Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 516-525.doi: 10.3724/SP.J.1006.2025.44074

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.)

CHEN Yu-Ting1(), DING Xiao-Yu2, XU Ben-Bo1, ZHANG Xue-Kun1, XU Jin-Song1,*(), YIN Yan1,*()   

  1. 1College of Agronomy, Yangtze University / Key Laboratory of Green and Efficient Crop Production in the Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Wetland Ecology and Agricultural Use, Ministry of Education, Jingzhou 434025, Hubei, China
    2Institute of Oil Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Oil Crop Biology, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2024-05-04 Accepted:2024-09-18 Online:2025-02-12 Published:2024-09-30
  • Contact: E-mail: xujinsong@yangtzeu.edu.cn; E-mail: yinyan2@126.com
  • Supported by:
    Major Projects of Agricultural Biology Breeding of China(2023ZD04042);Planting Zoning of Rapeseed, Occurrence of Pests and Diseases and Technical Monitoring and Investigation of Disaster Resistant Varieties and Technology(152303046);Improving Rapeseed Yield Potential Ability in the Middle Reaches of the Yangtze River(152304045);Hubei Province Agriculture Extension Fund: Rapeseed Production Chain Technology Extenstion and Service

Abstract:

The Middle Yangtze River basin is the most important region for rapeseed production in China. To investigate the impact of spatiotemporal changes in rainfall and temperature on rapeseed production in this region, we conducted a study using the elite rapeseed variety Huayouza 12, the control variety for the Middle Yangtze River group in the national rapeseed regional trial. The variety was planted at six test sites from 2013/2014 to 2022/2023, during which we recorded yield, quality-related traits, and other agronomic characteristics. Simultaneously, we collected meteorological data from each test site. We then analyzed the relationships between climate variables, such as rainfall and temperature during critical growth stages, and agronomic traits, including yield. The results showed that over the past decade, annual average rainfall significantly decreased. Rainfall during the sowing stage increased significantly and exhibited considerable fluctuations, while it decreased markedly during the seedling, flowering, and maturation stages, with relatively stable levels during the silique-developing stage. Additionally, the annual average temperature across the six sites increased significantly. Temperatures during the sowing and seedling stages decreased by approximately 2°C, fluctuated dramatically during bolting and maturation stages each year, and increased by more than 2°C during the flowering stage. Multiple regression analysis revealed a significant correlation between increased precipitation during key growth periods and reduced yield, leading to rapeseed production decreases of 9.6%, 12.8%, and 6.7% in three separate years, respectively. Canonical correlation analysis indicated that rainfall during the sowing stage and average temperature during the seedling stage were negatively correlated with the number of siliques per plant but positively correlated with the number of seeds per silique and 1000-seed weight. Furthermore, there was a positive correlation between rainfall during the sowing and silique-developing stages, as well as average temperatures during the sowing, seedling, bolting, flowering, and silique-developing stages, and the incidence of Sclerotinia disease. Given the observed spatiotemporal trends in rainfall and temperature, we suggest that special attention should be given to waterlogging in rapeseed cultivation. This includes breeding varieties with improved waterlogging tolerance, enhancing drainage and irrigation capacity in paddy fields, and strengthening the prevention and control of secondary disasters such as Sclerotinia disease to minimize waterlogging damage and ensure high and stable seed yields in rapeseed.

Key words: rapeseed, yield, rainfall, waterlogging, temperature, agronomic traits, climate warming

Table 1

Key growth stages of rapeseed at six experimental sites from 2013/2014 to 2022/2023 (month/day)"

年份
Year
播种期
Sowing
出苗期
Seedling
抽薹期
Bolting
初花期
Flowering
角果期
Silique development
成熟期
Maturation
2013/2014 09/27-10/06 10/03-10/10 11/17-12/10 02/20-03/02 03/17-03/26 04/26-05/03
2014/2015 09/25-10/04 09/30-10/08 11/11-12/17 02/18-02/28 03/22-03/30 04/26-05/05
2015/2016 09/28-10/13 10/03-10/17 11/25-12/24 02/16-02/26 03/20-03/29 04/28-05/04
2016/2017 09/26-10/01 09/30-10/07 11/12-12/21 02/20-02/29 03/24-03/30 04/26-05/08
2017/2018 09/26-10/07 10/02-10/11 11/23-12/18 02/17-03/01 03/16-03/25 04/23-05/01
2018/2019 09/25-10/04 09/29-10/15 11/17-12/29 02/15-02/23 03/20-03/29 05/01-05/09
2019/2020 09/27-10/06 10/02-10/15 11/12-12/19 02/15-02/29 03/15-03/26 04/22-05/10
2020/2021 10/01-10/15 10/06-10/21 11/27-12/15 02/17-02/20 03/16-03/26 04/25-05/08
2021/2022 09/28-10/05 10/02-10/12 11/12-01/03 02/20-02/28 03/22-03/28 04/30-05/06
2022/2023 09/28-10/07 10/02-10/15 11/24-12/13 02/26-03/05 03/20-03/26 04/26-05/07

Fig. 1

Yield and climate change in 2014-2023"

Fig. 2

Trends in meteorological factors during key growth stages of rapeseed from 2013 to 2023 X1: Rainfall during sowing stage; X2: rainfall during seedling stage; X3: rainfall during bolting stage; X4: rainfall during flowering stage; X5: rainfall during silique development stage; X6: rainfall during maturation stage; X7: average temperature during the sowing stage; X8: average temperature of seedling stage; X9: average temperature during the bolting stage; X10: average temperature during flowering stage; X11: average temperature during silique development stage; X12: average temperature during maturation stage."

Table 2

The influence of more precipitation in different growth periods on important agronomic traits such as rapeseed yield and quality"

年份
Year
密度
Density
(×104 plants hm−2)
株高
Plant height
(cm)
单株角果数
Number of siliques per plant
角粒数
Number of seed per silique
千粒重
1000-seed weight
(g)
生育期
Growth period
(d)
产量
Yield
(kg hm−2)
含油量
Oil content
(%)
菌核病病指
Sclerotinia index of disease
2015/2016 (播种期和角果期降水偏多)
2015/2016 (more rainfall during sowing stage and silique development stage)
28.5±4.5 171.8±15.4 243.6±48.9 20.8±1.1 3.228±0.274 206.5±3.7 2333.1±328.3 41.4±0.8 14.3±13.3
2016/2017 (花期降水偏多)
2016/2017 (more rainfall during flowering stage)
28.5±7.5 185.4±19.7 257.8±131.3 20.9±1.4 3.458±0.261 212.4±4.1 2250.8±209.5 43.6±0.8 9.9±8.9
2020/2021 (播种期降水偏多)
2020/2021 (more rainfall during sowing stage)
25.5±3.0 182.9±24.9 216.2±52.0 22.4±2.5 3.772±0.225 207.2±5.8 2408.7±290.8 43.3±1.0 9.6±5.8
灾年平均
Disaster year average
27.0±6.0 180.0±20.0 239.2±88.0 21.3±1.9 3.486±0.338 208.7±5.3 2330.9±287.9 42.9±1.4 11.3±10.1
常年平均
Year-round average
30.0±4.5 186.8±13.4 254.4±41.0 20.8±1.9 3.658±0.394 210.8±5.6 2539.4±296.9 42.5±3.0 8.5±5.9
与播种期降雨量相关性
Correlation with the rainfall during sowing stage
0.034 -0.367** -0.230 0.073 -0.061 -0.317* -0.215 0.235 0.188
与花期降雨量相关性
Correlation with rainfall during flowering stage
0.049 -0.016 -0.176 0.158 0.018 0.042 -0.283* -0.154 0.250
与角果期降雨量相关性
Correlation with rainfall during silique development stage
-0.087 -0.184 -0.128 0.053 -0.059 -0.267* -0.327* 0.132 0.237
与苗期日均气温相关性
Correlation with the average daily temperature
0.141 0.165 0.034 -0.329* 0.015 0.050 -0.198 -0.047 -0.413**

Fig. 3

Structure diagram of the typical correlation between important traits and meteorological condition"

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
doi: 10.7505/j.issn.1007-9084.2018.05.001
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617 (in Chinese with English abstract).
[2] 王瑞元. 2022年我国粮油产销和进出口情况. 中国油脂, 2023, 48(6): 1-7.
Wang R Y. Production, marketing, import and export of grain and oil in China in 2022. China Oils Fats, 2023, 48(6): 1-7 (in Chinese).
[3] 殷艳, 尹亮, 张学昆, 郭静利, 王积军. 我国油菜产业高质量发展现状和对策. 中国农业科技导报, 2021, 23(8): 1-7.
Yin Y, Yin L, Zhang X K, Guo J L, Wang J J. Status and countermeasure of the high-quality development of rapeseed industry in China. J Agric Sci Technol, 2021, 23(8): 1-7 (in Chinese with English abstract).
[4] 王汉中. 入世后的中国油菜产业. 中国油料作物学报, 2002, 24(2): 82-86.
Wang H Z. Rapeseed of China after its entrance into WTO. Chin J Oil Crop Sci, 2002, 24(2): 82-86 (in Chinese with English abstract).
[5] Deng Z F, Wu X S, Villarini G, Wang Z L, Zeng Z Y, Lai C G. Stronger exacerbation of extreme rainfall at the hourly than daily scale by urbanization in a warming climate. J Hydrol, 2024, 633: 131025.
[6] Du J, Yu X J, Zhou L, Li X D, Ao T Q. Less concentrated precipitation and more extreme events over the Three River Headwaters region of the Tibetan Plateau in a warming climate. Atmos Res, 2024, 303: 107311.
[7] 舒章康, 李文鑫, 张建云, 金君良, 薛晴, 王银堂, 王国庆. 中国极端降水和高温历史变化及未来趋势. 中国工程科学, 2022, 24(5): 116-125.
doi: 10.15302/J-SSCAE-2022.05.014
Shu Z K, Li W X, Zhang J Y, Jin J L, Xue Q, Wang Y T, Wang G Q. Historical changes and future trends of extreme precipitation and high temperature in China. Strateg Study CAE, 2022, 24(5): 116-125 (in Chinese with English abstract).
[8] Sasidharan R, Bailey-Serres J, Ashikari M, Atwell B J, Colmer T D, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup K H, Hill R D, Holdsworth M J, Ismail A M, Licausi F, Mustroph A, Nakazono M, Pedersen O, Perata P, Sauter M, Shih M C, Sorrell B K, Striker G G, van Dongen J T, Whelan J, Xiao S, Visser E J W, Voesenek L A C J. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol, 2017, 214: 1403-1407.
doi: 10.1111/nph.14519 pmid: 28277605
[9] 赵国良, 高强, 姚小英, 温宏昌, 强玉柱, 王娟. 气候变暖对天水市作物生长的影响: 以冬油菜为例. 干旱地区农业研究, 2012, 30(6): 261-266.
Zhao G L, Gao Q, Yao X Y, Wen H C, Qiang Y Z, Wang J. Impact of climate warming on crop in Tianshui City: an example based on winter rape. Agric Res Arid Areas, 2012, 30(6): 261-266 (in Chinese with English abstract).
[10] 蒲金涌, 姚小英, 邓振镛, 姚玉璧, 王位泰, 张谋草. 气候变暖对甘肃冬油菜(Brassica compestris L.)种植的影响. 作物学报, 2006, 32: 1397-1401.
Pu J Y, Yao X Y, Deng Z Y, Yao Y B, Wang W T, Zhang M C. Impact of climate warming on winter rape planting in Gansu Province. Acta Agron Sin, 2006, 32: 1397-1401 (in Chinese with English abstract).
[11] 韩沁哲, 罗伯良, 周伟, 黄晚华, 陆魁东. 湖南省油菜生长期连阴雨气象灾害发生强度的时空特征. 湖南农业科学, 2012, (19): 93-96.
Han Q Z, Luo B L, Zhou W, Huang W H, Lu K D. Analysis of spatial-temporal features of occurring intensity of continuous rain in growth period of rape in Hunan province. Hunan Agric Sci, 2012, (19): 93-96 (in Chinese with English abstract).
[12] 程伦国, 刘德福, 郭显平, 吴立仁. 油菜受渍抑制天数指标试验研究. 中国农村水利水电, 2009, (7): 4-8.
Cheng L G, Liu D F, Guo X P, Wu L R. Experimental research on stress day index of rape suffering from continuous subsurface waterlogging. China Rural Water Hydropower, 2009, (7): 4-8 (in Chinese with English abstract).
[13] 汤畅, 吴小飞, 毛江玉, 张冠舜. 2014年夏季长江流域降水季节内振荡的环流分析. 高原山地气象研究, 2021, 41(2): 10-22.
Tang C, Wu X F, Mao J Y, Zhang G S. Circulation analysis of intraseasonal oscillation of precipitation in the Yangtze River valley in the summer of 2014. Plateau Mount Meteorol Res, 2021, 41(2): 10-22 (in Chinese with English abstract).
[14] 中国人民共和国农业农村部. NY/T 415-2000低芥酸低硫苷油菜籽. 北京: 中国农业出版社, 2000.
Ministry of Agriculture and Rural Affairs, the People’s Republic of China. NY/T 415-2000 Low Eruic Acid Low Glucosinolate rapeseed. Beijing: China Agriculture Press, 2000 (in Chinese).
[15] 中华人民共和国农业农村部. 油菜品种菌核病抗性鉴定技术规程. 北京: 中国农业出版社, 2017. pp 3-7.
Ministry of Agriculture and Rural Affairs, the People’s Republic of China. Code of practice for identification of resistance to Sclerotinia sclerotiorum in oilseed rape. Beijing: China Agriculture Press, 2017. pp 3-7 (in Chinese).
[16] 戴清明, 吕爱钦, 何维君, 谢年保, 陈欣, 张志远, 匡朝凌, 瞿科. 洞庭湖区油菜主要气象灾害发生规律与减灾避灾对策. 作物研究, 2006, 20(1): 60-63.
Dai Q M, Lyu A Q, He W J, Xie N B, Chen X, Zhang Z Y, Kuang Z L, Qu K. The rule of principle weather disaster for rape planting in Dongting Lake region and the countermeasures to relief and avoid the disaster. Crop Res, 2006, 20(1): 60-63 (in Chinese).
[17] 唐海明, 帅细强, 肖小平, 殷玉梁, 黄桂林, 杨光立, 汤文光. 2010年湖南省农业气象灾害分析及减灾对策. 中国农学通报, 2012, 28(12): 284-290.
Tang H M, Shuai X Q, Xiao X P, Yin Y L, Huang G L, Yang G L, Tang W G. Analysis and countermeasures on the agro- meteorological disasters of Hunan province in 2010. Chin Agric Sci Bull, 2012, 28(12): 284-290 (in Chinese with English abstract).
[18] Liu W W, Chen Y Y, Sun W W, Huang R, Huang J F. Mapping waterlogging damage to winter wheat yield using downscaling- merging satellite daily precipitation in the middle and lower reaches of the Yangtze River. Remote Sens, 2023, 15: 2573.
[19] 吴贤云, 丁一汇, 王琪, 叶成志. 近40年长江中游地区旱涝特点分析. 应用气象学报, 2006, 17: 19-28.
Wu X Y, Ding Y H, Wang Q, Ye C Z. Characteristics of the recent 40-year flood/drought over the middle reaches of the Yangtze. J Appl Meteorol Sci, 2006, 17: 19-28 (in Chinese with English abstract).
[20] 陈鹏运. 湖南油菜生产主要气象灾害与应对措施. 农业科技通讯, 2021, (10): 216-220.
Chen P Y. Main meteorological disasters in rape production in Hunan province and countermeasures. Bull Agric Sci Technol, 2021, (10): 216-220 (in Chinese with English abstract).
[21] 何泽威, 丁晓雨, 徐劲松, 叶鹏, 贺继奎, 程勇, 许本波, 张学昆. 播种期降水偏多对油菜重要农艺性状和产量的影响. 中国油料作物学报, 2024, 46: 92-101.
doi: 10.19802/j.issn.1007-9084.2022248
He Z W, Ding X Y, Xu J S, Ye P, He J K, Cheng Y, Xu B B, Zhang X K.Effect of autumn continuously rainy weather which cause waterlogging in rapeseed (Brassica napus L.) traits and yield. Chin J Oil Crop Sci, 2024, 46: 92-101 (in Chinese with English abstract).
[22] 刘秋霞, 任涛, 韩上, 李小坤, 丛日环, 武际, 鲁剑巍. 苗期渍水对直播冬油菜产量和农学利用率的影响及油菜在不同氮肥施用下的响应. 中国油料作物学报, 2020, 42: 594-602.
Liu Q X, Ren T, Han S, Li X K, Cong R H, Wu J, Lu J W. Effects of waterlogging at seedling stage on yield and agronomy efficency of direct-sown winter rapeseed and its response to nitrogen application. Chin J Oil Crop Sci, 2020, 42: 594-602 (in Chinese with English abstract).
[23] 刘波, 魏全全, 鲁剑巍, 李小坤, 丛日环, 吴礼树, 徐维明, 杨运清, 任涛. 苗期渍水和氮肥用量对直播冬油菜产量及氮肥利用率的影响. 植物营养与肥料学报, 2017, 23: 144-153.
Liu B, Wei Q Q, Lu J W, Li X K, Cong R H, Wu L S, Xu W M, Yang Y Q, Ren T. Effects of waterlogging at the seedling stage and nitrogen application on seed yields and nitrogen use efficiency of direct-sown winter rapeseed (Brassica napus L.). J Plant Nutr Fert, 2017, 23: 144-153 (in Chinese with English abstract).
[24] Li L L, Zhang L, Tang J W, Xing H C, Zhao L, Jie H D, Jie Y C. Waterlogging increases greenhouse gas release and decreases yield in winter rapeseed (Brassica napus L.) seedlings. Sci Rep, 2023, 13: 18673.
[25] 高华东, 晏军, 苏荣瑞, 刘凯文, 周守华. 渍水对油菜抽薹期叶片光合参数及产量的影响. 湖北农业科学, 2018, 57(10): 39-44.
Gao H D, Yan J, Su R R, Liu K W, Zhou S H. Effects of waterlogging on leaf photosynthetic parameters and yields of oilseed rape at the bolting stage. Hubei Agric Sci, 2018, 57(10): 39-44 (in Chinese with English abstract).
[26] 杨奕涵, 马玉申, 揭红东, 赵龙, 揭雨成. 不同生育期渍水对油菜农艺性状和产量的影响. 安徽农业科学, 2022, 50(16): 20-22.
Yang Y H, Ma Y S, Jie H D, Zhao L, Jie Y C. Effects of waterlogging at different growth stages on agronomic characters and yield of rapeseed. J Anhui Agric Sci, 2022, 50(16): 20-22 (in Chinese with English abstract).
[27] 丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41: 894-903.
doi: 10.19802/j.issn.1007-9084.2019046
Cong R H, Zhang Z, Lu J W. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin. Chin J Oil Crop Sci, 2019, 41: 894-903 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2019046
[28] 宋楚崴, 曹宏鑫, 张文宇, 张伟欣, 陈魏涛, 冯春焕, 葛思俊. 施肥和花期渍水胁迫对油菜产量及其形成影响的模型研究. 中国农业科学, 2018, 51: 662-674.
doi: 10.3864/j.issn.0578-1752.2018.04.006
Song C W, Cao H X, Zhang W Y, Zhang W X, Chen W T, Feng C H, Ge S J. Modeling the effects of post-anthesis waterlogging stress under different fertilizer levels on rapeseed yield and its formation. Sci Agric Sin, 2018, 51: 662-674 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.04.006
[29] Sophie H, Saadia Z. Global risks report 2023. Geneva, Switzerland:The World Economic Forum, 2023 [2024-03-17]. https://www.weforum.org/reports.
[30] 蔡琳, 陶丽, 赵久伟, 张梦. 全球变暖、 AMO、IPO对全球陆地降水变化的相对贡献. 大气科学学报, 2022, 45: 755-767.
Cai L, Tao L, Zhao J W, Zhang M. Relative contributions of global warming, AMO and IPO to the changes of land precipitation. Trans Atmos Sci, 2022, 45: 755-767 (in Chinese with English abstract).
[31] Namazkar S, Stockmarr A, Frenck G, Egsgaard H, Terkelsen T, Mikkelsen T, Ingvordsen C H, Jørgensen R B. Concurrent elevation of CO2, O3 and temperature severely affects oil quality and quantity in rapeseed. J Exp Bot, 2016, 67: 4117-4125.
doi: 10.1093/jxb/erw180 pmid: 27222513
[32] Tian Z, Ji Y H, Sun L X, Xu X L, Fan D L, Zhong H L, Liang Z R, Gunther F. Changes in production potentials of rapeseed in the Yangtze River Basin of China under climate change: a multi-model ensemble approach. J Geogr Sci, 2018, 28: 1700-1714.
[33] 张学昆, 陈洁, 王汉中, 李加纳, 邹崇顺. 甘蓝型油菜耐湿性的遗传差异鉴定. 中国油料作物学报, 2007, 29: 204-208.
Zhang X K, Chen J, Wang H Z, Li J N, Zou C S. Genetic difference of waterlogging tolarance in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2007, 29: 204-208 (in Chinese with English abstract).
[34] 杨海云, 艾雪莹, Batool Maria, 刘芳, 蒯婕, 王晶, 汪波, 周广生. 油菜响应水分胁迫的生理机制及栽培调控措施研究进展. 华中农业大学学报, 2021, 40(2): 6-16.
Yang H Y, Ai X Y, Maria B, Liu F, Kuai J, Wang J, Wang B, Zhou G S. Progress on physiological mechanisms of response to water stress and measures of cultivation controlling in rapeseed. J Huazhong Agric Univ, 2021, 40(2): 6-16 (in Chinese with English abstract).
[35] Wang Z Y, Han Y L, Luo S, Rong X M, Song H X, Jiang N, Li C W, Yang L. Calcium peroxide alleviates the waterlogging stress of rapeseed by improving root growth status in a rice-rape rotation field. Front Plant Sci, 2022, 13: 1048227.
[36] Hussain M A, Naeem A, Pitann B, Mühling K H. High sulfur (S) supplementation imparts waterlogging tolerance to oilseed rape (Brassica napus L.) through upregulating S metabolism and antioxidant pathways. J Plant Growth Regul, 2023, 42: 7591-7605.
[1] HOU Tian-Yu, DU Xiao-Jing, ZHAO Zhi-Qiang, REYIM Anwar, YIDAYETULA Abula, BUHALIQIEMU Abulizi, YUAN Jie, ZHANG Yan-Hong, WANG Feng-Bin. Evaluation of cold tolerance of japonica rice varieties at germination stage and construction of identification system [J]. Acta Agronomica Sinica, 2025, 51(3): 812-822.
[2] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[3] LIU Ya-Long, WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SHANG Yong-Pan, YANG Xue-Hui, YIN Bo, ZHANG Dong-Ling, WANG Feng. Effects of nitrogen reduction on maize yield and N2O emission under green manure returning in Hexi oasis irrigation area [J]. Acta Agronomica Sinica, 2025, 51(3): 771-784.
[4] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[5] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[6] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 Japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[7] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[8] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[9] XIE Ling-Li, LI Yong-Ling, XU Ben-Bo, ZHANG Xue-Kun. Progress on waterlogging tolerance mechanism and genetic improvement in rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 287-300.
[10] SU Qing-Fang, SUN Xiao-Zhao, LIN Yang, FU Yan-Ping, CHENG Jia-Sen, XIE Jia-Tao, JIANG Dao-Hong, CHEN Tao. Serratia nematodiphila TG10 enhanced salt-alkali tolerance in rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 358-369.
[11] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[12] XIN Yu-Ning, REN Hao, WANG Hong-Zhang, LIANG Ming-Lei, YU Tao, LIU Peng. Effects of spraying 6-benzylaminopurine (6-BA) on grain filling and yield of summer maize under post-pollination high temperature stress [J]. Acta Agronomica Sinica, 2025, 51(2): 418-431.
[13] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
[14] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[15] ZHANG Chen-Yu, GE Jun-Yong, CHU Jun-Cong, WANG Xing-Yu, ZHAO Bao-Ping, YANG Ya-Dong, ZANG Hua-Dong, ZENG Zhao-Hai. Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping [J]. Acta Agronomica Sinica, 2025, 51(2): 459-469.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .