Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (10): 2550-2561.doi: 10.3724/SP.J.1006.2024.44032

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Exploring the functions of different leaf types of directly-sown rapeseed under high density

HUANG Xiao-Yu1(), LOU Hong-Xiang1, SHAO Dong-Li1, ZHANG Zhe2, JIANG Bo3, XIAO Ya-Dan1, CHANG Ying1, GUO An-Da1, ZHAO Jie1, XU Zheng-Hua1, WANG Jing1, WANG Bo1, KUAI Jie1,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2National Agricultural Technical Extension and Service Center, Beijing 100125, China
    3Hubei Province Oilseed Rape Office, Wuhan 430070, Hubei, China
  • Received:2024-02-23 Accepted:2024-05-21 Online:2024-10-12 Published:2024-06-04
  • Contact: *E-mail: kuaijie@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1600500);China Agriculture Research System of MOF and MARA(CARS-12);Earmarked Fund of Hubei Province of China, and the Key Research and Development Program of Hubei Province of China(2023BBB028)

Abstract:

Optimal planting density is a core technology for ensuring rapeseed yield and production efficiency. However, excessive planting density can worsen lodging of rapeseed and make it challenging to achieve high yields. Leaves play a vital role in photosynthesis and dry matter accumulation in rapeseed, but the effects of different leaf types on yield and lodging resistance under high-density conditions remains unclear. In this study, we selected Zhongshuang 11 and implemented two planting densities (D3: 4.5×105 plants hm-2, D5: 7.5×105 plants hm-2) and four-leaf pruning treatments (CK: no leaf pruning, LP: pruning half of the long-petiole leaves, SP: pruning half of the short-petiole leaves, SL: pruning half of the sessile leaves). We aimed to investigate the effects of these three leaf types on the yield and lodging resistance of directly-sown rapeseed under high density, providing a theoretical basis for managing the source-sink relationship, high-density rapeseed cultivation, and the lodging challenge. The results showed that, at the same density, the proportions of short-petiole leaf > long-petiole leaf > sessile leaf. When the density increased from D3 to D5, about 2 short-petiole leaves were reduced, resulted in a decrease in proportion from 50.6% to 46.7%. Leaf pruning at both densities lead to a reduction in siliques per plant, consequently decreasing the yield per plant and actual yield. Among the pruning treatments, SP had the greatest impact on yield. As density increased, the effect of SP on yield per plant increased from 19.61% to 37.67%, and the effect on actual yield increased from 13.65% to 22.03%. The lodging index increased under different leaf pruning treatments, with SP treatment significantly increasing the lodging index in both the upper and lower parts of the plant, indicating weaker lodging resistance. In addition, the root surface area and volume per plant decreased with increasing density, particularly under LP and SP treatments. Correlation analysis revealed that, under D3 density, pruning short-petiole leaves reduced the number of siliques per plant. Under D5 density, pruning short-petiole leaves and long-petiole leaves resulted in reduced siliques per plant and seed per silique, significantly decreasing both yield and lodging resistance. Pruning long-petiole leaves led to a significant decrease in root surface area and volume, which was unfavorable for yield formation.

Key words: high density, long-petiole leaf, short-petiole leaf, root system, yield, lodging resistance

Fig. 1

Schematic diagram of different leaf types (a) and leaf pruning treatments (b) of rapeseed"

Table 1

Changes in the number of pruned leaves and the number of leaves of rapeseed"

年份
Year
密度
Density
处理
Treatment
长柄叶
Long-petiole leaf
短柄叶
Short-petiole leaf
无柄叶
Sessile
leaf
总叶数
Total number of leaves
剪叶数
Number of pruned leaves
2021-2022 D3 CK 7.9 14.8 7.2 29.1
LP 3.3 14.8 6.7 25.1 4.0
SP 8.0 8.0 7.1 21.5 7.6
SL 7.8 14.7 3.6 26.0 3.0
D5 CK 8.1 12.6 6.7 28.8
LP 4.1 12.6 6.9 23.5 4.0
SP 8.0 7.1 6.5 21.7 6.7
SL 7.9 12.5 3.6 26.3 3.2
2022-2023 D3 CK 9.1 16.4 6.2 31.7
LP 4.5 15.7 6.2 26.5 4.7
SP 8.4 10.0 5.8 24.2 9.1
SL 9.2 16.1 3.0 28.3 2.8
D5 CK 9.7 14.3 6.2 30.2
LP 4.8 14.2 6.2 25.1 5.1
SP 9.9 6.9 6.4 23.2 7.8
SL 9.6 14.3 3.6 27.6 2.7

Fig. 2

Effects of different leaf pruning treatments on yield and yield component of rapeseed Abbreviations and treatments are the same as those given in Table 1. Different lowercase letters indicate significant differences between different treatments at the 0.05 probability level. * and ** represent differences at the 0.05 and 0.01 probability levels, respectively, while NS indicates non-significant differences."

Table 2

Contribution of different leaf types to yield and yield components (%)"

年份
Year
密度Density 处理Treatment 成株率
Survival
rate
单株角果数
Siliques per plant
每角果粒数
Seeds per silique
单株产量
Yield per plant
实收产量Actual
yield
群体角果数
Group silique number
2021-2022 D3 LP -3.91 -10.60 -0.53 -11.50 -0.46 -14.11
SP -6.25 -14.86 -4.71 -20.68 -11.21 -18.18
SL -2.08 -10.23 -4.77 -15.69 -11.00 -11.09
D5 LP 11.76 -16.97 -6.29 -21.73 -15.02 -9.22
SP 9.84 -18.78 -15.63 -28.95 -16.11 -12.73
SL -1.01 -12.92 1.21 -9.70 -12.16 -15.62
2022-2023 D3 LP -1.04 -9.29 -0.85 -15.37 -15.08 -10.20
SP -1.57 -18.09 -3.78 -18.53 -16.08 -19.34
SL -0.69 -12.64 -6.78 -15.55 -13.54 -13.22
D5 LP 11.09 -16.43 -15.42 -29.28 -16.06 -7.17
SP 8.99 -23.52 -31.00 -46.38 -27.95 -16.64
SL 2.59 -13.94 -3.85 -12.55 -4.57 -11.68

Fig. 3

Effects of different leaf pruning treatments on population yield and related indexes of rapeseed Abbreviations and treatments are the same as those given in Table 1. Different lowercase letters indicate significant difference between different treatments at the 0.05 probability level; * and ** represent differences at the 0.05 and 0.01 probability levels, respectively, while NS indicates non-significant differences."

Fig. 4

Effects of different leaf pruning treatments on bending strength and lodging index of rapeseed Abbreviations and treatments are the same as those given in Table 1. Different lowercase letters indicate significant difference between different treatments at the 0.05 probability level. * and ** indicate differences at the 0.05 and 0.01 probability levels, respectively, while NS indicate non-significant differences."

Table 3

Contribution of lodging index of rapeseed under different leaf pruning treatments (%)"

密度
Density
处理
Treatment
上部倒伏指数Upper lodging index 下部倒伏指数Lower lodging index
2021-2022 2022-2023 2021-2022 2022-2023
D3 LP 4.49 3.12 21.63 4.38
SP 31.66 11.90 31.43 7.57
SL 15.04 2.27 13.88 3.98
D5 LP 15.00 6.62 18.00 3.96
SP 22.63 24.50 27.60 12.78
SL 16.84 9.60 7.20 7.49

Fig. 5

Effects of different leaf pruning treatments on root phenotype of rapeseed Abbreviations and treatments are the same as those given in Table 1. BP, SS, BS and FS indicated pre-treatment, seeding stage, bolting stage, flowering stage, respectively; a-d was the control and pruned long-petiole leaves (LP) under D3 and D5 densities at seeding stage, e-h was the control and pruned long-petiole leaves (LP) under D3 and D5 densities at bolting stage, and i-l was the control and pruned long-petiole leaves (LP) under D3 and D5 densities at flowering stage."

Fig. 6

Correlation between different leaf types and yield related indexes of rapeseed Abbreviations and treatments are the same as those given in Table 1. *, **, and *** represent significant correlations at the 0.05, 0.01, and 0.001 probability levels, respectively."

[1] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51: 4625-4632.
doi: 10.3864/j.issn.0578-1752.2018.24.004
Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Sci Agric Sin, 2018, 51: 4625-4632 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.24.004
[2] 姬建利. 密度和行距配置影响油菜产量和倒伏的机理研究. 华中农业大学硕士学位论文, 湖北武汉, 2019.
Ji J L. Mechanism of Density and Row Spacing Affecting Rapeseed Yield and Lodging. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[3] 袁圆, 汪波, 周广生, 刘芳, 黄俊生, 蒯婕. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54: 1613-1626.
doi: 10.3864/j.issn.0578-1752.2021.08.004
Yuan Y, Wang B, Zhou G S, Liu F, Huang J S, Kuai J. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed. Sci Agric Sin, 2021, 54: 1613-1626 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.08.004
[4] Khan S, Anwar S, Kuai J, Noman A, Shahid M, Din M, Ali A, Zhou G S. Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates. Sci Rep, 2018, 8: 634.
doi: 10.1038/s41598-017-18734-8 pmid: 29330468
[5] Kuai J, Sun Y Y, Zuo Q S, Huang H D, Liao Q X, Wu C Y, Lu J W, Wu J S, Zhou G S. The yield of mechanically harvested rapeseed (Brassica napus L.) can be increased by optimum plant density and row spacing. Sci Rep, 2015, 5: 18835.
doi: 10.1038/srep18835 pmid: 26686007
[6] 陈松林. 长江流域冬油菜适宜密植关键株型指标及参数研究. 华中农业大学硕士学位论文, 湖北武汉, 2020.
Chen S L. Study on Key Plant Type Indexes and Parameters of Winter Rape Suitable for Close Planting in Yangtze River Basin. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2020 (in Chinese with English abstract).
[7] 李宏志, 卓从丽, 廖斌, 陈红, 邹康平, 何帮华, 卓国华, 黎芳. 种植密度对不同株型春玉米品种源库关系及产量的影响. 湖南农业科学, 2019, (11): 25-27.
Li H Z, Zhuo C L, Liao B, Chen H, Zou K P, He B H, Zhuo G H, Li F. Effects of planting density on source sink relationship and yield of different plant types of spring maize. Hunan Agric Sci, 2019, (11): 25-27 (in Chinese with English abstract).
[8] 胡立勇, 单文燕, 王维金. 油菜结实特性与库源关系的研究. 中国油料作物学报, 2002, 24(2): 37-42.
Hu L Y, Shan W Y, Wang W J. Characteristics of seed set and source-sink relation of Brassica napus. Chin J Oil Crop Sci, 2002, 24(2): 37-42 (in Chinese with English abstract).
[9] 廉博, 张胜, 张彩彪. 剪叶对春油菜源库关系的影响. 内蒙古农业科技, 2012, (3): 24-27.
Lian B, Zhang S, Zhang C B. Effect of leaf-cutting on spring rape source-sink relationship. Inner Mongolia Agric Sci Technol, 2012, (3): 24-27 (in Chinese with English abstract).
[10] 王瑛. 双低春油菜源库关系的研究. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2006.
Wang Y. Study on the Relationship between Source and Sink of Double-low Spring Rape. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2006 (in Chinese with English abstract).
[11] 陈婷. 油菜叶片和角果光合对其籽粒产量及品质的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2016.
Chen T. Influence of Leaf and Silique Photosynthesis on Seeds Yield and Seed Soil Quality of Oilseed Rape. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract).
[12] 王春丽, 王周礼, 陈婷, 杨建利, 陈文杰, 穆建新, 田建华, 赵小光. 甘蓝型油菜生殖生长期叶片和角果光合与产量关系的研究. 西北植物学报, 2016, 36: 1417-1426.
Wang C L, Wang Z L, Chen T, Yang J L, Chen W J, Mu J X, Tian J H, Zhao X G. Relationship between yield and photosynthesis of leaf and silique of different Brassica napus L. varieties during relationship period. Acta Bot Boreali-Occident Sin, 2016, 36: 1417-1426 (in Chinese with English abstract).
[13] 冷锁虎, 朱耕如, 邓秀兰. 油菜籽粒干物质来源的研究. 作物学报, 1992, 18: 250-257.
Leng S H, Zhu G R, Deng X L. Studies on the sources of the dry matter in the seed of rapeseed. Acta Agron Sin, 1992, 18: 250-257 (in Chinese with English abstract).
[14] Iglesias F M, Miralles J. Changes in seed weight in response to different sources: sink ratio in oilseed rape. Int J Agric Res Innov Technol, 2014, 4: 44-52.
[15] Zhang H P, Flottmann S. Source-sink manipulations indicate seed yield in canola is limited by source availability. Eur J Agron, 2018, 96: 70-76.
[16] 郎有忠, 王美娥, 吕川根, 张祖建, 朱庆森. 水稻叶片形态、群体结构和产量对种植密度的响应. 江苏农业学报, 2012, 28(1): 7-11.
Lang Y Z, Wang M E, Lyu C G, Zhang Z J, Zhu Q S. Response of leaf morphology, population structure and yield to planting density in rice. Jiangsu J Agric Sci, 2012, 28(1): 7-11 (in Chinese with English abstract).
[17] 周萍, 崔岭, 王海燕, 钱素菊, 崔亚坤, 陈艳萍, 袁建华. 大豆玉米带状复种模式下种植密度对玉米植株生长和产量的影响. 中国农学通报, 2023, 39(14): 1-5.
doi: 10.11924/j.issn.1000-6850.casb2022-1029
Zhou P, Cui L, Wang H Y, Qian S J, Cui Y K, Chen Y P, Yuan J H. Effects of planting density on plant growth and yield of maize in maize-soybean strip intercropping system. Chin Agric Sci Bull, 2023, 39(14): 1-5 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb2022-1029
[18] 王锐. 油菜群体冠层结构特性及光能利用率的研究. 华中农业大学博士学位论文, 湖北武汉, 2015.
Wang R. The Study on Characteristics of the Canopy Structure and Radiation Use Efficiency for Canola Plant Population. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[19] Edwards J, Hertel K. Canola Growth & Development. Australia: Department of Primary Industries State of New South Wales, 2011. pp 39-54.
[20] Li Y Y, Ming B, Fan P P, Liu Y, Wang K R, Hou P, Xue J, Li S K, Xie R Z. Quantifying contributions of leaf area and longevity to leaf area duration under increased planting density and nitrogen input regimens during maize yield improvement. Field Crops Res, 2022, 283: 108551.
[21] 傅寿仲. 油菜的光合作用和产量形成. 江苏农业科学, 1980, (6): 37-45.
Fu S Z. Photosynthesis and yield formation of rapeseed. Jiangsu Agric Sci, 1980, (6): 37-45 (in Chinese).
[22] 刘后利. 实用油菜栽培学. 上海: 上海科学技术出版社, 1987. pp 212-555.
Liu H L. Practical Cultivation of Rapeseed. Shanghai: Shanghai Scientific and Technical Publishers, 1987. pp 212-555 (in Chinese).
[23] 龚宏伟, 张振兰. 甘蓝型杂交油菜角果的源库特性研究. 扬州大学学报(农业与生命科学版), 2011, 32(4): 51-54.
Gong H W, Zhang Z L. Characteristics of source-sink of pods in hybrid Brassica napus L. J Yangzhou Univ (Agric Life Sci Edn), 2011, 32(4): 51-54 (in Chinese with English abstract).
[24] 崔晓峰, 黄海. 叶发育的遗传调控机理研究进展. 植物生理学报, 2011, 47: 631-640.
Cui X F, Huang H. Recent progress in genetic control of leaf development. Plant Physiol J, 2011, 47: 631-640 (in Chinese with English abstract).
[25] 李丹. 玉米叶片数遗传结构的解析及目标QTL的克隆. 中国农业大学博士学位论文, 北京, 2015.
Li D. Analysis of Genetic structure of Maize Leaf Number and Target QTL Cloning. PhD Dissertation of China Agricultural University, Beijing, China, 2015 (in Chinese with English abstract).
[26] 张宇文, 张玉俊, 王可珍, 郭亚茹, 赵志忠. 甘蓝型油菜生育后期叶片对产量的影响. 中国油料作物学报, 1996, 18(1): 89-90.
Zhang Y W, Zhang Y J, Wang K Z, Guo Y R, Zhao Z Z. Leaves effect on yield of rape (Brassica napus) in late development phase. Chin J Oil Crop Sci, 1996, 18(1): 89-90 (in Chinese with English abstract).
[27] 胡宝成, 李强生, 赵仁渠, 陈凤祥. 花期去叶对甘蓝型杂交油菜经济性状和品质性状的影响. 安徽农业科学, 1991, 19(3): 235-238.
Hu B C, Li Q S, Zhao R Q, Chen F X. Effect of removing leaves on economy & quality properties of hybrid B. napus at the flowering stage. J Anhui Agric Sci, 1991, 19(3): 235-238 (in Chinese with English abstract).
[28] 龚月桦, 高俊凤. 高等植物光合同化物的运输与分配. 西北植物学报, 1999, 19: 564-570.
Gong Y H, Gao J F. Transport and partitioning of photo assimilate in higher plant. Acta Bot Boreali-Occident Sin, 1999, 19: 564-570 (in Chinese with English abstract).
[29] 李俊, 张春雷, 赵懿, 马霓, 余利平. 油菜短柄叶光合衰退及其对产量的影响. 中国油料作物学报, 2011, 33: 464-469.
Li J, Zhang C L, Zhao Y, Ma N, Yu L P. Short-stalk leaf photosynthesis declining and its effect on rapeseed yield. Chin J Oil Crop Sci, 2011, 33: 464-469 (in Chinese with English abstract).
[30] 陈传永, 侯海鹏, 李强, 朱平, 张振勇, 董志强, 赵明. 种植密度对不同玉米品种叶片光合特性与碳、氮变化的影响. 作物学报, 2010, 36: 871-878.
Chen C Y, Hou H P, Li Q, Zhu P, Zhang Z Y, Dong Z Q, Zhao M. Effects of panting density on photosynthetic characteristics and changes of carbon and nitrogen in leaf of different corn hybrids. Acta Agron Sin, 2010, 36: 871-878 (in Chinese with English abstract).
[31] 耿广涛, 宋桂成, 董文庆, 江晨亮, 许晓明, 唐灿明. 种植密度对不同叶位玉米叶片光合特性的影响. 核农学报, 2015, 29: 1589-1595.
doi: 10.11869/j.issn.100-8551.2015.08.1589
Geng G T, Song G C, Dong W Q, Jiang C L, Xu X M, Tang C M. Effect of different plant density on leaves photosynthesis of maize (Zea mays L.) at different leaves position. J Nucl Agric Sci, 2015, 29: 1589-1595 (in Chinese with English abstract).
[32] 吴含玉, 张雅君, 张旺锋, 王克如, 李少昆, 姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制. 作物学报, 2019, 45: 248-255.
doi: 10.3724/SP.J.1006.2019.83042
Wu H Y, Zhang Y J, Zhang W F, Wang K R, Li S K, Jiang C D. Photosynthetic characteristics of senescent leaf induced by high planting density of maize at heading stage in the field. Acta Agron Sin, 2019, 45: 248-255 (in Chinese with English abstract).
[33] 田永超, 曹卫星, 王绍华, 朱艳. 不同水、氮条件下水稻不同叶位水、氮含量及光合速率的变化特征. 作物学报, 2004, 30: 1129-1134.
Tian Y C, Cao W X, Wang S H, Zhu Y. Variation of water and nitrogen contents & photosynthesis at different position leaves of rice under different soil water and nitrogen conditions. Acta Agron Sin, 2004, 30: 1129-1134 (in Chinese with English abstract).
[34] 张雪松, 申双和, 宋洁, 周晓冬, 李永秀. 棉花冠层阴阳叶空间分布的日变化及其对光合作用的影响. 大气科学学报, 2010, 33: 180-185.
Zhang X S, Shen S H, Song J, Zhou X D, Li Y X. Evaluation of daily gross canopy photosynthesis in a cotton field with a two- leaf-multilayer model. Trans Atmosph Sci, 2010, 33: 180-185 (in Chinese with English abstract).
[35] Chen S G, Shao B Y, Impens I, Ceulemans R. Effects of plant canopy structure on light interception and photosynthesis. J Quant Spectrosc Radiat Transfer, 1994, 52: 115-123.
[36] 陈新军, 戚存扣, 浦惠明, 张洁夫, 高建芹, 傅寿仲. 甘蓝型油菜抗倒性评价及抗倒性与株型结构的关系. 中国油料作物学报, 2007, 29: 54-57.
Chen X J, Qi C K, Pu H M, Zhang J F, Gao J Q, Fu S Z. Evaluation of lodging resistance in rapeseed (Brassica napus L.) and relationship between plant architecture and lodging resistance. Chin J Oil Crop Sci, 2007, 29: 54-57 (in Chinese with English abstract).
[37] 马霓, 李玲, 徐军, 李俊, 余利平, 李光明, 张春雷. 甘蓝型油菜抗倒伏性及农艺性状研究. 作物杂志, 2010, (6): 36-41.
Ma N, Li L, Xu J, Li J, Yu L P, Li G M, Zhang C L. Researches on the lodging resistance and agronomic traits of winter rape (Brassica napus L.). Crops, 2010, (6): 36-41 (in Chinese with English abstract).
[38] 王学芳, 郑磊, 张智, 张耀文, 田建华. 甘蓝型油菜抗倒性及其与株型结构的关系研究. 江西农业学报, 2016, 28(9): 9-13.
Wang X F, Zheng L, Zhang Z, Zhang Y W, Tian J H. Research on relationship between lodging resistance and plant architecture of Brassica napus. Acta Agric Jiangxi, 2016, 28(9): 9-13 (in Chinese with English abstract).
[39] 郭娜. 甘蓝型油菜株型和产量性状评价及全基因组关联分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2020.
Guo N. Comprehensive Evaluation and Genome-wide Association Study of Major Plant-type and Yield Traits in Brassica napus L. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2020 (in Chinese with English abstract).
[40] 郭娜, 左凯峰, 张淼, 张冰冰, 秦梦凡, 马宁, 刘翔, 李青青, 黄镇, 徐爱遐. 甘蓝型油菜主要株型和产量性状的综合分析. 西北农业学报, 2020, 29: 898-906.
Guo N, Zuo K F, Zhang M, Zhang B B, Qin M F, Ma N, Liu X, Li Q Q, Huang Z, Xu A X. Comprehensive analysis of major plant-type and yield traits in Brassica napus L. Acta Agric Boreali-Occident Sin, 2020, 29: 898-906 (in Chinese with English abstract).
[41] 王海琦. 减源对密植夏玉米茎秆性状与抗倒伏性能的调控机制研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2020.
Wang H Q. Regulation Mechanism of Reduced Source on Quality Characters and Lodging Resistance of Densely Planted Summer Maize Stalks. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2020 (in Chinese with English abstract).
[42] 王学芳, 田建华, 董育红, 关周博, 杨丽. 不同密度紧凑型油菜的源库特征及与收获指数的相关研究. 中国农学通报, 2020, 36(18): 33-38.
doi: 10.11924/j.issn.1000-6850.casb19040030
Wang X F, Tian J H, Dong Y H, Guan Z B, Yang L. Compact rapeseed under different densities: sink-source characteristics and their correlation with harvest index. Chin Agric Sci Bull, 2020, 36(18): 33-38 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb19040030
[43] Wu W, Duncan R W, Ma B L. Quantification of canola root morphological traits under heat and drought stresses with electrical measurements. Plant Soil, 2017, 415: 229-244.
[44] Wu W, Ma B L, Whalen J K. Enhancing rapeseed tolerance to heat and drought stresses in a changing climate: perspectives for stress adaptation from root system architecture. Adv Agron, 2018, 151: 87-157.
[45] Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol, 2006, 57: 675-709.
pmid: 16669778
[46] Wind J, Smeekens S, Hanson J. Sucrose: metabolite and signaling molecule. Phytochemistry, 2010, 71: 1610-1614.
doi: 10.1016/j.phytochem.2010.07.007 pmid: 20696445
[47] Kircher S, Schopfer P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc Natl Acad Sci USA, 2012, 109: 11217-11221.
doi: 10.1073/pnas.1203746109 pmid: 22733756
[48] 刘胜群, 宋凤斌, 王燕. 玉米根系性状与地上部性状的相关性研究. 吉林农业大学学报, 2007, 29: 1-6.
Liu S Q, Song F B, Wang Y. Correlations between characters of roots and those of aerial parts of maize varieties. J Jilin Agric Univ, 2007, 29: 1-6 (in Chinese with English abstract).
[1] ZHANG Gui-Qin, WANG Hong-Zhang, GUO Xin-Song, ZHU Fu-Jun, GAO Han, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Peng, REN Hao. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(9): 2323-2334.
[2] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[3] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[4] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[5] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[6] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[7] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[8] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[9] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[10] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[11] GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013.
[12] HAN Xiao-Chen, ZHANG Gui-Qin, WANG Ya-Hui, REN Hao, WANG Hong-Zhang, LIU Guo-Li, LIN Dian-Xu, WANG Zi-Qiang, ZHANG Ji-Wang, ZHAO Bin, REN Bao-Zhao, LIU Peng. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(7): 1776-1786.
[13] CAO Zi-Qi, ZHAO Xiao-Qing, ZHANG Xiang-Qian, WANG Jian-Guo, LI Juan, HAN Yun-Fei, LIU Dan, GAO Yan-Hua, LU Zhan-Yuan, REN Yong-Feng. Effects of nitrogen application levels on the accumulation, distribution of nitrogen, phosphorus and potassium, and the corresponding yield of Cyperus esculentus in sandy soil [J]. Acta Agronomica Sinica, 2024, 50(7): 1805-1817.
[14] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[15] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!