Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Comparison of low-fertility tolerance and response of sorghum and maize to soil fertility based on a long-term experiment on calcareous cinnamon soil

CHEN Hao-Xiang,WAN Xin-Jie,CHEN Qing,WANG Jin-Song,DONG Er-Wei,WANG Yuan,HUANG Xiao-Lei,LIU Qiu-Xia,JIAO Xiao-Yan*   

  1. College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
  • Received:2025-01-06 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-07-16
  • Supported by:
    This study was supported by the China Agriculture Research System of MOF and MARA (CARS-06-14.5-A20) and the Shanxi Key R & D Project (202302140601008).

Abstract:

To provide theoretical support for replacing maize with sorghum on marginal soils within the same region, this study compared the tolerance of sorghum and maize to low soil fertility and their responses to varying fertility levels based on a long-term field experiment. The experiment, initiated in 2011, included seven fertilization treatments: CK (no fertilization), PK (no nitrogen), NK (no phosphorus), NP (no potassium), NPK (complete NPK fertilizers), MS (straw return combined with organic fertilizer), and NPKMS (NPK fertilizers with straw return and organic fertilizer), resulting in a gradient of soil fertility levels. Yield and its components, growth and development, and nutrient uptake of both crops were comparatively analyzed. Results showed that under CK and PK treatments, sorghum yielded more than maize, whereas maize outperformed sorghum under the other treatments. Compared with the NPKMS treatment, sorghum yields under CK, PK, NK, and NP decreased by 52.4%–57.0%, 49.6%–51.0%, 18.4%–40.0%, and 4.1%–18.0%, respectively; in contrast, maize yields declined by 70.7%–73.2%, 68.4%–73.1%, 21.0%–44.3%, and 10.0%–22.4%, respectively. The CK, PK, and NK treatments significantly reduced panicle number per unit area and grain number per panicle in both crops. Additionally, CK and PK reduced maize grain weight but increased that of sorghum. Compared to NPKMS, CK, PK, and NK treatments delayed anthesis in both crops, with a more pronounced effect in maize. Before the four-leaf stage, sorghum exhibited lower crop growth rate (CGR) and lower N, P, and K uptake than maize. However, from the four-leaf stage to anthesis, sorghum surpassed maize in CGR, resulting in higher leaf area index (LAI), aboveground biomass, and nutrient uptake at anthesis. Sorghum was less affected by nutrient deficiency in terms of biomass accumulation and CGR. Overall, sorghum had a lower harvest index and lower use efficiencies for N, P, and K than maize. However, under CK and PK treatments, sorghum’s N and P harvest indices and nutrient use efficiencies were comparable to or even higher than those of maize. Correlation analysis among soil nutrient levels, grain yield and its components, and nutrient uptake and utilization revealed that soil nutrient content was positively correlated with yield, panicle number per unit area, and grain number per panicle in both crops, as well as with maize grain weight, but negatively correlated with sorghum grain weight. In conclusion, sorghum demonstrates greater yield potential and nutrient use efficiency than maize on marginal soils. Low soil fertility reduced panicle number and grain number per panicle in both crops; although it decreased maize grain weight, it increased that of sorghum. Low fertility also prolonged the vegetative growth period of both crops, with sorghum being less affected. These findings provide a theoretical basis for rational fertilization strategies and site-specific crop selection between sorghum and maize in the same region.

Key words: sorghum, maize, soil fertility, yield and its composition, growth and development, nutrient uptake

[1] 中华人民共和国农业农村部. 2019年全国耕地质量等级情况公报. 中国农业综合开发, 2020, (6): 612.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2019 national bulletin on cultivated land quality grades. Agric Comprehens Dev China, 2020, (6): 612 (in Chinese).

[2] 曹晓风, 孙波, 陈化榜, 周俭民, 宋显伟, 刘小京, 邓向东, 李秀军, 赵玉国, 张家宝, 等. 我国边际土地产能扩增和生态效益提升的途径与研究进展. 中国科学院院刊, 2021, 36: 336348.
Cao X F, Sun B, Chen H B, Zhou J M, Song X W, Liu X J, Deng X D, Li X J, Zhao Y G, Zhang J B, et al. Approaches and research progresses of marginal land productivity expansion and ecological benefit improvement in China. Bull Chin Acad Sci, 2021, 36: 336348 (in Chinese with English abstract).

[3] Swigonová Z, Lai J S, Ma J X, Ramakrishna W, Llaca V, Bennetzen J L, Messing J. Close split of sorghum and maize genome progenitors. Genome Res, 2004, 14: 1916–1923.

[4] Sarr P S, Ando Y, Nakamura S, Deshpande S, Subbarao G V. Sorgoleone release from sorghum roots shapes the composition of nitrifying populations, total bacteria, and Archaea and determines the level of nitrification. Biol Fert Soils, 2020, 56: 145–166.

[5] Zakir H A K M, Subbarao G V, Pearse S J, Gopalakrishnan S, Ito O, Ishikawa T, Kawano N, Nakahara K, Yoshihashi T, Ono H, et al. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by Sorghum (Sorghum bicolor). New Phytol, 2008, 180: 442–451. 

[6] Leon A, Nedumaran S. Estimating the effect of biological nitrification inhibition-enabled sorghum on nitrogen fertilizer consumption, life cycle GHG emissions, farmer’s benefit and fertilizer subsidy from Indian sorghum production. Sci Total Environ, 2024, 957: 177385.

[7] 陆玉芳, 施卫明. 生物硝化抑制剂的研究进展及其农业应用前景. 土壤学报, 2021, 58: 545557.
Lu Y F, Shi W M. Progress in research and agricultural application prospect of biological nitrification inhibitors. Acta Pedol Sin, 2021, 58: 545–557 (in Chinese with English abstract). 

[8] Coskun D, Britto D T, Shi W M, Kronzucker H J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants, 2017, 3: 17074.

[9] Negri L, Bosi S, Fakaros A, Ventura F, Magagnoli S, Masetti A, Lami F, Oliveti G, Poggi G M, Bertinazzi L, et al. Millets and sorghum as promising alternatives to maize for enhancing climate change adaptation strategies in the Mediterranean Basin. Field Crops Res, 2024, 318: 109563.

[10] Assefa Y, Roozeboom K L, Thompson C, Schlegel A, Stone L, Lingnfelser J E. Corn and Grain Sorghum Comparison: All Things Considered, New York: Academic Press, 2014. pp 7284.

[11]付江鹏, 贺正, 贾彪, 刘慧芳, 李振洲, 刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究. 作物学报, 2020, 46: 290299.
Fu J P, He Z, Jia B, Liu H F, Li Z Z, Liu Z. Critical nitrogen dilution curve and nitrogen nutrition diagnosis of maize with drip irrigation. Acta Agron Sin, 2020, 46: 290299 (in Chinese with English abstract).

[12]张帅, 张硕, 王劲松, 董二伟, 刘秋霞, 白文斌, 王媛, 蔡霞, 黄晓磊, 焦晓燕. 基于叶面积指数的高粱、玉米临界氮浓度稀释曲线模型构建与比较研究. 中国农业大学学报, 2025, 30(6): 5769.
Zhang S, Zhang S, Wang J S, Dong E W, Liu Q X, Bai W B, Wang Y, Cai X, Huang X L, Jiao X Y. Construction and comparison of the critical nitrogen dilution curves model of sorghum and maize based on leaf area index. J China Agric Univ, 2025, 30(6): 5769 (in Chinese with English abstract).

[13] Kunrath T R, Lemaire G, Teixeira E, Brown H E, Ciampitti I A, Sadras V O. Allometric relationships between nitrogen uptake and transpiration to untangle interactions between nitrogen supply and drought in maize and sorghum. Eur J Agron, 2020, 120: 126145. 

[14] Parra G, Borrás L, Gambin B L. Maize long-term genetic progress explains current dominance over sorghum in Argentina. Eur J Agron, 2020, 119: 126122. 

[15] Parra G, Borrás L, Gambin B L. Crop attributes explaining current grain yield dominance of maize over sorghum. Field Crops Res, 2022, 275: 108346. 

[16] Liben F M, Adisu T, Atnafu O, Bekele I, Berhe H, Wortmann C S. Maize and sorghum nutrient response functions for Ethiopia. Nutr Cycl Agroecosyst, 2020, 117: 401–410. 

[17] Baye W, Xie Q, Xie P. Genetic architecture of grain yield-related traits in Sorghum and maize. Int J Mol Sci, 2022, 23: 2405. 

[18] Ray D K, Mueller N D, West P C, Foley J A. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8: e66428. 

[19] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998. pp 12421243.

National Soil Census Office. China Soil. Beijing: China Agriculture Press, 1998. pp 1242–1243 (in Chinese).

[20] Singh D, Sharma J, Singh S P, Sadawarti M J, Kushwah N, Chouhan S, Parihar C, Chauhan A P. Physiological parameters and quality of potato under different planting dates. J Exp Agric Int, 2023, 45: 51–58.

[21]王劲松, 董二伟, 武爱莲, 白文斌, 王媛, 焦晓燕. 不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响. 中国农业科学, 2019, 52: 4166–4176.

Wang J S, Dong E W, Wu A L, Bai W B, Wang Y, Jiao X Y. Responses of fertilization on Sorghum grain yield, quality and nutrient utilization to soil fertility. Sci Agric Sin, 2019, 52: 4166–4176 (in Chinese with English abstract).

[22] 山仑, 徐炳成. 论高粱的抗旱性及在旱区农业中的地位. 中国农业科学, 2009, 42: 23422348.
Shan L, Xu B C. Discussion on drought resistance of sorghum and its status in agriculture in arid and semiarid regions. Sci Agric Sin, 2009, 42: 2342–2348 (in Chinese with English abstract). 

[23] Stone L R, Schlegel A J, Gwin R E, Khan A H. Response of corn, grain sorghum, and sunflower to irrigation in the high plains of Kansas. Agric Water Manag, 1996, 30: 251–259. 

[24] Norwood C A, Currie R S. Dryland corn vs. grain sorghum in western Kansas. J Prod Agric, 1997, 10: 152–157. 

[25] Farré I, Faci J M. Comparative response of maize (Zea mays L.) and Sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a mediterranean environment. Agric Water Manag, 2006, 83: 135–143. 

[26] Assefa Y, Carter P, Hinds M, Bhalla G, Schon R, Jeschke M, Paszkiewicz S, Smith S, Ciampitti I A. Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain. Sci Rep, 2018, 8: 4937.

[27] Mueller S M, Messina C D, Vyn T J. Simultaneous gains in grain yield and nitrogen efficiency over 70 years of maize genetic improvement. Sci Rep, 2019, 9: 9095.

[28] Wang L Q, Ma D L, Liu H Y, Hu S P, Yu X F, Gao J L. Soil fertility differences due to tillage methods modulate maize yield formation at different planting densities. Sci Rep, 2025, 15: 2437.

[29]杨文辉, 罗灏程, 董二伟, 王劲松, 王媛, 刘秋霞, 黄晓磊, 焦晓燕. 长期不同施肥和深翻对玉米高粱轮作体系作物钾利用及土壤钾形态的影响. 中国农业科学, 2024, 57: 2390–2403.

Yang W H, Luo H C, Dong E W, Wang J S, Wang Y, Liu Q X, Huang X L, Jiao X Y. Effects of long-term fertilization and deep plough on crop potassium utilization and soil potassium forms in maize-sorghum rotation system. Sci Agric Sin, 2024, 57: 2390–2403 (in Chinese with English abstract).

[30] Borrás L, Slafer G A, Otegui M E. Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Res, 2004, 86: 131–146.

[31]刘秋霞, 董二伟, 黄晓磊, 王劲松, 王媛, 焦晓燕. 不同生态区高粱籽粒产量和品质对氮肥施用的响应. 作物学报, 2023, 49: 27662776.
Liu Q X, Dong E W, Huang X L, Wang J S, Wang Y, Jiao X Y. Response of sorghum grain yield and quality to nitrogen application in different ecozones. Acta Agron Sin, 2023, 49: 27662776 (in Chinese with English abstract).

[32] van Oosterom E J, Hammer G L. Determination of grain number in sorghum. Field Crops Res, 2008, 108: 259–268.

[33] Moises C, Andrade F H, Monzon J P, Reussi Calvo N I, Cerrudo A. Nitrogen deficiency in maize fields of the southern pampas does not affect kernel number but reduces weight per kernel. Field Crops Res, 2024, 312: 109394.

[34] Adotey R E, Patrignani A, Bergkamp B, Kluitenberg G, Vara Prasad P V, Krishna Jagadish S V. Water-deficit stress alters intra-panicle grain number in sorghum. Crop Sci, 2021, 61: 2680–2695.

[35]张艳慧, 董二伟, 王劲松, 武爱莲, 王媛, 刘秋霞, 姜艳喜, 焦晓燕. 不同株高类型杂交高粱产量、养分吸收及品质对氮肥的响应. 植物营养与肥料学报, 2023, 29: 6880.
Zhang Y H, Dong E W, Wang J S, Wu A L, Wang Y, Liu Q X, Jiang Y X, Jiao X Y. Responses of yield, nutrient uptake, and quality of hybrid sorghum varieties with different shoot heights to nitrogen fertilizer in China. J Plant Nutr Fert2023, 29: 6880 (in Chinese with English abstract).

[36] Gambín B L, Borrás L. Plasticity of sorghum kernel weight to increased assimilate availability. Field Crops Res, 2007, 100: 272284.

[37] Wu Y Q, Liu J, Zhao L, Wu H, Zhu Y M, Ahmad I, Zhou G S. Abiotic stress responses in crop plants: a multi-scale approach. J Integr Agric, Published online [2024-09-11], https://doi.org/10.1016/j.jia.2024.09.003.

[38]张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响. 作物学报, 2022, 48: 23662376.
Zhang Z B, Qu X Y, Yu N N, Ren B C, Liu P, Zhao B, Zhang J W. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize. Acta Agron Sin, 2022, 48: 23662376 (in Chinese with English abstract).

[39]王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响. 作物学报, 2023, 49: 19681978.
Wang Y, Wang J S, Dong E W, Liu Q X, Wu A L, Jiao X Y. Effect of nitrogen application level on grain starch accumulation at grain filling stage in sorghum spikelets. Acta Agron Sin, 2023, 49: 19681978 (in Chinese with English abstract).

[40] McCabe C P, Burke J I. Impact of varying N fertiliser rate and timing on yield formation and grain filling in winter and spring-sown oats. Eur J Agron, 2022, 139: 126550.

[41]王劲松, 白歌, 张艳慧, 申甜雨, 董二伟, 焦晓燕. 长期不同施肥处理对高粱花后叶片衰老、抗氧化酶活性及产量的影响. 作物学报, 2023, 49: 845855.
Wang J S, Bai G, Zhang Y H, Shen T Y, Dong E W, Jiao X Y. Impacts of long-term fertilization on post-anthesis leaf senescence, antioxidant enzyme activities and yield in sorghum. Acta Agron Sin2023, 49: 845855 (in Chinese with English abstract).

[42]黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求. 中国农业科学, 2022, 55: 680691.

Huang Z F, Li L L, Hou L Y, Gao S, Ming B, Xie R Z, Hou P, Wang K R, Xue J, Li S K. Accumulated temperature requirement for field stalk dehydration after maize physiological maturity in different planting regions. Sci Agric Sin, 2022, 55: 680–691 (in Chinese with English abstract).

[1] ZHANG Jian-Peng, WANG Guo-Rui, BIE Hai, YE Fei-Yu, MA Chen-Chen, LIANG Xiao-Han, LU Xiao-Min, SHANG Xiao-Li, CAO Li-Ru. Transcription factor ZmMYB153 enhances drought tolerance in maize seedlings by regulating stomatal movement through ABA signaling [J]. Acta Agronomica Sinica, 2025, 51(7): 1827-1837.
[2] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[3] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
[4] YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513.
[5] YUAN Xin, ZHAO Zhuo-Fan, ZHAO Rui-Qing, LIU Xiao-Wei, ZHENG Ming-Min, LIU Yu-Sheng, DONG Hao-Sheng, DENG Li-Juan, CAO Mo-Ju, HUANG Qiang. Genetic analysis and molecular identification of a small kernel mutant mn-like1 in maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1569-1581.
[6] ZHANG Shi-Bo, LI Hong-Yan, LI Pei-Fu, REN Rui-Hua, LU Hai-Dong. Effects of a 3-4℃ increase in air temperature under natural conditions on root-shoot senescence and yield in plastic-film mulched maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1599-1617.
[7] ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 1618-1628.
[8] JIANG Yu-Zhou, WANG Jia, ZHANG Hong-Yuan, FENG Wen-Hao, WANG Peng, LI Yu-Yi. Effects of combined application of chemical fertilizer and organic materials on the soil bacterial and fungal community structure in maize fields [J]. Acta Agronomica Sinica, 2025, 51(5): 1378-1388.
[9] ZHOU Ke, CHEN Peng-Fei. Maize SPAD estimation by combining multi-source unmanned aerial vehicle remote sensing data and machine learning methods [J]. Acta Agronomica Sinica, 2025, 51(5): 1389-1399.
[10] SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298.
[11] MENG Fan-Qi, FANG Meng-Ying, LUO Yi, LU Lin, DONG Xue-Rui, WANG Ya-Fei, GUO Li-Na, YAN Peng, DONG Zhi-Qiang, ZHANG Feng-Lu. Effect of ethephon betaine salicylic acid mixture on heat resistance and yield of summer maize [J]. Acta Agronomica Sinica, 2025, 51(5): 1299-1311.
[12] LI Xue-Ting, REN Hao, WANG Hong-Zhang, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Ying, YAO Hai-Yan, LIU Peng. Effects of salt stress on photosynthetic performance and dry matter accumulation and distribution in leaves of different salt-tolerant maize varieties [J]. Acta Agronomica Sinica, 2025, 51(4): 1091-1101.
[13] SONG Li, LIU Guang-Zhou, ZHANG Hua, LU Ting-Qi, QING Chun-Yan, YANG Yun-Shan, GUO Xiao-Xia, Hu Dan, LI Shao-Kun, HOU Peng. Effects of drip fertigation with dense planting on yield and soil bacterial community of summer maize in Southwest China [J]. Acta Agronomica Sinica, 2025, 51(4): 992-1004.
[14] LI Hui-Min, XING Zhi-Peng, ZHANG Hai-Peng, WEI Hai-Yan, ZHANG Hong-Cheng, LI Guang-Yan. Application of chemical regulators and other cultivation measures in lodging resistance and high-yield cultivation of wheat [J]. Acta Agronomica Sinica, 2025, 51(4): 847-862.
[15] JIANG You, MA Xue-Rong, ZHANG Bo, LI Chen-Jian. Evaluation of salt tolerance and screening of salt-tolerant germplasm of Sorghum sudanese during seed germination period [J]. Acta Agronomica Sinica, 2025, 51(3): 835-844.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!