Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 459-469.doi: 10.3724/SP.J.1006.2025.41019

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping

ZHANG Chen-Yu1(), GE Jun-Yong2, CHU Jun-Cong1, WANG Xing-Yu2, ZHAO Bao-Ping3, YANG Ya-Dong1,*(), ZANG Hua-Dong1, ZENG Zhao-Hai1,*()   

  1. 1College of Agronomy and Biotechnology, China Agricultural University / Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
    2Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China
    3College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2024-03-10 Accepted:2024-10-25 Online:2025-02-12 Published:2024-11-12
  • Contact: E-mail: yadong_tracy@cau.edu.cn; E-mail: zengzhaohai@cau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFD1600702);China Agriculture Research System of MOF and MARA(CARS07-B-5);China Agriculture Research System of MOF and MARA(CARS07-A-6)

Abstract:

To evaluate the yield of a bean and cereal intercropping system and its relationship with root and soil enzyme characteristics, a two-year field experiment (2021-2022) was conducted in Zhangbei county, Hebei province, China. The study examined crop yield, root characteristics, and soil enzyme activities in oat and red kidney bean strip intercropping, with oat monoculture and red kidney bean monoculture as controls. The results showed that the land equivalent ratios (LER) for oat and red kidney bean intercropping were 1.07 and 1.08, respectively, over the two years. The partial land equivalent ratios (PLER) for oat were 0.63 and 0.72. While there was no significant difference in net income between intercropping and monoculture systems, the output-to-input ratio in the intercropping system was higher than in either monoculture. At the jointing stage, oat root length, surface area, and volume in intercropping were lower than in monoculture, but these parameters were higher at the filling stage in both the 0-10 cm and 10-20 cm soil layers. For intercropped red kidney bean, the dominance of root morphological parameters shifted to inferiority as the growth stage advanced. Relay intercropping had minimal effects on oat soil enzyme activities but significantly increased the activities of C, N, and ALP acquisition enzymes in the 0-10 cm and 10-20 cm soil layers at the flowering and filling stages of red kidney bean. Partial least squares path analysis revealed that oat yield was primarily influenced by root characteristics, while red kidney bean yield was predominantly regulated by soil enzyme activities. In conclusion, oat and red kidney bean strip intercropping enhances system productivity, provides higher economic benefits, and the yield dynamics of oat and red kidney bean are driven by different underlying mechanisms.

Key words: oat, red kidney bean, strip intercropping, yield, root system, soil enzyme activity

Fig. 1

Field planting diagram of oat and red kidney bean strip intercropping"

Table 1

Biomass, yield, and land equivalent ratio of oat and red kidney bean from 2021 to 2022"

年份
Year
作物
Crop
生物量
Biomass (kg hm-2)
产量
Yield (kg hm-2)
土地当量比
Land equivalent ratio
单作
Monoculture
间作
Intercropping
单作
Monoculture
间作Intercropping 偏土地当量比LERO/LERR 间作当量比 LER
2021 燕麦Oat 11,880.0±198.7 a 7737.5±124.6 b 3570.9±168.1 a 2245.9±27.8 b 0.63±0.03 1.07±0.02
红芸豆
Red kidney bean
6429.1±259.5 b 2352.0±129.5 a 1853.1±43.4 b 793.3±23.5 a 0.44±0.01
2022 燕麦Oat 9443.3±221.6 a 6876.9±129.7 b 3484.7±54.8 a 2523.2±14.2 b 0.72±0.01 1.08±0.01
红芸豆
Red kidney bean
5129.2±224.5 b 1930.2±52.0 a 2121.5±23.7 b 735.0±22.7 a 0.35±0.01

Table 2

Economic efficiency performances of different cropping systems from 2021 to 2022"

年份
Year
种植模式
Cropping system
总投入
Total input
(yuan hm-2)
总收入
Total income
(yuan hm-2)
净收入
Net income
(yuan hm-2)
产投比
Output/Input
2021 燕麦单作Monoculture oat 2575.0 12,374.5±495.2 b 9799.5±495.2 a 3.81±0.19 b
红芸豆单作Monoculture red kidney bean 3925.0 14,824.7±347.2 a 10,899.7±347.2 a 3.78±0.09 b
间作Intercropping 3250.0 14,182.6±206.8 a 10,932.6±206.8 a 4.36±0.06 a
2022 燕麦单作Monoculture oat 2575.0 11,645.7±190.1 c 9070.7±190.1 c 3.52±0.07 b
红芸豆单作Monoculture red kidney bean 3925.0 16,971.7±190.0 a 13,046.7±190.0 a 4.32±0.05 a
间作Intercropping 3250.0 14,319.7±226.0 b 11,069.7±226.0 b 4.41±0.07 a

Fig. 2

Root length (A and B), root surface area (C and D), and root volume (E and F) of oat and red kidney bean at different growth stages from 2021 to 2022 Values are means ± standard errors (n = 4). Jointing stage: oat jointing stage (corresponding to red kidney bean flowering stage); Filling stage: oat filling stage (corresponding to red kidney bean filling stage); MO: monoculture oat; IO: intercropped oat; MR: monoculture red kidney bean; IR: intercropped red kidney bean. Different lowercase letters indicate significant differences between relay intercropping and monoculture in the same soil layer (P < 0.05)."

Fig. 3

Soil C (A and B), N (C and D), and ALP (E and F) acquisition enzyme activities in soils of oat and red kidney bean at different growth stages Values are means ± standard errors (n = 4). Abbreviations and treatments are the same as those given in Fig. 2. Different lowercase letters indicate significant differences between relay intercropping and monoculture in the same soil layer (P < 0.05)."

Fig. 4

Partial least squares path model of root system and soil enzyme activities that influence the production of oat (A) and red kidney bean (B) The solid and dotted arrows represent positive and negative correlations, respectively. The detailed indicators were marked in gray bottom colour. The numbers on the arrows are standardized path coefficients (r), and the asterisks indicate the strength of the relationship (*: P < 0.05, **: P < 0.01)."

[1] Homulle Z, George T S, Karley A J. Root traits with team benefits: understanding belowground interactions in intercropping systems. Plant Soil, 2022, 471: 1-26.
[2] Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123-137.
[3] Gao X, Wu M, Xu R N, Wang X R, Pan R Q, Kim H J, Liao H. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS One, 2014, 9: e95031.
[4] Chapagain T, Riseman A. Intercropping wheat and beans: effects on agronomic performance and land productivity. Crop Sci, 2014, 54: 2285-2293.
[5] 杨亚东, 冯晓敏, 任长忠, 胡跃高, 张卫建, 曾昭海. 燕麦‖大豆、 燕麦‖绿豆系统种间互作对氮素吸收与结瘤固氮的影响. 中国农业科学, 2015, 48: 32-39.
doi: 10.3864/j.issn.0578-1752.2015.S.004
Yang Y D, Feng X M, Ren C Z, Hu Y G, Zhang W J, Zeng Z H. Effects of interspecific interactions on nitrogen absorption, nodulation and nitrogen fixation in oat ‖ soybean and oat ‖ mung bean intercropping systems. Sci Agric Sin, 2015, 48: 32-39 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.S.004
[6] Zheng B C, Zhou Y, Chen P, Zhang X N, Du Q, Yang H, Wang X C, Yang F, Xiao T, Li L, Yang W Y, Yong T W. Maize-legume intercropping promotes N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability. J Integr Agric, 2022, 21: 1755-1771.
[7] Gong X W, Dang K, Lyu S M, Zhao G, Tian L X, Luo Y, Feng B L. Interspecific root interactions and water-use efficiency of intercropped proso millet and mung bean. Eur J Agron, 2020, 115: 126034.
[8] McCormack M L, Adams T S, Smithwick E A H, Eissenstat D M. Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology, 2014, 95: 2224-2235.
pmid: 25230473
[9] Hassan A, Dresbøll D B, Rasmussen C R, Lyhne-Kjærbye A, Nicolaisen M H, Stokholm M S, Lund O S, Thorup-Kristensen K. Root distribution in intercropping systems—a comparison of DNA based methods and visual distinction of roots. Arch Agron Soil Sci, 2021, 67: 15-28.
[10] Xia H Y, Zhao J H, Sun J H, Bao X G, Christie P, Zhang F S, Li L. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Res, 2013, 150: 52-62.
[11] Ehrmann J, Ritz K. Plant: soil interactions in temperate multi-cropping production systems. Plant Soil, 2014, 376: 1-29.
[12] Peng X Q, Wang W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of Northern China. Soil Biol Biochem, 2016, 98: 74-84.
[13] 张瑞, 焉学倩, 杨忠亮, 张丹丹, 闫梅霞, 王英平. 作物间作研究进展. 特产研究, 网络首发[2023-10-17], https://doi.org/10.16720/j.cnki.tcyj.2023.171.
Zhang R, Yan X Q, Yang Z L, Zhang D D, Yan M X, Wang Y P. Advances in study on intercropping of crops. Agric Res Arid Areas, Published online [2023-10-17], https://doi.org/10.16720/j.cnki.tcyj.2023.171 (in Chinese with English abstract).
[14] 覃潇敏, 郑毅, 汤利, 龙光强. 施氮对玉米. //马铃薯间作根际土壤酶活性和硝化势的影响 云南农业大学学报(自然科学), 2015, 30: 886-894.
Qin X M, Zheng Y, Tang L, Long G Q. Effects of nitrogen application rates on rhizosphere soil enzyme activity and potential nitrification in maize and potato intercropping. J Yunnan Agric Univ (Nat Sci), 2015, 30: 886-894 (in Chinese with English abstract).
[15] Wang Z G, Bao X G, Li X F, Jin X, Zhao J H, Sun J H, Christie P, Li L. Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant Soil, 2015, 391: 265-282.
[16] 罗志成. 北方旱地农业研究的进展与思考. 干旱地区农业研究, 1994, 12(1): 4-13.
Luo Z C. Progress and consideration of dryland farming research in North China. Agric Res Arid Areas, 1994, 12(1): 4-13 (in Chinese).
[17] 冯文豪, 佟越强, 杨亚东, 葛军勇, 臧华栋, 曾昭海. 全球燕麦生产时空演变规律及对中国的启示. 麦类作物学报, 2022, 42: 902-910.
Feng W H, Tong Y Q, Yang Y D, Ge J Y, Zang H D, Zeng Z H. Spatial-temporal evolution characteristics of global oat production and its enlightment to China. J Triticeae Crops, 2022, 42: 902-910 (in Chinese with English abstract).
[18] Sadras V O, Mahadevan M, Zwer P K. Oat phenotypes for drought adaptation and yield potential. Field Crops Res, 2017, 212: 135-144.
[19] 畅建武, 郝晓鹏, 王燕, 杨伟, 郜欣. 红芸豆氮磷钾肥效试验研究. 中国农学通报, 2015, 31(15): 108-113.
doi: 10.11924/j.issn.1000-6850.casb14120084
Chang J W, Hao X P, Wang Y, Yang W, Gao X. Fertilizer efficiency experiment of nitrogen phosphorus and potassium on red kidney bean. Chin Agric Sci Bull, 2015, 31(15): 108-113 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb14120084
[20] Ma H Y, Zhou J, Ge J Y, Nie J W, Zhao J, Xue Z Q, Hu Y G, Yang Y D, Peixoto L, Zang H D, Zeng Z H. Intercropping improves soil ecosystem multifunctionality through enhanced available nutrients but depends on regional factors. Plant Soil, 2022, 480: 71-84.
[21] Mead R, Willey R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp Agric, 1980, 16: 217-228.
[22] 王月, 张鹏鹏, 施磊, 臧华栋, 葛军勇, 曾昭海, 杨亚东. 北方半干旱区燕麦带状间作模式构建及经济效益分析. 山西农业大学学报(自然科学版), 2022, 42(5): 55-65.
Wang Y, Zhang P P, Shi L, Zang H D, Ge J Y, Zeng Z H, Yang Y D. Construction and economic benefits analysis of oat strip intercropping model of oat-based strip intercropping systems in the semi-arid area of northern China. J Shanxi Agric Univ (Nat Sci Edn), 2022, 42(5): 55-65 (in Chinese with English abstract).
[23] Saraswati S, Parsons C T, Strack M. Access roads impact enzyme activities in boreal forested peatlands. Sci Total Environ, 2019, 651: 1405-1415.
doi: 10.1016/j.scitotenv.2018.09.280
[24] 汪雪, 刘晓静, 王静, 童长春, 吴勇. 紫花苜蓿-燕麦连续间作下根系及土壤养分时空变化特征. 应用生态学报, 2023, 34: 2683-2692.
doi: 10.13287/j.1001-9332.202310.017
Wang X, Liu X J, Wang J, Tong C C, Wu Y. Temporal-spatial variations of root and soil nutrient under continuous intercropping of alfalfa and oat. Chin J Appl Ecol, 2023, 34: 2683-2692 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.202310.017
[25] 赵财, 周海燕, 柴强, 黄高宝, 刘辉娟, 朱静. 不同供水水平下丁香酚和间作蚕豆对小麦根系生长的互作效应. 草业学报, 2014, 23(2): 133-139.
doi: 10.11686/cyxb20140216
Zhao C, Zhou H Y, Chai Q, Huang G B, Liu H J, Zhu J. Effects of eugenol and intercropped faba-bean on wheat root growth under different water supply conditions. Acta Pratac Sin, 2014, 23(2): 133-139 (in Chinese with English abstract).
[26] 王婷, 王强学, 李永梅, 王自林, 肖靖秀, 范茂攀. 玉米大豆间作对作物根系及土壤团聚体稳定性的影响. 云南农业大学学报(自然科学), 2021, 36: 507-515.
Wang T, Wang Q X, Li Y M, Wang Z L, Xiao J X, Fan M P. Effect of maize and soybean intercropping on root system and soil aggregate stability. J Yunnan Agric Univ (Nat Sci), 2021, 36: 507-515 (in Chinese with English abstract).
[27] 鲍根生, 李媛, 冯晓云, 张鹏, 孟思宇. 高寒区氮添加和间作种植互作对燕麦和豌豆根系构型影响的研究. 草业学报, 2024, 33(3): 73-84.
doi: 10.11686/cyxb2023155
Bao G S, Li Y, Feng X Y, Zhang P, Meng S Y. Interactive effects of intercropping patterns and nitrogen addition on root architectural characteristics of oat and pea in an alpine region. Acta Pratac Sin, 2024, 33(3): 73-84 (in Chinese with English abstract).
[28] 朱亚琼, 郑伟, 王祥, 关正翾. 混播方式对豆禾混播草地植物根系构型特征的影响. 草业学报, 2018, 27(1): 73-85.
doi: 10.11686/cyxb2017110
Zhu Y Q, Zheng W, Wang X, Guan Z X. Effects plant spacing pattern on root morphological and architectural characteristics of legume-grass mixtures. Acta Pratac Sin, 2018, 27(1): 73-85 (in Chinese with English abstract).
[29] 马忠明, 杜少平, 王平, 包兴国. 长期定位施肥对小麦玉米间作土壤酶活性的影响. 核农学报, 2011, 25: 796-801.
Ma Z M, Du S P, Wang P, Bao X G. Effects of long-term located fertilization on soil enzymatic activities for wheat-maize intercropping in irrigated desert soils. J Nucl Agric Sci, 2011, 25: 796-801 (in Chinese with English abstract).
doi: 10.11869/hnxb.2011.04.0796
[30] 王庆宇, 李立军, 阮慧, 周红生, 李晓婷. 旱地燕麦间作对土壤酶活性、微生物含量及产量的影响. 干旱地区农业研究, 2019, 37(2): 179-184.
Wang Q Y, Li L J, Ruan H, Zhou H S, Li X T. Effects of intercropping of oat on soil enzyme activity, microbial content and yield in arid land. Agric Res Arid Areas, 2019, 37(2): 179-184 (in Chinese with English abstract).
[31] Sinsabaugh R L, Hill B H, Follstad Shah J J. Eco enzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462: 795-798.
[32] 马怀英, 王上, 杨亚东, 冯晓敏, 曾昭海, 任长忠, 臧华栋, 胡跃高. 燕麦与豆科作物间作的产量、经济效益与碳足迹分析. 中国农业大学学报, 2021, 26(8): 23-32.
Ma H Y, Wang S, Yang Y D, Feng X M, Zeng Z H, Ren C Z, Zang H D, Hu Y G. Intercropping of oat with mung bean, peanut, and soybean: yield advantages, economic benefits and carbon footprints. J China Agric Univ, 2021, 26(8): 23-32 (in Chinese with English abstract).
[33] 朱珍勇, 高文道, 王晓云, 周明, 徐永忠. 配方施肥模式对南粳9108产量和产投比的影响. 农业科技通讯, 2023, (11): 56-60.
Zhu Z Y, Gao W D, Wang X Y, Zhou M, Xu Y Z. Effect of formulated fertilization mode on the yield and input-output ratio of Nanjing 9108. Bull Agric Sci Technol 2023, (11): 56-60 (in Chinese).
[34] 杜文盼, 赵桂琴, 柴继宽, 杨莉, 张建贵, 史怡超, 张官禄. 根系分隔方式对燕麦/豌豆间作地上生物量、土壤养分及根系性状的影响. 草业学报, 2024, 33(8): 25-36.
doi: 10.11686/cyxb2023370
Du W P, Zhao G Q, Chai J K, Yang L, Zhang J G, Shi Y C, Zhang G L. Effects of root separation on aboveground biomass, soil nutrient contents, and root characters of intercropped oat and pea. Acta Pratac Sin, 2024, 33(8): 25-36 (in Chinese with English abstract).
[35] 彭良斌, 周杰, 马怀英, 臧华栋, 靳建刚, 薛志强, 杨亚东, 曾昭海. 燕麦与马铃薯带状间作产量优势及土地利用率. 中国农业大学学报, 2023, 28(3): 38-49.
Peng L B, Zhou J, Ma H Y, Zang H D, Jin J G, Xue Z Q, Yang Y D, Zeng Z H. Yield advantage and land utilization of oat and potato strip intercropping system. J China Agric Univ, 2023, 28(3): 38-49 (in Chinese with English abstract).
[36] 冯晓敏, 杨永, 臧华栋, 钱欣, 胡跃高, 宋振伟, 张卫建, 曾昭海. 燕麦花生间作系统作物氮素累积与转移规律. 植物营养与肥料学报, 2018, 24: 617-624.
Feng X M, Yang Y, Zang H D, Qian X, Hu Y G, Song Z W, Zhang W J, Zeng Z H. Characteristics of crop nitrogen accumulation and nitrogen transfer in oat and peanut intercropping system. J Plant Nutr Fert, 2018, 24: 617-624 (in Chinese with English abstract).
[37] Qian X, Zang H D, Xu H S, Hu Y G, Ren C Z, Guo L C, Wang C L, Zeng Z H. Relay strip intercropping of oat with maize, sunflower and mung bean in semi-arid regions of Northeast China: yield advantages and economic benefits. Field Crops Res, 2018, 223: 33-40.
[38] Yong Y, Hu Y G, Shahrajabian M H, Ren C Z, Guo L C, Wang C L, Zeng Z H. Organic matter, protein percentage, yield, competition and economics of oat-soybean and oat-groundnut intercropping systems in Northern China. Cercetari Agron Moldova, 2017, 50: 25-35.
[39] Tscherko D, Rustemeier J, Richter A, Wanek W, Kandeler E. Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur J Soil Sci, 2003, 54: 685-696.
[40] 李金婷, 覃潇敏, 覃宏宇, 农玉琴, 骆妍妃, 韦持章, 韦锦坚. 间作对玉米根系形态特征及其氮磷养分吸收的影响. 南方农业学报, 2022, 53: 1348-1356.
Li J T, Qin X M, Qin H Y, Nong Y Q, Luo Y F, Wei C Z, Wei J J. Effects of maize and soybean intercrop on maize root morphological traits and its nitrogen and phosphorus nutrient absorption. J South Agric, 2022, 53: 1348-1356 (in Chinese with English abstract).
[41] 邵泽强, 刘书奇, 勾千冬, 依德萍, 陆文龙. 施氮和种植模式对玉米/紫花苜蓿间作体系中作物产量、吸氮量和根系形态的影响. 东北农业科学, 2023, 48(4): 6-11.
Shao Z Q, Liu S Q, Gou Q D, Yi D P, Lu W L. Effects of nitrogen application and planting patterns on crop yield, nitrogen uptake and root morphology in a maize/alfalfa intercropping system. J Northeast Agric Sci, 2023, 48(4): 6-11 (in Chinese with English abstract).
[42] 赵建华, 孙建好, 陈亮之. 三种豆科作物与玉米间作对玉米生产力和种间竞争的影响. 草业学报, 2020, 29(1): 86-94.
doi: 10.11686/cyxb2019119
Zhao J H, Sun J H, Chen L Z. Productivity and interspecific competition of maize intercropped with faba bean, soybean or pea. Acta Pratac Sin, 2020, 29(1): 86-94 (in Chinese with English abstract).
[43] Liu S, Xu G X, Chen H H, Zhang M M, Cao X W, Chen M, Chen J, Feng Q H, Shi Z M. Contrasting responses of soil microbial biomass and extracellular enzyme activity along an elevation gradient on the eastern Qinghai-Tibetan Plateau. Front Microbiol, 2023, 14: 974316.
[44] 张卫信, 申智锋, 邵元虎, 时雷雷, 刘胜杰, 史楠楠, 傅声雷. 土壤生物与可持续农业研究进展. 生态学报, 2020, 40: 3183-3206.
Zhang W X, Shen Z F, Shao Y H, Shi L L, Liu S J, Shi N N, Fu S L. Soil biota and sustainable agriculture: a review. Acta Ecol Sin, 2020, 40: 3183-3206 (in Chinese with English abstract).
[1] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[2] LIU Ya-Long, WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SHANG Yong-Pan, YANG Xue-Hui, YIN Bo, ZHANG Dong-Ling, WANG Feng. Effects of nitrogen reduction on maize yield and N2O emission under green manure returning in Hexi oasis irrigation area [J]. Acta Agronomica Sinica, 2025, 51(3): 771-784.
[3] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[4] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[5] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 Japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[6] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[7] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[8] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[9] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
[10] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[11] QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502.
[12] CHEN Yu-Ting, DING Xiao-Yu, XU Ben-Bo, ZHANG Xue-Kun, XU Jin-Song, YIN Yan. Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2025, 51(2): 516-525.
[13] WANG Peng-Bo, ZHANG Dong-Xia, QIAO Chang-Chang, HUANG Ming, WANG He-Zheng. Effects of straw returning and phosphorus application on soil enzyme activity and yield formation of wheat in dry land of western Henan, China [J]. Acta Agronomica Sinica, 2025, 51(2): 534-547.
[14] ZHAO Li-Ming, DUAN Shao-Biao, XIANG Hong-Tao, ZHENG Dian-Feng, FENG Nai-Jie, SHEN Xue-Feng. Effects of alternate wetting and drying irrigation and plant growth regulators on photosynthetic characteristics and endogenous hormones of rice [J]. Acta Agronomica Sinica, 2025, 51(1): 174-188.
[15] WANG Li-Ping, LI Pan, ZHAO Lian-Hao, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, CHAI Qiang, YIN Wen. Response of senescence characteristics for maize leaves under different plastic mulching and using patterns in oasis irrigation areas of northwestern China [J]. Acta Agronomica Sinica, 2025, 51(1): 233-246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .