Chr04:56389818−56395087 LOC_Os02g40030 OsNST1 核苷酸糖转运蛋白; 脆茎
Oryza sativa nucleotide sugar transport; brittle culm
96
QTN4.65266850 Sobic.004G317000 Chr04:65266844−65268995 LOC_Os02g53690 OsGRF1 生长调节因子 Growth regulating factor 85
QTN4.65863171 Sobic.004G323600 Chr04:65819834−65821680 LOC_Os02g54600 OsMKK4 丝裂原活化蛋白激酶;小粒
Mitogen activated protein Kinase; small grain
86
QTN7.59721216 Sobic.007G163800(Dw3) Chr07:59821904−59829921 Zm00001d031871 BR2 生长素极性运输 Polar auxin transport 94
LOC_Os08g45030 SD8 矮秆基因; 三磷酸腺苷结合盒转运体B1
Semi-dwarf; ATP BINDING CASSETTE B1 transporter
93
QTN9.53210328 Sobic.009G176400 Chr09:53137542−53147354 LOC_Os05g40384 EUI1 长穗颈基因 elongated uppermost internode 88

Table 6

Corresponding values and gene numbers of the top 5% of Tajima’D, Fst, and Pi"

项目
Item
窗口数
Number of windows
前5%窗口数
Number of top 5% windows
前5%对应值
Top 5% of the value
前5%对应基因数
Top 5% of genes
南方_ Tajima’D
South_ Tajima’D
60,150 3008 ≤ -1.9081 1903
北方_ Tajima’D
North_ Tajima’D
60,663 3033 ≤ -1.8004 2834
南方/北方_Pi
South/north_Pi
59,287 2964 ≥ 7.5425 2674
南方/北方_Fst
South/north_Fst
61,524 3076 ≥ 0.5384 2478

Table 7

Test values of Tajima’s D, Fst, and Pi of the 14 candidate genes"

QTN 候选基因
Candidate gene
基因组位置
Genomic location
南方_Tajima’D
South_Tajima’D
北方_Tajima’D
North_Tajima’D
南方/北方_Pi
South/north_Pi
南方/北方_Fst
South/north_Fst
QTN1.4569288 Sobic.001G060100 Chr.01: 4502760-4511929 0.63323 1.17192 0.70587 0.50171
Sobic.001G062900 Chr.01: 4700933-4706989
QTN1.57894341 Sobic.001G298400 Chr.01: 57918398-57922897 -0.28265 3.70518 0.44059 0.20719
QTN1.77964551 Sobic.001G510400 Chr.01: 77810869-77813714 4.12955 -1.09660 240.75045 0.42020
QTN2.61222038 Sobic.002G221900 Chr.02: 61366555-61368022 1.63095 -0.83259 0.62484 0.24644
QTN3.3838811 Sobic.003G040900 Chr.03: 3821972-3830666 2.96779 -0.47567 4.26399 0.45506
QTN3.67461402 Sobic.003G358400 Chr.03: 67621227-67632849 -1.33349 2.21191 0.22586 0.12627
QTN3.72974611 Sobic.003G425300 Chr.03: 72974769-72978763 4.87495 -0.75596 3.53964 0.35919
Sobic.003G427600 Chr.03: 73106228-73116438 4.11883 5.32407 0.91151 0.03476
QTN4.56405572 Sobic.004G214100 Chr.04: 56389818-56395087 2.65072 2.36931 0.76241 0.08865
QTN4.65266850 Sobic.004G317000 Chr.04: 65266844-65268995 2.35182 4.79370 0.73469 0.23975
QTN4.65863171 Sobic.004G323600 Chr.04: 65819834-65821680 -0.80385 4.90854 0.29065 0.41327
QTN7.59721216 Sobic.007G163800 Chr.07: 59821904-59829921 1.23952 -1.61676 7.32019 0.25767
QTN9.53210328 Sobic.009G176400 Chr.09: 53137542-53147354 1.69947 -1.47816 17.04476 0.44604

Fig. 3

SNP variations in exons of the Sobic.001G510400 gene between Hap1 and Hap2 haplotypes"

Fig. 4

Frequency distribution of sorghum accessions with Hap1 and Hap2"

Fig. 5

Boxplots of plant heights for sorghum accessions with Hap1 and Hap2 in seven environments *** indicates significant correlation at 0.001 level; * indicates significant correlation at 0.05 level."

Fig. 6

Expression characteristics of plant height candidate gene Sobic.001G510400 * indicates significant correlation at 0.05 level."

Table S1

QTN were located and QTL was reported in this study"

本研究定位到的QTN
QTN located in this study
已报道的QTL
QTL reported
QTN 染色体
Chromosome
SNP 位置
SNP position
QTL Id 出版
Publication
群体
Population
性状
Trait description
起始-结束
LG:Start-End (v3.0)
QTN1.2405118 Chr01 2405118 QHGHT1.37 Liu et al. 2019 Tx623 x S. virgatum Plant height 1:0-4093151
QTN1.2551955 Chr01 2551955
QTN1.4569288 Chr01 4569288
QTN1.5144542 Chr01 5144542 QHGHT1.2 Kebede et al. 2001 SC56/Tx7000 Height (plant height) 1:4862819-7562505
QTN1.5629263 Chr01 5629263
QTN1.7184266 Chr01 7184266
QTN1.19414155 Chr01 19414155
QTN1.23001725 Chr01 23001725
QTN1.52105747 Chr01 52105747 QHGHT1.5 Hart et al. 2001 BTx623/IS3620C Height (plant height) 1:24186681-52681319
QTN1.57894341 Chr01 57894341 QHGHT1.8 Guan et al. 2011 Shihong137/L-Tian Height (plant height) 1:54541207-58709704
QTN1.73232722 Chr01 73232722 QHGHT1.21 Mocoeur et al. 2015 E-Tian/Ji2731 Height (plant height) 1:69892099-74204679
QTN1.75754022 Chr01 75754022 QHGHT1.17 Wang et al. 2014a IS8525/R931945-2-2 Height (plant height) 1:74818452-78396425
QTN1.75986905 Chr01 75986905
QTN1.77964551 Chr01 77964551 QHGHT1.19 Parh 2005 IS8525/R931945-2-2 Height (plant height) 1:77677015-80878678
QTN2.5369719 Chr02 5369719
QTN2.5571151 Chr02 5571151
QTN2.10544191 Chr02 10544191
QTN2.36051465 Chr02 36051465 QHGHT2.6 Bouchet et al. 2017 Nested Association Mapping set US Height (plant height) 2:20403133-48551270
QTN2.61222038 Chr02 61222038 QHGHT2.13 Liu et al. 2019 Tx623 / S. virgatum Height (plant height) 2:60182134-66050977
QTN2.61553618 Chr02 61553618
QTN2.71720401 Chr02 71720401
QTN3.3169459 Chr03 3169459 QHGHT3.4 Phuong et al. 2013 IS2449/IS1488 Height (plant height) 3:3030648-6095949
QTN3.3838811 Chr03 3838811
QTN3.9730138 Chr03 9730138
QTN3.27015392 Chr03 27015392
QTN3.36482112 Chr03 36482112
QTN3.47562291 Chr03 47562291
QTN3.51305296 Chr03 51305296
QTN3.52695022 Chr03 52695022
QTN3.53396433 Chr03 53396433
QTN3.53699753 Chr03 53699753 qCNN3.1 xu et al. 2023 BTx623/HYZ Internode number 3:53577719—55061159
QTN3.66783610 Chr03 66783610 QHGHT3.18 Bai et al. 2017 BTx623/Rio Height (plant height) 3:65416545-69211928
QTN3.67461402 Chr03 67461402 QHGHT3.18
QHGHT3.20
QHGHT3.24
Bai et al. 2017
Harris-Shultz et al. 2015
Liu et al. 2019
BTx623/Rio
HoneyDrip/Collier
Tx623 / S. virgatum
Height (plant height) 3:65416545-69211928
3:67037126-67647534
3:67111051-72337616
QTN3.69982563 Chr03 69982563 QHGHT3.16 Nagaraja Reddy et al. 2013 M35-1/B35 Height (plant height) 3:69933510-72862046
QTN3.71309333 Chr03 71309333
QTN3.72489056 Chr03 72489056
QTN3.72974611 Chr03 72974611 QHGHT3.16 Nagaraja Reddy et al. 2013 M35-1/B35 Height (plant height) 3:69933510-72862046
QTN4.21358166 Chr04 21358166 QHGHT4.1
QHGHT4.10
Mocoeur et al. 2015
Klein et al. 2001
E-Tian/Ji2731
RTx430/Sureno
Height (plant height)
Height (plant height)
4:10150746-51097958
4:13362712-50084108
QTN4.24740647 Chr04 24740647
QTN4.39744627 Chr04 39744627
QTN4.51304388 Chr04 51304388

QTN4.56405572

Chr04

56405572
qCNN4.2
QHGHT4.16
QHGHT4.13
xu et al. 2023
Mocoeur et al. 2015
Nagaraja Reddy et al. 2013
BTx623/HYZ
E-Tian/Ji2731
M35-1/B35
Internode number
Height (plant height)
Height (plant height)
4:55918714-57111301
4:53628830-61766744
4:55962847-61572196
QTN4.57121231 Chr04 57121231 QHGHT4.16
QHGHT4.13
Mocoeur et al. 2015
Nagaraja Reddy et al. 2013
E-Tian/Ji2731
M35-1/B35
Height (plant height)
Height (plant height)
4:53628830-61766744
4:55962847-61572196
QTN4.62261029 Chr04 62261029
QTN4.63570248 Chr04 63570248
QTN4.65266850 Chr04 65266850
QTN4.65863171 Chr04 65863171
QTN5.225941 Chr05 225941
QTN5.17438732 Chr05 17438732 QHGHT5.6 Shiringani et al. 2010 M71/SS79 Height (plant height) 5:11107972-52515528
QTN5.20666756 Chr05 20666756
QTN5.35025393 Chr05 35025393
QTN5.61015103 Chr05 61015103 QINTN5.1 Zhao et al. 2016 Sorghum Association Panel (SAP) Internode number 5:60730347-61689875
QTN5.65444056 Chr05 65444056
QTN5.70860912 Chr05 70860912
QTN6.6070840 Chr06 6070840 QHGHT6.7 Wang et al. 2012 mini-core set Height (plant height) 6:4424055-7760215
QTN6.6720303 Chr06 6720303
QTN6.11512672 Chr06 11512672 QHGHT6.5
QHGHT6.6
Brown et al. 2006
Feltus et al. 2006
BTx623/IS3620C Height (plant height) 6:3153035-14654536
6:3472068-20655330
QTN6.14112048 Chr06 14112048 QHGHT6.5 Brown et al. 2006 BTx623/IS3620C Height (plant height) 6:3153035-14654536
QTN6.17354113 Chr06 17354113 QHGHT6.6
Feltus et al. 2006
BTx623/IS3620C
Height (plant height)
6:3472068-20655330
QTN6.19368812 Chr06 19368812
QTN6.20384517 Chr06 20384517
QTN6.21804125 Chr06 21804125 QSILN6.1 Hilley et al. 2016 Hegari/80M Stem internode length 6:21205500-44995144
QTN6.30195457 Chr06 30195457 QHGHT6.83
QHGHT6.89
Zhao et al. 2016
Yamaguchi et al. 2016
Sorghum Association Panel (SAP)
bmr-6/SIL-05
Height (plant height) 6:27834658-38482472
6:22445901-43378078
QTN6.39969911 Chr06 39969911 QHGHT6.89 Yamaguchi et al. 2016 bmr-6/SIL-05 Height (plant height)
6:22445901-43378078
QTN6.47858747 Chr06 47858747 QHGHT6.58 Srinivas et al. 2009 296B/IS18551 Height (plant height) 6:47229819-48711265
QTN6.51781734 Chr06 51781734 QHGHT6.63 Kebede et al. 2001 SC56/Tx7000 Height (plant height) 6:51611228-52465988
QTN6.58083889 Chr06 58083889 QPLEN6.19 Parh 2005 IS8525/R931945-2-2 Panicle length 6:56618606-61260478
QTN7.1772505 Chr07 1772505
QTN7.2186032 Chr07 2186032
QTN7.26630649 Chr07 26630649 QHGHT7.8 Rami et al. 1998 IS2807/379 Height (plant height) 7:10020434-53294723
QTN7.42714173 Chr07 42714173 QHGHT7.8
QHGHT7.11
Rami et al. 1998
Madhusudhana and Patil 2013
IS2807/379
296B/IS18551
Height (plant height) 7:10020434-53294723
7:42199948-57729128
QTN7.49687684 Chr07 49687684
QTN7.55183398 Chr07 55183398 QHGHT7.11 Madhusudhana and Patil 2013 296B/IS18551 Height (plant height) 7:42199948-57729128
QHGHT7.14 Madhusudhana and Patil 2013 296B/IS18551 Height (plant height) 7:52284804-57820875
QSILN7.1 Hilley et al. 2016 Hegari/80M Stem internode length 7:53924374-57857968
QTN7.56139617 Chr07 56139617 QHGHT7.14
QHGHT7.15
Madhusudhana and Patil 2013
Srinivas et al. 2009
296B/IS18551
Height (plant height) 7:52284804-57820875
7:55190663-57760757
QTN7.58438538 Chr07 58438538 QHGHT7.66
QHGHT7.67
Wang et al. 2016 Shihong137/L-Tian Height (plant height) 7:57683232-58901776
7:57716834-58775268
QTN7.59393707 Chr07 59393707 QHGHT7.91
QHGHT7.45
QHGHT7.76
QHGHT7.46
QHGHT7.83
Liu et al. 2019
Pereira and Lee 1995
Yamaguchi et al. 2016
Madhusudhana and Patil 2013
Girma et al. 2019
Tx623 x S. virgatum
CK60/PI229828
bmr-6/SIL-05
296B/IS18551
Ethiopian landraces
Height (plant height) 7:59257250-61520522
7:59531861-61538775
7:59541977-61443045
7:59551731-61527847
7:59554149-61141251
QTN7.59653890 Chr07 59653890
QTN7.59721216 Chr07 59721216
QTN7.60501279 Chr07 60501279
QTN7.60940816 Chr07 60940816
QTN7.62144455 Chr07 62144455 QHGHT7.57 Parh 2005 IS8525/R931945-2-2 Height (plant height) 7:61806978-65460255
QHGHT7.55 Madhusudhana and Patil 2013 296B/IS18551 Height (plant height) 7:61910344-63327593
QHGHT7.56 Feltus et al. 2006 BTx623/S. propinquum Height (plant height) 7:61971712-64586189
QTN8.2105446 Chr08 2105446 QSLEN8.1 Wang et al. 2014b Shihong137/L-Tian Shoot length (seedling stage) 8:1896920-3249436
QTN8.4977795 Chr08 4977795
QTN8.8249188 Chr08 8249188
QHGHT8.2
Shiringani et al. 2010 M71/SS79 Height (plant height) 8:8198323-56470074
QTN8.8955240 Chr08 8955240
QTN8.13232192 Chr08 13232192
QTN8.13747177 Chr08 13747177
QTN8.18073491 Chr08 18073491
QTN8.46279959 Chr08 46279959
QTN8.50392737 Chr08 50392737
QTN8.57976551 Chr08 57976551 QHGHT8.4 Shehzad and Okuno 2015 Red Kafir/Takakibi (F2) Height (plant height) 8:56697504-59292212
QTN8.59708198 Chr08 59708198 qCNN8.1 xu et al. 2023 BTx623/HYZ Internode number 8:58253026—60762263
QTN8.60514221 Chr08 60514221
QTN8.61141049 Chr08 61141049
QTN9.9011331 Chr09 9011331
QHGHT9.5

Nagaraja Reddy et al. 2013

M35-1/B35

Height (plant height)

9:8157572-47755439
QTN9.9723995 Chr09 9723995
QTN9.13457659 Chr09 13457659
QTN9.14023575 Chr09 14023575
QTN9.16091197 Chr09 16091197
QTN9.21770577 Chr09 21770577
QTN9.24272625 Chr09 21554218
QTN9.26282863 Chr09 26282863
QTN9.40913786 Chr09 40913786
QTN9.45916233 Chr09 45916233
QTN9.51292519 Chr09 51292519 QHGHT9.7
QHGHT9.80
Shiringani et al. 2010
Gelli et al. 2016
M71/SS79
CK60/China17
Height (plant height) 9:50633456-52598530
9:50718886-51490320
QTN9.53210328 Chr09 53210328 QHGHT9.8
QHGHT9.10
QHGHT9.75
Feltus et al. 2006
Lin et al. 1995
Bai et al. 2017
BTx623/S.propinquum
BTx623/S. propinquum
BTx623/Rio
Height (plant height)
9:51845427-56983864
9:52500363-57941639
9:52719464-55273795
QTN9.59349793 Chr09 59349793 QHGHT9.79 Yamaguchi et al. 2016 bmr-6/SIL-05 Height (plant height) 9:59192467-59398238
QTN10.1694341 Chr10 1694341 QHGHT10.13 Mocoeur et al. 2015 E-Tian/Ji2731 Height (plant height) 10:1518275-8359099
QTN10.3945045 Chr10 3945045
QTN10.12448273 Chr10 12448273 QHGHT10.16 Kong et al. 2018 BTx623/IS3620C Height (plant height) 10:10627652-13583029
QTN10.12598609 Chr10 12598609
QTN10.13745644 Chr10 13745644 QHGHT10.17
QHGHT10.5
QHGHT10.18
Liu et al. 2019
Shiringani et al. 2010
Liu et al. 2019
Tx623 x S. virgatum
M71/SS79
Tx623 x S. virgatum
Height (plant height)
Height (plant height)
Height (plant height)
10:8044545-51747348
10:8640125-45554247
10:9185221-52571741
QTN10.19774145 Chr10 19774145
QTN10.34601077 Chr10 34601077
QTN10.26748555 Chr10 26748555
QTN10.55997217 Chr10 55997217 QHGHT10.14 Mocoeur et al. 2015 E-Tian/Ji2731 Height (plant height) 10:52112522-56441485
QHGHT10.8 Madhusudhana and Patil 2013 296B/IS18551 Height (plant height) 10:52619425-56427175
QTN10.57784636 Chr10 57784636 QHGHT10.11 Rajkumar et al. 2013 E36-1/SPV570 Height (plant height) 10:56548575-60429301
QTN10.60576093 Chr10 60576093
[1] 唐三元, 谢旗. 高粱: 小作物大用途. 生物技术通报, 2019, 35(5): 1.
Tang S Y, Xie Q. Sorghum-a small crop with great use. Biotechnol Bull, 2019, 35(5): 1. (in Chinese)
[2] 高士杰, 刘晓辉, 李继洪. 高粱高产育种应重视株型和穗结构性状的改良. 种子, 2007, 26(3): 83-84.
Gao S J, Liu X H, Li J H. Paying much attention to the improvement of plant type and spike structure in high-yielding breeding of Sorghum. Seed, 2007, 26(3): 83-84. (in Chinese with English abstract)
[3] 郭海平, 孙高阳, 张晓祥, 闫鹏帅, 刘坤, 谢惠玲, 汤继华, 丁冬, 李卫华. 基于SSSL群体的玉米穗下节间长QTL分析. 作物学报, 2018, 44: 522-532.
doi: 10.3724/SP.J.1006.2018.00522
Guo H P, Sun G Y, Zhang X X, Yan P S, Liu K, Xie H L, Tang J H, Ding D, Li W H. QTL analysis of under-ear internode length based on SSSL population. Acta Agron Sin, 2018, 44: 522-532. (in Chinese with English abstract)
[4] 苏舒, 董维, 游录鹏, 黄守程, 戚金亮, 陆桂华, 黄应华, 杨永华. 高粱株高性状的QTL定位初步分析. 江苏农业科学, 2012, 40(3): 19-21.
Su S, Dong W, You L P, Huang S C, Qi J L, Lu G H, Huang Y H, Yang Y H. Preliminary analysis on QTL mapping of Sorghum plant height traits. Jiangsu Agric Sci, 2012, 40(3): 19-21. (in Chinese)
[5] Kong W Q, Kim C, Zhang D, Guo H, Tan X, Jin H Z, Zhou C B, Shuang L S, Goff V, Sezen U, Pierce G, Compton R, Lemke C, Robertson J, Rainville L, Auckland S, Paterson A H. Genotyping by sequencing of 393 Sorghum bicolor BTx623 × IS3620C recombinant inbred lines improves sensitivity and resolution of QTL detection. G3 (Bethesda), 2018, 8: 2563-2572.
[6] Kajiya-Kanegae H, Takanashi H, Fujimoto M, Ishimori M, Ohnishi N, Fiona W W, Omollo E A, Kobayashi M, Yano K, Nakano M, Kozuka T, Kusaba M, Iwata H, Tsutsumi N, Sakamoto W. RAD-seq-based high-density linkage map construction and QTL mapping of biomass-related traits in Sorghum using the Japanese Landrace takakibi NOG. Plant Cell Physiol, 2020, 61: 1262-1272.
doi: 10.1093/pcp/pcaa056 pmid: 32353144
[7] Takanashi H, Shichijo M, Sakamoto L, Kajiya-Kanegae H, Iwata H, Sakamoto W, Tsutsumi N. Genetic dissection of QTLs associated with spikelet-related traits and grain size in Sorghum. Sci Rep, 2021, 11: 9398.
doi: 10.1038/s41598-021-88917-x pmid: 33931706
[8] 徐建霞, 丁延庆, 冯周, 曹宁, 程斌, 高旭, 邹桂花, 张立异. 基于Super-GBS的高粱株高和节间数QTL定位. 生物技术通报, 2023, 39(7): 185-194.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1510
Xu J X, Ding Y Q, Feng Z, Cao N, Cheng B, Gao X, Zou G H, Zhang L Y. QTL mapping of Sorghum plant height and internode numbers based on super-GBS technique. Biotechnol Bull, 2023, 39(7): 185-194. (in Chinese with English abstract)
[9] Hilley J, Truong S, Olson S, Morishige D, Mullet J. Identification of Dw1, a regulator of Sorghum stem internode length. PLoS One, 2016, 11: e0151271.
[10] Visscher P M, Wray N R, Zhang Q, Sklar P, McCarthy M I, Brown M A, Yang J. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet, 2017, 101: 5-22.
doi: S0002-9297(17)30240-9 pmid: 28686856
[11] Liu H J, Yan J. Crop genome-wide association study: a harvest of biological relevance. Plant J: Cell Mol Biol, 2019, 97: 8-18.
[12] Enyew M, Feyissa T, Carlsson A S, Tesfaye K, Hammenhag C, Seyoum A, Geleta M. Genome-wide analyses using multi-locus models revealed marker-trait associations for major agronomic traits in Sorghum bicolor. Front Plant Sci, 2022, 13: 999692.
[13] Zhao J, Mantilla Perez M B, Hu J Y, Salas Fernandez M G. Genome-wide association study for nine plant architecture traits in Sorghum. Plant Genome, 2016, 9. DOI: 10.3835/plantgenome2015.06.0044.
[14] Wondimu Z, Dong H X, Paterson A H, Worku W, Bantte K. Genome-wide association study reveals genomic loci influencing agronomic traits in Ethiopian Sorghum (Sorghum bicolor (L.) Moench) landraces. Mol Breed, 2023, 43: 32.
[15] Hirano K, Kawamura M, Araki-Nakamura S, Fujimoto H, Ohmae- Shinohara K, Yamaguchi M, Fujii A, Sasaki H, Kasuga S, Sazuka T. Sorghum DW1 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE 2. Sci Rep, 2017, 7: 126.
doi: 10.1038/s41598-017-00096-w pmid: 28273925
[16] Hilley J L, Weers B D, Truong S K, McCormick R F, Mattison A J, McKinley B A, Morishige D T, Mullet J E. Sorghum Dw2 encodes a protein kinase regulator of stem internode length. Sci Rep, 2017, 7: 4616.
doi: 10.1038/s41598-017-04609-5 pmid: 28676627
[17] Li X, Li X R, Fridman E, Tesso T T, Yu J M. Dissecting repulsion linkage in the dwarfing gene Dw3 region for Sorghum plant height provides insights into heterosis. Proc Natl Acad Sci USA, 2015, 112: 11823-11828.
[18] 王平, 丛玲, 朱振兴, 张丽霞, 张曦. 高粱矮化基因Dw3/dw3对株高及其他农艺性状的影响. 辽宁农业科学, 2019, (5): 12-15.
Wang P, Cong L, Zhu Z X, Zhang L X, Zhang X. Effects of dwarfing gene Dw3/dw3 on plant height and other agronomic traits of Sorghum bicolor. Liaoning Agric Sci, 2019, (5): 12-15. (in Chinese with English abstract)
[19] Morris G P, Ramu P, Deshpande S P, Hash C T, Shah T, Upadhyaya H D, Riera-Lizarazu O, Brown P J, Acharya C B, Mitchell S E, Harriman J, Glaubitz J C, Buckler E S, Kresovich S. Population genomic and genome-wide association studies of agroclimatic traits in Sorghum. Proc Natl Acad Sci USA, 2013, 110: 453-458.
[20] 段国旗, 吕娜, 石颖怡, 张怀, 李斌峰, 侯留飞, 许文秀, 闫慧莉, 何振艳, 平俊爱. 高粱株高相关基因SbPH11分子标记的开发和应用. 植物遗传资源学报, 2024, 25: 111-119.
doi: 10.13430/j.cnki.jpgr.20230611002
Duan G Q, Lyu N, Shi Y Y, Zhang H, Li B F, Hou L F, Xu W X, Yan H L, He Z Y, Ping J A. Development and application of molecular markers of Sorghum plant height related gene SbPH11. J Plant Genet Resour, 2024, 25: 111-119. (in Chinese with English abstract)
[21] Zhang L Y, Xu J X, Ding Y Q, Cao N, Gao X, Feng Z, Li K Y, Cheng B, Zhou L B, Ren M J, Tao Y Z, Zou G H. GWAS of grain color and tannin content in Chinese Sorghum based on whole-genome sequencing. Theor Appl Genet, 2023, 136: 77.
doi: 10.1007/s00122-023-04307-z pmid: 36952041
[22] 陆平. 高粱种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
Lu P. Descriptors and Data Standard for Sorghum [Sorghum bicolor (L.) Moench]. Beijing: China Agriculture Press, 2006. (in Chinese)
[23] 曹永策, 李曙光, 张新草, 孔杰杰, 赵团结. 夏大豆重组自交系群体遗传图谱构建及开花期QTL分析. 中国农业科学, 2020, 53: 683-694.
doi: 10.3864/j.issn.0578-1752.2020.04.002
Cao Y C, Li S G, Zhang X C, Kong J J, Zhao T J. Construction of genetic map and mapping QTL for flowering time in A summer planting soybean recombinant inbred line population. Sci Agric Sin, 2020, 53: 683-694. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.04.002
[24] 王萍. 大豆四向重组自交系株高和主茎节数及其密度响应的QTL/QTN定位. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2021.
Wang P. QTL/QTN Mapping of Plant Height, Main Stem Nodes and Their Density Responses of Soybean Four-way Recombinant Inbred Lines. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2021. (in Chinese with English abstract)
[25] Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R, Group G P A. The variant call format and VCF tools. Bioinformatics, 2011, 27: 2156-2158.
doi: 10.1093/bioinformatics/btr330 pmid: 21653522
[26] Wang H S, Gu L J, Zhang X G, Liu M L, Jiang H Y, Cai R H, Zhao Y, Cheng B J. Global transcriptome and weighted gene co-expression network analyses reveal hybrid-specific modules and candidate genes related to plant height development in maize. Plant Mol Biol, 2018, 98: 187-203.
doi: 10.1007/s11103-018-0763-4 pmid: 30327994
[27] Mizuno H, Kasuga S, Kawahigashi H. The Sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling. Biotechnol Biofuels, 2016, 9: 127.
[28] Zou G H, Zhai G W, Feng Q, Yan S, Wang A H, Zhao Q, Shao J F, Zhang Z P, Zou J Q, Han B, Tao Y Z. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in Sorghum under contrasting photoperiods. J Exp Bot, 2012, 63: 5451-5462.
[29] Guan Y N, Wang H L, Qin L, Zhang H W, Yang Y B, Gao F J, Li R Y, Wang H G. QTL mapping of bio-energy related traits in Sorghum. Euphytica, 2011, 182: 431-440.
[30] Parh D K. DNA-based Markers for Ergot Resistance in Sorghum. PhD Dissertation of the University of Queensland, Queensland, Australia, 2005.
[31] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767.
[32] Zhang J, Liu X Q, Li S Y, Cheng Z K, Li C Y. The rice semi-dwarf mutant sd37, caused by a mutation in CYP96B4, plays an important role in the fine-tuning of plant growth. PLoS One, 2014, 9: e88068.
[33] Liu H H, Liu H Q, Zhou L N, Lin Z W. Genetic Architecture of domestication- and improvement-related traits using a population derived from Sorghum virgatum and Sorghum bicolor. Plant Sci, 2019, 283: 135-146.
[34] Iwamoto M, Baba-Kasai A, Kiyota S, Hara N, Takano M. ACO1 a gene for aminocyclopropane-1-carboxylate oxidase: effects on internode elongation at the heading stage in rice. Plant Cell Environ, 2010, 33: 805-815.
[35] Itoh H, Izawa T. A study of phytohormone biosynthetic gene expression using a circadian clock-related mutant in rice. Plant Signal Behav, 2011, 6: 1932-1936.
doi: 10.4161/psb.6.12.18207 pmid: 22101345
[36] Harris-Shultz K R, Davis R F, Knoll J E, Anderson W, Wang H L. Inheritance and identification of a major quantitative trait locus (QTL) that confers resistance to Meloidogyne incognita and a novel QTL for plant height in sweet Sorghum. Phytopathology, 2015, 105: 1522-1528.
doi: 10.1094/PHYTO-06-15-0136-R pmid: 26574655
[37] Bai C M, Wang C Y, Wang P, Zhu Z X, Cong L, Li D, Liu Y F, Zheng W J, Lu X C. QTL mapping of agronomically important traits in Sorghum (Sorghum bicolor L.). Euphytica, 2017, 213: 285.
[38] 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究. 生物技术通报, 2023, 39(8): 43-51.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0504
Wang T Y, Wang R H, Wang X Q, Zhang R Y, Xu R B, Jiao Y Y, Sun X, Wang J D, Song W, Zhao J R. Research in maize dwarf genes and dwarf breeding. Biotechnol Bull, 2023, 39(8): 43-51. (in Chinese with English abstract)
[39] Nagaraja Reddy R, Madhusudhana R, Murali Mohan S, Chakravarthi D V N, Mehtre S P, Seetharama N, Patil J V. Mapping QTL for grain yield and other agronomic traits in post-rainy Sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet, 2013, 126: 1921-1939.
doi: 10.1007/s00122-013-2107-8 pmid: 23649648
[40] Sawers R J H, Linley P J, Farmer P R, Hanley N P, Costich D E, Terry M J, Brutnell T P. Elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiol, 2002, 130: 155-163.
pmid: 12226496
[41] Wu S Y, Xie Y R, Zhang J J, Ren Y L, Zhang X, Wang J L, Guo X P, Wu F Q, Sheng P K, Wang J, Wu C Y, Wang H Y, Huang S J, Wan J M. VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice. Plant Cell, 2015, 27: 2829-2845.
[42] Mocoeur A, Zhang Y M, Liu Z Q, Shen X, Zhang L M, Rasmussen S K, Jing H C. Stability and genetic control of morphological, biomass and biofuel traits under temperate maritime and continental conditions in sweet Sorghum (Sorghum bicolour). Theor Appl Genet, 2015, 128: 1685-1701.
doi: 10.1007/s00122-015-2538-5 pmid: 25982132
[43] Song X Q, Zhang B C, Zhou Y H. Golgi-localized UDP-glucose transporter is required for cell wall integrity in rice. Plant Signal Behav, 2011, 6: 1097-1100.
doi: 10.4161/psb.6.8.16379 pmid: 21822061
[44] Girma G, Nida H, Seyoum A, Mekonen M, Nega A, Lule D, Dessalegn K, Bekele A, Gebreyohannes A, Adeyanju A, Tirfessa A, Ayana G, Taddese T, Mekbib F, Belete K, Tesso T, Ejeta G, Mengiste T. A large-scale genome-wide association analyses of Ethiopian Sorghum Landrace collection reveal loci associated with important traits. Front Plant Sci, 2019, 10: 691.
[45] Madhusudhana R, Patil J V. A major QTL for plant height is linked with bloom locus in Sorghum [Sorghum bicolor (L.)] Moench. Euphytica, 2013, 191: 259-268.
[46] Srinivas G, Satish K, Madhusudhana R, Reddy R N, Mohan S M, Seetharama N. Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in Sorghum. Theor Appl Genet, 2009, 118: 1439-1454.
doi: 10.1007/s00122-009-0993-6 pmid: 19274449
[47] Bouchet S, Olatoye M O, Marla S R, Perumal R, Tesso T, Yu J M, Tuinstra M, Morris G P. Increased power to dissect adaptive traits in global Sorghum diversity using a nested association mapping population. Genetics, 2017, 206: 573-585.
doi: 10.1534/genetics.116.198499 pmid: 28592497
[48] Feltus F A, Hart G E, Schertz K F, Casa A M, Kresovich S, Abraham S, Klein P E, Brown P J, Paterson A H. Alignment of genetic maps and QTLs between inter- and intra-specific Sorghum populations. Theor Appl Genet, 2006, 112: 1295-1305.
pmid: 16491426
[49] Luo A D, Qian Q, Yin H F, Liu X Q, Yin C X, Lan Y, Tang J Y, Tang Z S, Cao S Y, Wang X J, Xia K, Fu X D, Luo D, Chu C C. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol, 2006, 47: 181-191.
doi: 10.1093/pcp/pci233 pmid: 16306061
[50] Ma H L, Zhang S B, Ji L, Zhu H B, Yang S L, Fang X J, Yang R C. Fine mapping and in silico isolation of the EUI1 gene controlling upper internode elongation in rice. Plant Mol Biol, 2006, 60: 87-94.
[51] Dai C, Xue H W. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO J, 2010, 29: 1916-1927.
[52] Suzuki M, Latshaw S, Sato Y, Settles A M, Koch K E, Hannah L C, Kojima M, Sakakibara H, McCarty D R. The maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiol, 2008, 146: 1193-1206.
[53] Van der Knaap E, Kim J H, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol, 2000, 122: 695-704.
doi: 10.1104/pp.122.3.695 pmid: 10712532
[54] Duan P G, Rao Y C, Zeng D L, Yang Y L, Xu R, Zhang B L, Dong G J, Qian Q, Li Y H. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Plant J, 2014, 77: 547-557.
[55] 邹桂花, 丁延庆, 徐建霞, 曹宁, 陈合云, 刘合芹, 郑学强, 张立异. 高粱千粒重全基因组关联分析和候选基因预测. 核农学报, 2022, 36: 2124-2136.
doi: 10.11869/j.issn.100-8551.2022.11.2124
Zou G H, Ding Y Q, Xu J X, Cao N, Chen H Y, Liu H Q, Zheng X Q, Zhang L Y. Genome-wide association analysis of thousand grain weight and candidate gene prediction in a Sorghum sequenced association panel. J Nucl Agric Sci, 2022, 36: 2124-2136. (in Chinese with English abstract)
[56] 丁延庆, 汪灿, 徐建霞, 高旭, 程斌, 曹宁, 张立异. 基于高密度遗传图谱对高粱穗部性状的QTL定位. 植物遗传资源学报, 2023, 24: 1122-1132.
doi: 10.13430/j.cnki.jpgr.20230201002
Ding Y Q, Wang C, Xu J X, Gao X, Cheng B, Cao N, Zhang L Y. QTL identifying for panicle architecture-related traits in Sorghum based on high-density genetic map. J Plant Genet Resour, 2023, 24: 1122-1132. (in Chinese with English abstract)
[1] JIANG You, MA Xue-Rong, ZHANG Bo, LI Chen-Jian. Evaluation of salt tolerance and screening of salt-tolerant germplasm of Sorghum sudanese during seed germination period [J]. Acta Agronomica Sinica, 2025, 51(3): 835-844.
[2] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[3] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[4] MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103.
[5] CHEN Yu-Zhang, WU Song-Guo, LU Cheng-Lin, LI Rui, GONG Li-Juan, WEN Yue, NING Jia-Xin, WU Yu-Han. Effects of strip-mulching ridges on runoff and soil water use for sorghum in southwest yellow soil slope farmland [J]. Acta Agronomica Sinica, 2024, 50(5): 1325-1340.
[6] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[7] LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622.
[8] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[9] DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279.
[10] YANG Shi-Jie, WANG Hua-Zhi, PAN Yi-Min, HUANG Rui, HOU Sen, QIN Hui-Bin, MU Zhi-Xin, WANG Hai-Gang. Genome-wide association analysis for plant height in foxtail millet (Setaria italica L.) germplasm resources in Shanxi, China [J]. Acta Agronomica Sinica, 2024, 50(12): 2984-2997.
[11] CHEN Chen, CHENG Yu-Kun, WANG Wei, REN Yi, ZHANG Hai-Yan, CHEN Hui-Bo, GENG Hong-Wei. QTL mapping of stay-green-related traits in wheat under drought condition [J]. Acta Agronomica Sinica, 2024, 50(11): 2684-2698.
[12] ZHAO Yang, LI Long, YANG Jin-Wen, JING Rui-Lian, SUN Dai-Zhen, WANG Jing-Yi. An E3 ubiquitin ligase gene TaSINA-3A is associated with plant height and 1000-grain weight in various environments in wheat [J]. Acta Agronomica Sinica, 2024, 50(10): 2654-2664.
[13] YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66.
[14] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[15] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!