Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Identification of genetic loci related to low phosphorus tolerance at the seedling stage in wheat and analysis of candidate genes

CAO Zhi-Yang1,**,GAO Li-Feng2,**,JIANG Dong-Yan1,WANG Shu-Guang1,YANG Jin-Wen1,JIA Ji-Zeng2,LI Ning1,*,SUN Dai-Zhen1,*   

  1. 1 College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2025-03-27 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-07-22
  • Supported by:
    This study was supported by the National Key R&D Program of China (2022YFD1200201, 2024YFD1201100) and the Breeding Engineering Program of College of Agriculture, Shanxi Agricultural University (YZ2021-0).

Abstract:

Phosphorus (P) is an essential macronutrient for crop growth and development. However, only a small fraction of the phosphorus present in soil is effectively utilized by plants, and long-term application of P fertilizers can lead to environmental pollution. Therefore, it is of great significance to screen for varieties with strong tolerance to low-P conditions and to identify associated QTLs and candidate genes. In this study, a natural population consisting of 389 wheat varieties was used as experimental material. A three-year hydroponic experiment (2022, 2023, and 2024) was conducted under both normal-P (control) and low-conditions at the wheat seedling stage. Nine traits were measuredincluding seedling height, main root length, root number, shoot dry weight, root dry weight, total root length, root surface area, root diameter, and number of root tips. For each trait, the low-tolerance coefficient and BLUP values were calculated, and comprehensive evaluation D-values were derived based on these coefficients. Correlation analysis of BLUP values across the three environments revealed significant positive correlations among most traits, except for root diameter, under both low-and control conditions. Cluster analysis of the comprehensive D-values identified ‘Fengdecunmai 1’ as a strongly low-P-tolerant variety across all four environments (2022, 2023, 2024, and BLUP). A genome-wide association study (GWAS) was carried out using low-tolerance coefficients and D-values for the nine traits across the four environments, based on the 660K SNP chip. A total of 1,197 significant SNP markers were detected, forming 464 QTLs. Among these, 20 QTLs were repeatedly detected in two environments, and 7 QTLs were detected in three or four environments, with the phenotypic variance explained (R2) ranging from 4.09% to 10.58%. Based on previously published transcriptomic data and gene functional annotation, three candidate genes associated with low-P tolerance were identified within the regions of the seven QTLs. TraesCS4D02G022900 and TraesCS4D02G023300 encode F-box family proteins. Their Arabidopsis orthologAt5g21040, encodes a protein containing both WD40 and F-box domains and functions as a negative regulator of the P starvation response. TraesCS6D02G154700 encodes a receptor-like protein kinase involved in plant growth, development, and responses to stress and disease. Further analysis of the expression patterns of these three candidate genes in both leaves and roots under low-P stress revealed differential expression consistent with previous transcriptomic results. These findings provide a solid foundation for the development of low-P-tolerant wheat cultivars and for elucidating the functions and regulatory mechanisms of genes associated with low-P stress.

Key words: wheat, low phosphorus stress, GWAS, SNP, candidate genes

[1] Niu Y N, Xie G D, Xiao Y, Liu J Y, Zou H X, Qin K Y, Wang Y Y, Huang M D. The story of grain self-sufficiency: China’s food security and food for thought. Food Energy Secur, 2022, 11: e344.

[2] Zhang C, Tian H Q, Liu J Y, Wang S Q, Liu M L, Pan S F, Shi X Z. Pools and distributions of soil phosphorus in China. Glob Biogeochem Cycles, 2005, 19: 2004GB002296.

[3] 戈应同王宇蕴徐翔李兰高江飞徐智有机肥增强植物磷素吸收利用机制研究进展中国土壤与肥料, 2024, (7): 228–235.

Ge Y T, Wang Y Y, Xu X, Li L, Gao J F, Xu Z. Research progress on the mechanism of phosphorus absorption and utilization enhanced by organic fertilizer. Soil Fertil Sci China, 2024, (7):228–235 (in Chinese with English abstract).

[4] Wang D, Lyu S L, Jiang P, Li Y X. Roles, regulation, and agricultural application of plant phosphate transporters. Front Plant Sci, 2017, 8: 817.

[5] Liu C H, Yan H H, Wang W Y, Han R F, Li Z Y, Lin X, Wang D. Layered application of phosphate fertilizer increased winter wheat yield by promoting root proliferation and phosphorus accumulation. Soil Tillage Res, 2023, 225: 105546.

[6] Hari-Gowthem G, Kaur S, Sekhon B S, Sharma P, Chhuneja P. Genetic variation for phosphorus-use efficiency in diverse wheat germplasm. J Crop Improv, 2019, 33: 536–550.

[7] Li X, Chen Y L, Xu Y Z, Sun H Y, Gao Y M, Yan P, Song Q L, Li S Q, Zhan A. Genotypic variability in root morphology in a diverse wheat genotypes under drought and low phosphorus stress. Plants, 2024, 13: 3361.

[8] 卫乃翠, 陶金博, 苑名杨, 张彧, 开梦想, 乔玲, 武棒棒, 郝宇琼, 郑兴卫, 王娟玲, 等. 山西小麦苗期耐低磷特性及遗传分析中国农业科学, 2024, 57: 831–845.

Wei N C, Tao J B, Yuan M Y, Zhang Y, Kai M X, Qiao L, Wu B B, Hao Y Q, Zheng X W, Wang J L, et al. Seedling characterization and genetic analysis of low phosphorus tolerance in Shanxi varieties. Sci Agric Sin, 2024, 57: 831–845 (in Chinese with English abstract).

[9] Yang M J, Wang C R, Hassan M A, Li F J, Xia X C, Shi S B, Xiao Y G, He Z H. QTL mapping of root traits in wheat under different phosphorus levels using hydroponic culture. BMC Genomics, 2021, 22: 174.

[10] Yuan Y, Zhang M, Zheng H, Kong F, Guo Y, Zhao Y, An Y. Detection of QTL for phosphorus efficiency and biomass traits at the seedling stage in wheat. Cereal Res Commun, 2020, 48: 517–524.

[11] Dai Y, Li J F, Shi J T, Gao Y J, Ma H G, Wang Y G, Ma H X. Molecular characterization and marker development of the HMW-GS gene from Thinopyrum elongatum for improving wheat quality. Int J Mol Sci, 2023, 24: 11072.

[12] Lin X L, Xu Y X, Wang D Z, Yang Y M, Zhang X Y, Bie X M, Gui L X, Chen Z X, Ding Y L, Mao L, et al. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. Mol Plant, 2024, 17: 438–459.

[13] 李云香, 张思甜, 侯万伟, 张小娟. ICARDA引进小麦种质苗期的抗旱性鉴定及SNP关联分析. 作物学报, 2024, 50: 2742–2753.

Li Y X, Zhang S T, Hou W W, Zhang X J. Drought resistance identification and SNP association analysis of wheat germplasm introduced by ICARDA at seedling stage. Acta Agron Sin, 2024, 50: 2742–2753 (in Chinese with English abstract).

[14] Seren Ü, Vilhjálmsson B J, Horton M W, Meng D Z, Forai P, Huang Y S, Long Q, Segura V, Nordborg M. GWAPP: a web application for genome-wide association mapping in Arabidopsis. Plant Cell, 2012, 24: 4793–4805.

[15] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选作物学报, 2022, 48: 1813–1821.

Yang F, Zhang Z F, Nan B, Xiao B Z. Genome-wide association analysis and candidate gene selection of yield related traits in rice. Acta Agron Sin, 2022, 48: 1813–1821 (in Chinese with English abstract).

[16] Chao Z F, Chen Y Y, Ji C, Wang Y L, Huang X, Zhang C Y, Yang J, Song T, Wu J C, Guo L X, et al. A genome-wide association study identifies a transporter for zinc uploading to maize kernels. EMBO Rep, 2023, 24: e55542.

[17] Duan Z B, Zhang M, Zhang Z F, Liang S, Fan L, Yang X, Yuan Y Q, Pan Y, Zhou G A, Liu S L, et al. Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnol J, 2022, 20: 1807–1818.

[18] Wang Q S, Tian F, Pan Y C, Buckler E S, Zhang Z W. A SUPER powerful method for genome wide association study. PLoS One, 2014, 9: e107684.

[19] Lin Y, Chen G D, Hu H Y, Yang X L, Zhang Z L, Jiang X J, Wu F K, Shi H R, Wang Q, Zhou K Y, et al. Phenotypic and genetic variation in phosphorous-deficiency-tolerance traits in Chinese wheat landraces. BMC Plant Biol, 2020, 20: 330.

[20] Dharmateja P, Yadav R, Kumar M, Babu P, Jain N, Mandal P K, Pandey R, Shrivastava M, Gaikwad K B, Bainsla N K, et al. Genome-wide association studies reveal putative QTLs for physiological traits under contrasting phosphorus conditions in wheat (Triticum aestivum L.). Front Genet, 2022, 13: 984720.

[21] Maqbool S, Saeed F, Maqbool A, Khan M I, Ali M, Rasheed A, Xia X C, He Z H. Genome-wide association study for phosphate responsive root hair length and density in bread wheat. Curr Plant Biol, 2023, 35: 100290.

[22] 周思远, 毕惠惠, 程西永, 张旭睿, 闰永行, 王航辉, 毛培钧, 李海霞, 许海霞. 小麦耐低磷相关性状的全基因组关联分析植物遗传资源学报, 2020, 21: 431–445.

Zhou S Y, Bi H H, Cheng X Y, Zhang X R, Run Y H, Wang H H, Mao P J, Li H X, Xu H X. Genome-wide association study of low-phosphorus tolerance related traits in wheat. J Plant Genet Resour, 2020, 21: 431–445 (in Chinese with English abstract).

[23] Yang B, Qiao L, Zheng X W, Zheng J, Wu B B, Li X H, Zhao J J. Quantitative trait loci mapping of heading date in wheat under phosphorus stress conditions. Genes, 2024, 15: 1150.

[24] Tao R R, Ding J F, Li C Y, Zhu X K, Guo W S, Zhu M. Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage. Front Plant Sci, 2021, 12: 646175.

[25] Shi H W, Chen M, Gao L F, Wang Y X, Bai Y M, Yan H S, Xu C J, Zhou Y B, Xu Z S, Chen J, et al. Genome-wide association study of agronomic traits related to nitrogen use efficiency in wheat. Theor Appl Genet, 2022, 135: 4289–4302.

[26] 郑金凤, 米少艳, 婧姣姣, 白志英, 李存东. 小麦代换系耐低磷生理性状的主成分分析及综合评价. 中国农业科学, 2013, 46: 19841993.
Zheng J F, Mi S Y, Jing J J, Bai Z Y, Li C D. Principal component analysis and comprehensive evaluation on physiological traits of tolerance to low phosphorus stress in wheat substitution. Sci Agric Sin2013, 46: 19841993 (in Chinese with English abstract).

[27] Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models Usinglme4. J Stat Soft, 2015, 67: 1–48.

[28] Yu J M, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203–208.

[29] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945–959.

[30] Turner S D. qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. J Open Source Softw, 2018, 3: 731.

[31] 李龙小麦根系形态及抗旱相关生理性状的遗传解析中国农业科学院博士学位论文北京, 2017.
Li L. Genetic Dissection of Root Morphology and Drought-tolerant Related Physiological Traits in Wheat (Triticum aestivum L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2017 (in Chinese with English abstract).

[32] Luo D Z, Usman M, Pang F, Zhang W J, Qin Y, Li Q, Li Y R, Xing Y X, Dong D F. Comparative transcriptomic and physiological analyses unravel wheat source root adaptation to phosphorous deficiency. Sci Rep, 2024, 14: 11050.

[33] Li P C, Ma X L, Wang J C, Yao L R, Li B C, Meng Y X, Si E J, Yang K, Shang X W, Zhang X Y, et al. Integrated analysis of metabolome and transcriptome reveals insights for low phosphorus tolerance in wheat seedling. Int J Mol Sci, 2023, 24: 14840.

[34] Khan F, Siddique A B, Shabala S, Zhou M X, Zhao C C. Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants, 2023, 12: 2861.

[35] Fadiji A E, Yadav A N, Santoyo G, Babalola O O. Understanding the plant-microbe interactions in environments exposed to abiotic stresses: an overview. Microbiol Res, 2023, 271: 127368.

[36] Niu Y F, Chai R S, Jin G L, Wang H, Tang C X, Zhang Y S. Responses of root architecture development to low phosphorus availability: a review. Ann Bot, 2013, 112: 391408.

[37] Soumya P R, Burridge A J, Singh N, Batra R, Pandey R, Kalia S, Rai V, Edwards K J. Population structure and genome-wide association studies in bread wheat for phosphorus efficiency traits using 35 K Wheat Breeder’s Affymetrix array. Sci Rep, 2021, 11: 7601.

[38] 杨文博, 程云, 张艳, 林德立, 李雪, 邢国珍, 许君, 郑文明. 不同基因型小麦耐低磷生理机制研究河南农业科学, 2014, 43(5): 24–29.

Yang W B, Cheng Y, Zhang Y, Lin D L, Li X, Xing G Z, Xu J, Zheng W M. Physiological features of different wheat genotypes exposed to low phosphate under hydroponic culture. J Henan Agric Sci, 2014, 43(5): 24–29 (in Chinese with English abstract).

[39] 郑继周, 张廷封, 杨文涛, 郑天存. 国审小麦新品种: 丰德存麦1. 麦类作物学报, 2017, 37: 855.
Zheng J Z, Zhang T F, Yang W T, Zheng T C. A new wheat variety - Fengdecunmai 1 No. J Triticeaae Crops, 2017, 37: 855 (in Chinese with English abstract).

[40] Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker‐assisted selection in polyploid wheat. Plant Biotechnol J, 2020, 18: 1354–1360.

[41] Liu B, Xu W Y, Niu Y X, Li Q Y, Cao B L, Qi J Y, Zhao Y D, Zhou Y L, Song L, Cui D K, et al. TaTCP6 is required for efficient and balanced utilization of nitrate and phosphorus in wheat. Nat Commun, 2025, 16: 1683.

[42] Han Y C, Liu N, Li C, Wang S W, Jia L H, Zhang R, Li H, Tan J F, Xue H W, Zheng W M. TaMADS2-3D, a MADS transcription factor gene, regulates phosphate starvation responses in plants. Crop J, 2022, 10: 243253.

[43] Guo C J, Zhao X L, Liu X M, Zhang L J, Gu J T, Li X J, Lu W J, Xiao K. Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. Planta, 2013, 237: 11631178.

[44] Wu F K, Yang X L, Wang Z Q, Deng M, Ma J, Chen G Y, Wei Y M, Liu Y X. Identification of major quantitative trait loci for root diameter in synthetic hexaploid wheat under phosphorus-deficient conditions. J Appl Genet, 2017, 58: 437447.

[45] Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P. F-box proteins everywhere. Curr Opin Plant Biol, 2006, 9: 631638.

[46] Chen Z H, Jenkins G I, Nimmo H G. Identification of an F-box protein that negatively regulates P(i) starvation responses. Plant Cell Physiol, 2008, 49: 1902–1906.

[47] Akash, Parida A P, Srivastava A, Mathur S, Sharma A K, Kumar R. Identification, evolutionary profiling, and expression analysis of F-box superfamily genes under phosphate deficiency in tomato. Plant Physiol Biochem, 2021, 162: 349–362.

[48] Ouyang S Q, Liu Y F, Liu P, Lei G, He S J, Ma B, Zhang W K, Zhang J S, Chen S Y. Receptor‐like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J, 2010, 62: 316–329.

[49] Jose J, Ghantasala S, Roy Choudhury S. Arabidopsis transmembrane receptor-like kinases (RLKs): a bridge between extracellular signal and intracellular regulatory machinery. Int J Mol Sci, 2020, 21: 4000.

[50] Shi J C, Zhao B Y, Jin R, Hou L, Zhang X W, Dai H L, Yu N, Wang E T. A phosphate starvation response‐regulated receptor‐like kinase, OsADK1, is required for mycorrhizal symbiosis and phosphate starvation responses. New Phytol, 2022, 236: 2282–2293. 

[1] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[2] ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933.
[3] WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800.
[4] CHEN Ru-Xue, SUN Li-Fang, ZHANG Xin-Yuan, MU Hai-Meng, ZHANG Yong-Xin, YUAN Li-Xue, PENG Shi-Le, WANG Zhuang-Zhuang, WANG Yong-Hua. Effects of combined straw returning and microbial inoculant application on carbon-nitrogen metabolism in flag leaves and yield formation in winter wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1901-1913.
[5] LYU Guo-Feng, FAN Jin-Ping, WU Su-Lan, ZHANG Xiao, ZHAO Ren-Hui, LI Man, WANG Ling, GAO De-Rong, BIE Tong-De, LIU Jian. Genetic analysis of key target traits in the early-maturing wheat cultivar Yangmai 37 [J]. Acta Agronomica Sinica, 2025, 51(6): 1538-1547.
[6] WU Mei-Juan, ZHANG Yin-Hui, LI Yuan-Hao, LIU Hai-Xia, HUANG Yi-Lin, LI Tian, LIU Hong-Xia, ZHANG Xue-Yong, HAO Chen-Yang, GUO Jie, HOU Jian. Functional dissection of sucrose synthase gene TaSUS2 regulating grain starch synthesis and quality in wheat [J]. Acta Agronomica Sinica, 2025, 51(6): 1514-1525.
[7] YANG Si-Jie, DU Qi-Di, CHAI Shou-Xi, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, GUO Hui-Jun, LIU Lu-Xiang. Genetic mapping of mutant genes on flag leaf length and width in wheat [J]. Acta Agronomica Sinica, 2025, 51(6): 1548-1557.
[8] ZHAO Gang, ZHANG Jian-Jun, DANG Yi, FAN Ting-Lu, WANG Lei, ZHOU Gang, WANG Shu-Ying, LI Xing-Mao, NI Sheng-Li, MI Wen-Bo, ZHOU Xu-Jiao, CHENG Wan-Li, LI Shang-Zhong. Effects of straw mulching on soil water temperature effect and winter wheat yield in different rainfall years in Dryland Loess Plateau [J]. Acta Agronomica Sinica, 2025, 51(6): 1643-1653.
[9] WANG Qiong, ZOU Dan-Xia, CHEN Xing-Yun, ZHANG Wei, ZHANG Hong-Mei, LIU Xiao-Qing, JIA Qian-Ru, WEI Li-Bin, CUI Xiao-Yan, CHEN Xin, WANG Xue-Jun, CHEN Hua-Tao. Genome-wide association analysis and candidate genes prediction of flowering time and maturity date traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2025, 51(6): 1558-1568.
[10] MENG Xiang-Yu, DIAO Deng-Chao, LIU Ya-Rui, LI Yun-Li, SUN Yu-Chen, WU Wei, ZHAO Wen, WANG Yu, WU Jian-Hui, LI Chun-Lian, ZENG Qing-Dong, HAN De-Jun, ZHENG Wei-Jun. Genetic analysis of high yield and yield stability characteristics of new wheat variety Xinong 877 [J]. Acta Agronomica Sinica, 2025, 51(5): 1261-1276.
[11] ZHANG Jin-Ze, ZHOU Qing-Guo, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, LONG Xu, YAN Zhong-Bin, TIAN En-Tang. QTL mapping and candidate gene analysis of glucosinolate content in various tissues of Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(5): 1166-1177.
[12] WANG Qing, WANG Yi-Xiu, LI Yue-Nan, LYU Yong-Hui, ZHANG Hai-Bo, LIU Na, CHENG Hong-Yan. Differences in transcriptomic responses to cadmium stress in high/low-Cd- accumulation wheat [J]. Acta Agronomica Sinica, 2025, 51(5): 1230-1247.
[13] WANG Jia-Jie, WANG Zheng-Nan, BATOOL Maria, WANG Wang-Nian, WEN Jing, REN Chang-Zhong, HE Feng, WU You-You, XU Zheng-Hua, WANG Jing, KUAI Jie, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Comparison of physiological characteristics of salt and alkali tolerance between rapeseed and wheat [J]. Acta Agronomica Sinica, 2025, 51(5): 1215-1229.
[14] WANG Dong, WANG Sen, SHANG Li, FENG Hao-Wei, ZHANG Yong-Qiao, CUI Jia-Ming, LI Shuang, ZHANG Jia-Cong, CHE Huan. Effect of supplementary irrigation on winter wheat yield and water use efficiency in semi humid areas of the Loess Plateau [J]. Acta Agronomica Sinica, 2025, 51(5): 1312-1325.
[15] LI Pei-Hua, LI Jie, MENG Xiang-Yu, SUN Yu-Chen, FENG Yong-Jia, LI Yun-Li, DIAO Deng-Chao, ZHAO Wen, WU Wei, HAN De-Jun, ZHANG Song-Wu, ZHENG Wei-Jun. Evaluation of stress tolerance and physiological response of cold-type wheat under heat stress [J]. Acta Agronomica Sinica, 2025, 51(4): 1118-1130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!