Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 982-991.doi: 10.3724/SP.J.1006.2025.44147

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional study on the regulation of plant architecture by tomato type I MADS-box gene SlMADS79

GUO Xu-Hu1,*(), LI Ling-Zhi2, LI Feng1, MA Bo-Yan1, JIA Xiao-Yu1   

  1. 1School of Agronomy and Life Sciences, Shanxi Datong University, Datong 037009, Shanxi, China
    2College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2024-09-08 Accepted:2024-12-12 Online:2025-04-12 Published:2024-12-12
  • Contact: E-mail: 429248441@qq.com
  • Supported by:
    Basic Research Programs of Shanxi Province(202303021211181);Applied Basic Research Program of Datong City(2024067);Basic Research Programs of Shanxi Datong University(2022Q3)

Abstract:

MADS-box genes play a crucial role in regulating plant growth and development. While the functions of type II MADS-box genes have been extensively studied, there are relatively few reports on type I MADS-box genes in tomato. In this study, we cloned the type I MADS-box gene SlMADS79, which was found to be highly expressed in tomato roots, leaves, and lateral buds, suggesting its involvement in the regulation of vegetative organ growth. Using the classical tomato cultivar Ailsa Craig (AC++) as background material, we silenced the SlMADS79 gene through RNA interference (RNAi). Compared to the wild type, SlMADS79-silenced lines exhibited reduced apical dominance and decreased plant height. The length, width, perimeter, and area of the leaves were smaller than those of wild-type plants. Additionally, root traits—including total length, total surface area, total projected area, volume, number of forks, and number of tips—were significantly reduced. Anatomical studies revealed that while the cells in the longitudinal sections of SlMADS79-silenced stems were smaller, their average number significantly increased. At the hormonal level, the contents of IAA (indole-3-acetic acid), TZR (trans-zeatin riboside), and CS (castasterone) were decreased in the SlMADS79-silenced lines. At the molecular level, the auxin response gene IAA3 and gibberellin synthesis gene GA3ox1 were significantly downregulated in the SlMADS79-silenced lines, while the cell cycle gene CyCA3;1 was significantly upregulated. This study further analyzes the biological function of the SlMADS79 gene at morphological, anatomical, hormonal, and molecular levels, expands our understanding of the type I MADS-box gene family in tomato, and provides a solid theoretical foundation for further research on plant architecture regulation in tomato.

Key words: tomato, MADS-box, SlMADS79, plant height, leaf morphologies, root system

Table 1

Primers used in this study"

引物名称Primer name 引物序列Primer sequences (5'-3') 引物用途Primer usage
Forward fragment-F ATGGTGAGAGGGAAAACTGAAATG 植物表达载体构建
Plant expression vector construction
Forward fragment-R CCTTGAGGTTGAAAATTCATAAAGTTTGTC
Reverse fragment-F CCTTGAGGTTGAAAATTCATAAAGTTTGTC
Reverse fragment-R ATGGTGAGAGGGAAAACTGAAATG
trans-MADS79-F AGAAGACGTTCCAACCACG 转基因植株鉴定
Transgenic plant identification
trans-MADS79-R CCAACTTGAGCATCACAAAGAAC
SlCAC-F CCTCCGTTGTGATGTAACTGG 内参引物
Internal control primer
SlCAC-R ATTGGTGGAAAGTAACATCATCG
SlMADS79-F GAAATGAGGCGTATCGAAAA qRT-PCR检测
qRT-PCR detection
SlMADS79-R TCCAACTTGAGCATCACAAA
IAA3-F GGCCACCAGTTCGATCATAC
IAA3-R GGTGCTCCATCCATGCTAAC
GA3ox1-F GTAGACCAAAGGAACCCTCAAAT
GA3ox1-R GCCGAACAGATGAAAGTGCT
CycA3;1-F CTAAGAAAAGAGCAGCAGAAGCA
CycA3;1-R GATTCCTTATCTTTTTCAGCAACAG
DELLA-F CAGATTCATCAGCAACGAGACC
DELLA-R TGTGAAACCGCAAGAATACCAA
GAI-F CCAGCACTTGTCATTCTTACCC
GAI-R AAAGCTCATCCATTCCAGCA

Fig. 1

Expression pattern analysis of SlMADS79 gene in wild-type tomato Relative expression patterns of SlMADS79 in wild-type plants based on qPCR. RT: root; ST: stem; YL: young leaf; ML: muture leaf; SL: senescent leaf; BR: branch; F: flower; IMG: immature green fruit; MG: mature green fruit; B: breaker fruit; B4: four days after breaker fruit; B7: seven days after breaker fruit."

Fig. 2

SlMADS79-RNAi vector (A) and PCR verification of the transgenic plants (B) M: DL2000; 10-20 are T0 lines; WT is negative control (wild type); CK is blank control (water); P is positive control (agrobacterium solution)."

Fig. 3

Phenotypes of SlMADS79-RNAi lines A: seedling morphologies of wild type plant; B, C: seedling morphologies of the transgenic lines; D: height measurement of wild type and transgenic plants. * indicates statistically significant differences between the wild type and transgenic lines (P < 0.05)."

Fig. 4

Anatomical analysis of stems from wild-type and transgenic lines A: longitudinal section of stems from wild type; B: longitudinal section of stems from transgenic lines. Bar: 100 μm; C: estimated stem cell area from wild-type and transgenic lines; D: estimated cell perimeter from wild-type and transgenic lines; E: estimated cell number from wild-type and transgenic lines. * indicates statistically significant differences between the wild type and transgenic lines (P < 0.05)."

Fig. 5

Leaf morphologies of WT and SlMADS79 transgenic lines A: leaf photos of WT (underlined in yellow) and transgenic lines (underlined in red); B-E: length, width, perimeter, and area of leaves from WT and SlMADS79 transgenic lines, respectively. * indicates statistically significant differences between the wild type and transgenic lines (P < 0.05)."

Fig. 6

Root morphologies of WT and SlMADS79 transgenic lines A: root photos of WT (underlined in yellow) and transgenic lines (underlined in red); B-G: total length, total surface area, total project area, root volume, forks, and tips of roots from WT and SlMADS79 transgenic lines, respectively. * indicates statistically significant differences between the wild type and transgenic lines (P < 0.05)."

Fig. 7

Hormone levels in stems of WT and SlMADS79-silenced lines * indicates statistically significant differences between the wild type and transgenic lines (P < 0.05)."

Fig. 8

Transcript levels of genes involved in phytohormone response, signal transduction and cell cycle regulation in WT and SlMADS79-silenced plants * indicates statistically significant differences between the wild type and transgenic lines (P < 0.05)."

[1] Alvarez-Buylla E R, Pelaz S, Liljegren S J, Gold S E, Burgeff C, Ditta G S, Ribas de Pouplana L, Martínez-Castilla L, Yanofsky M F. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA, 2000, 97: 5328-5333.
pmid: 10805792
[2] Smaczniak C, Immink R G H, Angenent G C, Kaufmann K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development, 2012, 139: 3081-3098.
doi: 10.1242/dev.074674 pmid: 22872082
[3] Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theissen G. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol, 2002, 19: 801-814.
pmid: 12032236
[4] Yu L H, Miao Z Q, Qi G F, Wu J, Cai X T, Mao J L, Xiang C B. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol Plant, 2014, 7: 1653-1669.
[5] Teper-Bamnolker P, Samach A. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell, 2005, 17: 2661-2675.
doi: 10.1105/tpc.105.035766 pmid: 16155177
[6] Zhou Y, Hu L F, Song J B, Jiang L W, Liu S Q. Isolation and characterization of a MADS-box gene in cucumber (Cucumis sativus L.) that affects flowering time and leaf morphology in transgenic Arabidopsis. Biotechnol Biotec Equip, 2019, 33: 54-63.
[7] Xing M Y, Li H L, Liu G S, Zhu B Z, Zhu H L, Grierson D, Luo Y B, Fu D Q. A MADS-box transcription factor, SlMADS1, interacts with SlMACROCALYX to regulate tomato sepal growth. Plant Sci, 2022, 322: 111366.
[8] Guo X H, Chen G P, Naeem M, Yu X H, Tang B Y, Li A Z, Hu Z L. The MADS-box gene SlMBP11 regulates plant architecture and affects reproductive development in tomato plants. Plant Sci, 2017, 258: 90-101.
[9] Li A Z, Chen G P, Yu X H, Zhu Z G, Zhang L C, Zhou S G, Hu Z L. The tomato MADS-box gene SlMBP9 negatively regulates lateral root formation and apical dominance by reducing auxin biosynthesis and transport. Plant Cell Rep, 2019, 38: 951-963.
[10] Yin W C, Yu X H, Chen G P, Tang B Y, Wang Y S, Liao C G, Zhang Y J, Hu Z L. Suppression of SlMBP15 inhibits plant vegetative growth and delays fruit ripening in tomato. Front Plant Sci, 2018, 9: 938.
[11] Wang Y S, Guo P Y, Zhang J L, Xie Q L, Shen H, Hu Z L, Chen G P. Overexpression of the MADS-box gene SIMBP21 alters leaf morphology and affects reproductive development in tomato. J Integr Agric, 2021, 20: 3170-3185.
[12] Li F F, Chen X Y, Zhou S E, Xie Q L, Wang Y S, Xiang X X, Hu Z L, Chen G P. Overexpression of SlMBP22 in tomato affects plant growth and enhances tolerance to drought stress. Plant Sci, 2020, 301: 110672.
[13] Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol, 2009, 50: 1201-1214.
[14] Pan X Q, Welti R, Wang X M. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Protoc, 2010, 5: 986-992.
doi: 10.1038/nprot.2010.37 pmid: 20448544
[15] Expósito-Rodríguez M, Borges A A, Borges-Pérez A, Pérez J A. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol, 2008, 8: 131.
doi: 10.1186/1471-2229-8-131 pmid: 19102748
[16] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔСT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[17] Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405: 200-203.
[18] Michaels S D, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino R M. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J, 2003, 33: 867-874.
doi: 10.1046/j.1365-313x.2003.01671.x pmid: 12609028
[19] Dong T T, Hu Z L, Deng L, Wang Y, Zhu M K, Zhang J L, Chen G P. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiol, 2013, 163: 1026-1036.
doi: 10.1104/pp.113.224436 pmid: 24006286
[20] Wang Y S, Zhang J L, Hu Z L, Guo X H, Tian S B, Chen G P. Genome-wide analysis of the MADS-box transcription factor family in Solanum lycopersicum. Int J Mol Sci, 2019, 20: 2961.
[21] 李艳大, 朱相成, 汤亮, 曹卫星, 朱艳. 基于株型的水稻冠层光合生产模拟. 作物学报, 2011, 37: 868-875.
doi: 10.3724/SP.J.1006.2011.00868
Li Y D, Zhu X C, Tang L, Cao W X, Zhu Y. Simulation of canopy photosynthetic production based on plant type in rice. Acta Agron Sin, 2011, 37: 868-875 (in Chinese with English abstract).
[22] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展. 作物学报, 2023, 49: 1735-1746.
doi: 10.3724/SP.J.1006.2023.22050
Xu N, Xu Q, Xu Z J, Chen W F. Research progress on physiological ecology and genetic basis of rice plant architecture. Acta Agron Sin, 2023, 49: 1735-1746 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22050
[23] Li A Z, Chen G P, Wang Y S, Liang H L, Hu Z L. Silencing of the MADS-box gene SlMADS83 enhances adventitious root formation in tomato plants. J Plant Growth Regul, 2020, 39: 941-953.
[24] Kazan K, Manners J M. Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci, 2009, 14: 373-382.
doi: 10.1016/j.tplants.2009.04.005 pmid: 19559643
[25] Pang Y, Zang X Y, Pang F T, Zhou T H, Tian F Z. Changes of CTK and few nitrogen index during development of flower and fruit in Zhanhua jujube. J North China Agric, 2017, 5: 101.
[26] Grove M D, Spencer G F, Rohwedder W K, Mandava N, Worley J F, Warthen J D, Steffens G L, Flippen-Anderson J L, Cook J C. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 1979, 281: 216-217.
[27] Clouse S D, Langford M, McMorris T C. A brassinosteroid- insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol, 1996, 111: 671-678.
doi: 10.1104/pp.111.3.671 pmid: 8754677
[28] Reed J W. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci, 2001, 6: 420-425.
doi: 10.1016/s1360-1385(01)02042-8 pmid: 11544131
[29] Wang H, Jones B, Li Z G, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech J C, Bouzayen M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell, 2005, 17: 2676-2692.
doi: 10.1105/tpc.105.033415 pmid: 16126837
[30] Chaabouni S, Jones B, Delalande C, Wang H, Li Z G, Mila I, Frasse P, Latché A, Pech J C, Bouzayen M. Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. J Exp Bot, 2009, 60: 1349-1362.
doi: 10.1093/jxb/erp009 pmid: 19213814
[31] Hooley R. Gibberellins: perception, transduction and responses. Plant Mol Biol, 1994, 26: 1529-1555.
pmid: 7858203
[32] Swain S M, Olszewski N E. Genetic analysis of gibberellin signal transduction. Plant Physiol, 1996, 112: 11-17.
pmid: 12226370
[33] Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378
[34] Vogler H, Caderas D, Mandel T, Kuhlemeier C. Domains of expansin gene expression define growth regions in the shoot apex of tomato. Plant Mol Biol, 2003, 53: 267-272.
doi: 10.1023/b:plan.0000006999.48516.be pmid: 14750517
[35] Zhang T Y, Wang X, Lu Y E, Cai X F, Ye Z B, Zhang J H. Genome-wide analysis of the cyclin gene family in tomato. Int J Mol Sci, 2013, 15: 120-140.
doi: 10.3390/ijms15010120 pmid: 24366066
[36] Peng J, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev, 1997, 11: 3194-3205.
[1] XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585.
[2] ZHANG Chen-Yu, GE Jun-Yong, CHU Jun-Cong, WANG Xing-Yu, ZHAO Bao-Ping, YANG Ya-Dong, ZANG Hua-Dong, ZENG Zhao-Hai. Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping [J]. Acta Agronomica Sinica, 2025, 51(2): 459-469.
[3] GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013.
[4] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[5] LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622.
[6] DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279.
[7] WANG Cheng, MA Yang-Ming, WANG Chun-Yu, LI Zhi-Xin, LUO Jian-Sheng, PENG Zheng-Lan, LIU Ru-Hong-Ji, HUANG Xing-Hai, CAO Yun, PENG Zheng-Bo, MA Jun. Effects of cropping practices and nitrogen application on nutrient uptake characteristics and root vigor of hybrid indica rice [J]. Acta Agronomica Sinica, 2024, 50(12): 3069-3082.
[8] YANG Shi-Jie, WANG Hua-Zhi, PAN Yi-Min, HUANG Rui, HOU Sen, QIN Hui-Bin, MU Zhi-Xin, WANG Hai-Gang. Genome-wide association analysis for plant height in foxtail millet (Setaria italica L.) germplasm resources in Shanxi, China [J]. Acta Agronomica Sinica, 2024, 50(12): 2984-2997.
[9] ZHAO Yang, LI Long, YANG Jin-Wen, JING Rui-Lian, SUN Dai-Zhen, WANG Jing-Yi. An E3 ubiquitin ligase gene TaSINA-3A is associated with plant height and 1000-grain weight in various environments in wheat [J]. Acta Agronomica Sinica, 2024, 50(10): 2654-2664.
[10] HUANG Xiao-Yu, LOU Hong-Xiang, SHAO Dong-Li, ZHANG Zhe, JIANG Bo, XIAO Ya-Dan, CHANG Ying, GUO An-Da, ZHAO Jie, XU Zheng-Hua, WANG Jing, WANG Bo, KUAI Jie, ZHOU Guang-Sheng. Exploring the functions of different leaf types of directly-sown rapeseed under high density [J]. Acta Agronomica Sinica, 2024, 50(10): 2550-2561.
[11] YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66.
[12] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[13] LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471.
[14] ZHU Zhi, LI Long, LI Chao-Nan, MAO Xin-Guo, HAO Chen-Yang, ZHU Ting, WANG Jing-Yi, CHANG Jian-Zhong, JING Rui-Lian. Transcription factor TaMYB5-3B is associated with plant height and 1000- grain weight in wheat [J]. Acta Agronomica Sinica, 2023, 49(4): 906-916.
[15] MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!