Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 982-991.doi: 10.3724/SP.J.1006.2025.44147
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
GUO Xu-Hu1,*(), LI Ling-Zhi2, LI Feng1, MA Bo-Yan1, JIA Xiao-Yu1
[1] |
Alvarez-Buylla E R, Pelaz S, Liljegren S J, Gold S E, Burgeff C, Ditta G S, Ribas de Pouplana L, Martínez-Castilla L, Yanofsky M F. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA, 2000, 97: 5328-5333.
pmid: 10805792 |
[2] |
Smaczniak C, Immink R G H, Angenent G C, Kaufmann K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development, 2012, 139: 3081-3098.
doi: 10.1242/dev.074674 pmid: 22872082 |
[3] |
Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theissen G. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol, 2002, 19: 801-814.
pmid: 12032236 |
[4] | Yu L H, Miao Z Q, Qi G F, Wu J, Cai X T, Mao J L, Xiang C B. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol Plant, 2014, 7: 1653-1669. |
[5] |
Teper-Bamnolker P, Samach A. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell, 2005, 17: 2661-2675.
doi: 10.1105/tpc.105.035766 pmid: 16155177 |
[6] | Zhou Y, Hu L F, Song J B, Jiang L W, Liu S Q. Isolation and characterization of a MADS-box gene in cucumber (Cucumis sativus L.) that affects flowering time and leaf morphology in transgenic Arabidopsis. Biotechnol Biotec Equip, 2019, 33: 54-63. |
[7] | Xing M Y, Li H L, Liu G S, Zhu B Z, Zhu H L, Grierson D, Luo Y B, Fu D Q. A MADS-box transcription factor, SlMADS1, interacts with SlMACROCALYX to regulate tomato sepal growth. Plant Sci, 2022, 322: 111366. |
[8] | Guo X H, Chen G P, Naeem M, Yu X H, Tang B Y, Li A Z, Hu Z L. The MADS-box gene SlMBP11 regulates plant architecture and affects reproductive development in tomato plants. Plant Sci, 2017, 258: 90-101. |
[9] | Li A Z, Chen G P, Yu X H, Zhu Z G, Zhang L C, Zhou S G, Hu Z L. The tomato MADS-box gene SlMBP9 negatively regulates lateral root formation and apical dominance by reducing auxin biosynthesis and transport. Plant Cell Rep, 2019, 38: 951-963. |
[10] | Yin W C, Yu X H, Chen G P, Tang B Y, Wang Y S, Liao C G, Zhang Y J, Hu Z L. Suppression of SlMBP15 inhibits plant vegetative growth and delays fruit ripening in tomato. Front Plant Sci, 2018, 9: 938. |
[11] | Wang Y S, Guo P Y, Zhang J L, Xie Q L, Shen H, Hu Z L, Chen G P. Overexpression of the MADS-box gene SIMBP21 alters leaf morphology and affects reproductive development in tomato. J Integr Agric, 2021, 20: 3170-3185. |
[12] | Li F F, Chen X Y, Zhou S E, Xie Q L, Wang Y S, Xiang X X, Hu Z L, Chen G P. Overexpression of SlMBP22 in tomato affects plant growth and enhances tolerance to drought stress. Plant Sci, 2020, 301: 110672. |
[13] | Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol, 2009, 50: 1201-1214. |
[14] |
Pan X Q, Welti R, Wang X M. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Protoc, 2010, 5: 986-992.
doi: 10.1038/nprot.2010.37 pmid: 20448544 |
[15] |
Expósito-Rodríguez M, Borges A A, Borges-Pérez A, Pérez J A. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol, 2008, 8: 131.
doi: 10.1186/1471-2229-8-131 pmid: 19102748 |
[16] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔСT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[17] | Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405: 200-203. |
[18] |
Michaels S D, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino R M. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J, 2003, 33: 867-874.
doi: 10.1046/j.1365-313x.2003.01671.x pmid: 12609028 |
[19] |
Dong T T, Hu Z L, Deng L, Wang Y, Zhu M K, Zhang J L, Chen G P. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiol, 2013, 163: 1026-1036.
doi: 10.1104/pp.113.224436 pmid: 24006286 |
[20] | Wang Y S, Zhang J L, Hu Z L, Guo X H, Tian S B, Chen G P. Genome-wide analysis of the MADS-box transcription factor family in Solanum lycopersicum. Int J Mol Sci, 2019, 20: 2961. |
[21] |
李艳大, 朱相成, 汤亮, 曹卫星, 朱艳. 基于株型的水稻冠层光合生产模拟. 作物学报, 2011, 37: 868-875.
doi: 10.3724/SP.J.1006.2011.00868 |
Li Y D, Zhu X C, Tang L, Cao W X, Zhu Y. Simulation of canopy photosynthetic production based on plant type in rice. Acta Agron Sin, 2011, 37: 868-875 (in Chinese with English abstract). | |
[22] |
许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展. 作物学报, 2023, 49: 1735-1746.
doi: 10.3724/SP.J.1006.2023.22050 |
Xu N, Xu Q, Xu Z J, Chen W F. Research progress on physiological ecology and genetic basis of rice plant architecture. Acta Agron Sin, 2023, 49: 1735-1746 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22050 |
|
[23] | Li A Z, Chen G P, Wang Y S, Liang H L, Hu Z L. Silencing of the MADS-box gene SlMADS83 enhances adventitious root formation in tomato plants. J Plant Growth Regul, 2020, 39: 941-953. |
[24] |
Kazan K, Manners J M. Linking development to defense: auxin in plant-pathogen interactions. Trends Plant Sci, 2009, 14: 373-382.
doi: 10.1016/j.tplants.2009.04.005 pmid: 19559643 |
[25] | Pang Y, Zang X Y, Pang F T, Zhou T H, Tian F Z. Changes of CTK and few nitrogen index during development of flower and fruit in Zhanhua jujube. J North China Agric, 2017, 5: 101. |
[26] | Grove M D, Spencer G F, Rohwedder W K, Mandava N, Worley J F, Warthen J D, Steffens G L, Flippen-Anderson J L, Cook J C. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 1979, 281: 216-217. |
[27] |
Clouse S D, Langford M, McMorris T C. A brassinosteroid- insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol, 1996, 111: 671-678.
doi: 10.1104/pp.111.3.671 pmid: 8754677 |
[28] |
Reed J W. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci, 2001, 6: 420-425.
doi: 10.1016/s1360-1385(01)02042-8 pmid: 11544131 |
[29] |
Wang H, Jones B, Li Z G, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech J C, Bouzayen M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell, 2005, 17: 2676-2692.
doi: 10.1105/tpc.105.033415 pmid: 16126837 |
[30] |
Chaabouni S, Jones B, Delalande C, Wang H, Li Z G, Mila I, Frasse P, Latché A, Pech J C, Bouzayen M. Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. J Exp Bot, 2009, 60: 1349-1362.
doi: 10.1093/jxb/erp009 pmid: 19213814 |
[31] |
Hooley R. Gibberellins: perception, transduction and responses. Plant Mol Biol, 1994, 26: 1529-1555.
pmid: 7858203 |
[32] |
Swain S M, Olszewski N E. Genetic analysis of gibberellin signal transduction. Plant Physiol, 1996, 112: 11-17.
pmid: 12226370 |
[33] |
Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol, 2008, 59: 225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378 |
[34] |
Vogler H, Caderas D, Mandel T, Kuhlemeier C. Domains of expansin gene expression define growth regions in the shoot apex of tomato. Plant Mol Biol, 2003, 53: 267-272.
doi: 10.1023/b:plan.0000006999.48516.be pmid: 14750517 |
[35] |
Zhang T Y, Wang X, Lu Y E, Cai X F, Ye Z B, Zhang J H. Genome-wide analysis of the cyclin gene family in tomato. Int J Mol Sci, 2013, 15: 120-140.
doi: 10.3390/ijms15010120 pmid: 24366066 |
[36] | Peng J, Carol P, Richards D E, King K E, Cowling R J, Murphy G P, Harberd N P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev, 1997, 11: 3194-3205. |
[1] | XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585. |
[2] | ZHANG Chen-Yu, GE Jun-Yong, CHU Jun-Cong, WANG Xing-Yu, ZHAO Bao-Ping, YANG Ya-Dong, ZANG Hua-Dong, ZENG Zhao-Hai. Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping [J]. Acta Agronomica Sinica, 2025, 51(2): 459-469. |
[3] | GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013. |
[4] | LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933. |
[5] | LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622. |
[6] | DIAO Xian-Min, WANG Li-Wei, ZHI Hui, ZHANG Jun, LI Shun-Guo, CHENG Ru-Hong. Development, genetic deciphering, and breeding utilization of dwarf lines in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(2): 265-279. |
[7] | WANG Cheng, MA Yang-Ming, WANG Chun-Yu, LI Zhi-Xin, LUO Jian-Sheng, PENG Zheng-Lan, LIU Ru-Hong-Ji, HUANG Xing-Hai, CAO Yun, PENG Zheng-Bo, MA Jun. Effects of cropping practices and nitrogen application on nutrient uptake characteristics and root vigor of hybrid indica rice [J]. Acta Agronomica Sinica, 2024, 50(12): 3069-3082. |
[8] | YANG Shi-Jie, WANG Hua-Zhi, PAN Yi-Min, HUANG Rui, HOU Sen, QIN Hui-Bin, MU Zhi-Xin, WANG Hai-Gang. Genome-wide association analysis for plant height in foxtail millet (Setaria italica L.) germplasm resources in Shanxi, China [J]. Acta Agronomica Sinica, 2024, 50(12): 2984-2997. |
[9] | ZHAO Yang, LI Long, YANG Jin-Wen, JING Rui-Lian, SUN Dai-Zhen, WANG Jing-Yi. An E3 ubiquitin ligase gene TaSINA-3A is associated with plant height and 1000-grain weight in various environments in wheat [J]. Acta Agronomica Sinica, 2024, 50(10): 2654-2664. |
[10] | HUANG Xiao-Yu, LOU Hong-Xiang, SHAO Dong-Li, ZHANG Zhe, JIANG Bo, XIAO Ya-Dan, CHANG Ying, GUO An-Da, ZHAO Jie, XU Zheng-Hua, WANG Jing, WANG Bo, KUAI Jie, ZHOU Guang-Sheng. Exploring the functions of different leaf types of directly-sown rapeseed under high density [J]. Acta Agronomica Sinica, 2024, 50(10): 2550-2561. |
[11] | YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66. |
[12] | AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445. |
[13] | LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471. |
[14] | ZHU Zhi, LI Long, LI Chao-Nan, MAO Xin-Guo, HAO Chen-Yang, ZHU Ting, WANG Jing-Yi, CHANG Jian-Zhong, JING Rui-Lian. Transcription factor TaMYB5-3B is associated with plant height and 1000- grain weight in wheat [J]. Acta Agronomica Sinica, 2023, 49(4): 906-916. |
[15] | MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661. |
|