Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1784-1800.doi: 10.3724/SP.J.1006.2025.41082

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Gliadin diversity and its effects on flour quality in wheat from Shanxi Province

WANG Tian-Yi1,2,**,YANG Xiu-Juan3,**,ZHAO Jia-Jia1,HAO Yu-Qiong1,ZHENG Xing-Wei1,WU Bang-Bang1,LI Xiao-Hua1,HAO Shui-Yuan3,ZHENG Jun1,2,*   

  1. 1 Institute of Wheat Research, Shanxi Agriculture University / Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Linfen 041000, Shanxi, China; 2 College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; 3 Department of Agronomy, Hetao College, Bayannur 015000, Inner Mongolia, China
  • Received:2024-11-25 Revised:2025-04-25 Accepted:2025-04-25 Online:2025-07-12 Published:2025-05-09
  • Supported by:
    This study was supported by the Key Research and Development Project of Shanxi Province (202302140601001), Modern Agro-industry Technology Research System (2024CYJSTX02) and Shanxi “1331 Project” Crop Science First-Class Discipline Construction Project.

Abstract:

Shanxi Province possesses abundant wheat germplasm resources, well known for their strong drought resistance and excellent quality. However, the diversity of gliadins in these resources has not been thoroughly investigated. To address this, acid-polyacrylamide gel electrophoresis (A-PAGE) was employed to characterize gliadin band compositions in 421 wheat accessions from Shanxi, and to assess the impact of different gliadin bands on flour quality. The results revealed high overall gliadin polymorphism, with 91 distinct band types and a total of 8,585 bands identified, averaging 20.39 bands per accession. The number of bands per cultivar ranged from 15 to 27. Cluster analysis based on genetic distance grouped all accessions into five distinct categories. Gliadin polymorphism information content, genetic diversity, and genetic distance were influenced by the genetic relationships and ecological distribution of the germplasm. Notably, cultivars exhibited greater diversity than landraces, and irrigated cultivars showed higher diversity than those from dryland cultivars. The diversity of cultivars initially increased with breeding year, followed by a decline. Interestingly, landraces with the same name displayed variation in both band number and diversity, indicating the coexistence of homogeneous and heterogeneous forms. The widely cultivated landrace Xiaohongpi was found to be a mixed population composed of multiple pure lines, characterized by three distinct gliadin haplotype blocks. Correlation analysis identified 34 bands associated with five physicochemical flour properties, while 58 bands were linked to 12 flour processing quality traits, among which 15 bands had positive effects. Specifically, bands 23.4 and 64.1 increased water absorption by 2.0% and 2.1%, respectively, and band 45.2 enhanced wet gluten content by 0.9%. Moreover, bands 14.1, 43.3, and 65.4 improved farinograph quality, with band 65.4 having the strongest effect—an 11.3% increase. Bands 14.1, 20.6, and 43.3 also contributed to longer dough development and stability times. In addition, 25 bands were significantly associated with viscosity characteristics, with nine showing positive correlations. Among them, band 76.8 had the most pronounced effect, increasing minimum, peak, and final viscosity by 21.7%, 12.8%, and 20.0%, respectively. In total, 48 multi-effect bands were identified, demonstrating substantial potential for future applied research. These findings offer valuable insights into the inheritance and evolution of wheat germplasm in Shanxi, and provide a scientific basis for breeding programs aimed at improving wheat quality.

Key words: Shanxi wheat, gliadin, genetic diversity, landrace, quality trait

[1] 徐兆飞. 山西小麦. 北京: 中国农业出版社, 2006.

Xu Z F. Shanxi Wheat. Beijing: China Agriculture Press, 2006 (in Chinese).

[2] 乔玲, 刘成, 郑兴卫, 赵佳佳, 尚保华, 马小飞, 乔麟轶, 盖红梅, 姬虎太, 刘建军, 张建诚, 郑军. 小麦骨干亲本临汾5064单元型区段的遗传解析. 作物学报, 2018, 44: 931–937.

Qiao L, Liu C, Zheng X W, Zhao J J, Shang B H, Ma X F, Qiao L Y, Gai H M, Ji H T, Liu J J, Zhang J C, Zheng J. Genetic analysis of haplotype-blocks from wheat founder parent Linfen 5064. Acta Agron Sin, 2018, 44: 931–937 (in Chinese with English abstract).

[3] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021, 47: 714–727.

Zhao J J, Qiao L, Wu B B, Ge C, Qiao L Y, Zhang S W, Yan S X, Zheng X W, Zheng J. Seedling root characteristics and drought resistance of wheat in Shanxi province. Acta Agron Sin, 2021, 47: 714–727 (in Chinese with English abstract).

[4] 卫乃翠, 陶金博, 苑名杨, 张彧, 开梦想, 乔玲, 武棒棒, 郝宇琼, 郑兴卫, 王娟玲, 赵佳佳, 郑军. 山西小麦苗期耐低磷特性及遗传分析. 中国农业科学, 2024, 57: 831–845.

Wei N C, Tao J B, Yuan M Y, Zhang Y, Kai M X, Qiao L, Wu B B, Hao Y Q, Zheng X W, Wang J L, Zhao J J, Zheng J. Seedling characterization and genetic analysis of low phosphorus tolerance in Shanxi varieties. Sci Agric Sin, 2024, 57: 831–845 (in Chinese with English abstract).

[5] Zhao J J, Zheng X W, Qiao L, Yang C K, Wu B B, He Z M, Tang Y Q, Li G R, Yang Z J, Zheng J, Qi Z J. Genome-wide association study reveals structural chromosome variations with phenotypic effects in wheat (Triticum aestivum L.). Plant J, 2022, 112: 1447–1461.

[6] 代美瑶, 巩艳菲, 李芳, 张波. 小麦籽粒不同部位蛋白质理化特性研究进展. 中国粮油学报, 2019, 34(7):132138.

Dai M Y, Gong Y F, Li F, Zhang B. A review on the physicochemical properties of the different fractions of wheat kernel. J Chin Cereals Oils Assoc, 2019, 34(7): 132138 (in Chinese with English abstract).

[7] Woychik J H, Boundy J A,Dimler R J. Starch gel electrophoresis of wheat gluten proteins with concentrated urea. Arch Biochem Biophys, 1961, 94: 477–482.

[8] Bushuk W, Zillman R R. Wheat cultivar identification by gliadin electrophoregrams. Ⅰ. apparatus, method and nomenclature. Can J Plant Sci, 1978, 58: 505–515.

[9] Kawaura K, Mochida K, Ogihara Y. Expression profile of two storage-protein gene families in hexaploid wheat revealed by large-scale analysis of expressed sequence tags. Plant Physiol, 2005, 139: 1870–1880.

[10] Metakovsky E V, Knežević D, Javornik B. Gliadin allele composition of Yugoslav winter wheat cultivars. Euphytica, 1991, 54: 285–295.

[11] Draper S R. ISTA Variety Committee - Report of the working group for biochemical tests for cultivar identification 19831986. Seed Sci Technol, 1987, 15: 431434

[12] Payne P I, Holt L M, Lawrence G J, Law C N. The genetics of gliadin and glutenin, the major storage proteins of the wheat endosperm. Plant Foods Hum Nutr, 1982, 31: 229–241.

[13] Metakovsky E V, Gómez M, Vázquez J F, Carrillo J M. High genetic diversity of Spanish common wheats as judged from gliadin alleles. Plant Breed, 2000, 119: 37–42.

[14] Metakovsky E V. Gliadin allele identification in common wheat. Ⅱ. Catalogue of gliandin alleles in common wheat. J Genet Breed, 1991, 45: 325–344.

[15] 张平平, 陈东升, 张勇, 夏先春, 何中虎. 春播小麦醇溶蛋白组成及其对品质性状的影响. 作物学报, 2006, 32: 1796–1801.

Zhang P P, Chen D S, Zhang Y, Xia X C, He Z H. Gliadin composition and their effects on quality properties in spring wheat. Acta Agron Sin, 2006, 32: 17961801 (in Chinese with English abstract).

[16] Branlard G, Dardevet M, Saccomano R, Lagoutte F, Gourdon J. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 2001, 119: 59–67.

[17] 姜小苓, 张自阳, 李小军, 李淦, 于红彩, 李秀玲, 茹振钢. 301份小麦种质醇溶蛋白遗传多样性及其与品质性状的相关性分析. 中国粮油学报, 2017, 32(11): 1420.

Jiang X L, Zhang Z Y, Li X J, Li G, Yu H C, Li X L, Ru Z G. Genetic diversity of gliadin in 301 wheat germplasms and the relationship with quality properties. J Chin Cereals Oils Assoc, 2017, 32(11): 14–20 (in Chinese with English abstract).

[18] 阎旭东, 卢少源, 李宗智. 普通小麦醇溶蛋白组份的分布及其与HMW-麦谷蛋白亚基对品质的组合效应. 作物学报, 1997, 23: 70–75.

Yan X D, Lu S Y, Li Z Z. The distribution of gliadin composition and its interaction with HMW-Glutenin subunits on breadbaking quality of common wheat. Acta Agron Sin, 1997, 23: 70–75 (in Chinese with English abstract).

[19] 何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37: 202–215.

He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011, 37: 202–215 (in Chinese with English abstract).

[20] Metakovsky E V, Brandlard G. Genetic diversity of French common wheat germplasm based on gliadin alleles. Theor Appl Genet, 1998, 96: 209–218.

[21] Metakovsky E V, Novoselskaya A Y, Kopus M M, Sobko T A, Sozinov A A. Blocks of gliadin components in winter wheat detected by one-dimensional polyacrylamide gel electrophoresis. Theor Appl Genet, 1984, 67: 559–568.

[22] 刘华, 王宇生, 张辉, 曹永生, 周荣华, 贾继增. 小麦种质资源醇溶蛋白指纹图谱数据库的初步建立及应用. 作物学报, 1999, 25: 674–682.

Liu H, Wang Y S, Zhang H, Cao Y S, Zhou R H, Jia J Z. Preliminary construction and application of gliadin fingerprints database of Chinese wheat germplasm. Acta Agron Sin, 1999, 25: 674–682 (in Chinese with English abstract).

[23] 刘丽华, 庞斌双, 王立新, 李宏博, 张欣, 蔡金麟, 赵昌平. 醇溶蛋白法和SSR标记法检测小麦种子纯度的比较. 麦类作物学报, 2013, 33: 429–434.

Liu L H, Pang B S, Wang L X, Li H B, Zhang X, Cai J L, Zhao C P. Comparison of seed purity detection of wheat using gliadin analysis and SSR markers. J Triticeae Crops, 2013, 33: 429–434 (in Chinese with English abstract).

[24] 张学勇, 杨欣明, 董玉琛. 醇溶蛋白电泳在小麦种质资源遗传分析中的应用. 中国农业科学, 1995, 28: 2633.

Zhang X Y, Yang X M, Dong Y C. Genetic analysis of wheat germplasm by acid polyacrylamide gel electrophoresis of gliadins. Sci Agric Sin, 1995, 28: 2633 (in Chinese with English abstract).

[25] Dubois B, Bertin P, Mingeot D. Molecular diversity of α-gliadin expressed genes in genetically contrasted spelt (Triticum aestivum ssp. spelta) accessions and comparison with bread wheat (T. aestivum ssp. aestivum) and related diploid Triticum and Aegilops species. Mol Breed, 2016. 36: 152.

[26] 高艾英, 吴长艾, 朱树生, 王宪泽. 山东省普通小麦醇溶蛋白Gli-1Gli-2位点等位基因的遗传变异. 作物学报, 2005, 31: 14601465.

Gao A Y, Wu C A, Zhu S S, Wang X Z. Genetic variation at gli-1 and gli-2 loci in wheat cultivars from Shandong Province. Acta Agron Sin, 2005, 31: 14601465 (in Chinese with English abstract).

[27] 李正玲, 许为钢, 张清珍, 李锁平, 胡琳. 河南省地方小麦品种醇溶蛋白的遗传多样性分析. 麦类作物学报, 2008, 28: 582–587.

Li Z L, Xu W G, Zhang Q Z, Li S P, Hu L. Genetic heterogeneity and diversity within and among Henan wheat landraces with the same Name as revealed by gliadin composition. J Triticeae Crops, 2008, 28: 582–587 (in Chinese with English abstract).

[28] 侯丞志, 汪辉, 吴豪, 钱可, 郑文寅, 张文明, 郭文善, 姚大年. 安徽小麦品种醇溶蛋白遗传多样性及其与品质性状的相关性研究. 麦类作物学报, 2019, 39: 540–548.

Hou C Z, Wang H, Wu H, Qian K, Zheng W Y, Zhang W M, Guo W S, Yao D N. Study on the genetic diversity of gliadin and its correlation with quality characters of Anhui wheat varieties. J Triticeae Crops, 2019, 39: 540–548 (in Chinese with English abstract).

[29] 王海燕, 王秀娥, 陈佩度, 刘大钧. 云南、西藏与新疆小麦醇溶蛋白Gli-1Gli-2编码位点等位基因组成及遗传多样性分析. 麦类作物学报, 2005, 25: 3439.

Wang H Y, Wang X E, Chen P D, Liu D J. Analysis of gliadin allelic composition at Gli-1 and Gli-2 loci and genetic diversity in Yunnan, Tibetan and Xinjiang wheats. J Triticeae Crops, 2005, 25: 3439 (in Chinese with English abstract).

[30] 孙黛珍, 杨海峰, 王曙光, 曹亚萍, 杨武德. 山西小麦品种资源醇溶蛋白组成的遗传变异. 核农学报, 2009, 23: 939–946.

Sun D Z, Yang H F, Wang S G, Cao Y P, Yang W D. Genetic variation of gliadin composition of wheat varieties in Shanxi. J Nucl Agric Sci, 2009, 23: 939–946 (in Chinese with English abstract).

[31] Liu Y X, Lin Y, Gao S, Li Z Y, Ma J, Deng M, Chen G Y, Wei Y M, Zheng Y L. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J, 2017, 91: 861–873.

[32] Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 1973, 70: 3321–3323.

[33] Li D, Jin H B, Zhang K P, Wang Z J, Wang F M, Zhao Y, Huo N X, Liu X, Gu Y Q, Wang D W, Dong L L. Analysis of the Gli-D2 locus identifies a genetic target for simultaneously improving the breadmaking and health-related traits of common wheat. Plant J, 2018, 95: 414–426.

[34] Metakovsky E V, Annicchiarico P, Boggini G, Pogna N E. Relationship between gliadin alleles and dough strength in Italian bread wheat cultivars. J Cereal Sci, 1997, 25: 229–236.

[35] 王正阳, 倪永静, 牛吉山, 刘靖. 99份国内小麦新品种()醇溶蛋白的遗传多样性分析. 麦类作物学报, 2010, 30: 233–239.

Wang Z Y, Ni Y J, Niu J S, Liu J. Analysis of the genetic diversity at gliadin loci in 99 new domestic wheat cultivars or lines. J Triticeae Crops, 2010, 30: 233–239 (in Chinese with English abstract).

[36] 郎明林卢少源张荣芝. 中国北方冬麦区主栽品种醇溶蛋白指纹图谱数据库的建立. 中国农业科学, 2002, 35: 238–244.

Lang M L, Lu S Y, Zhang R Z. Construction of gliadin fingerprints database of the main wheat cultivars grown in North China. Sci Agric Sin2002, 35: 238244 (in Chinese with English abstract).

[37] 晏月明, 茹岩岩, 余建中, 刘广田, S.Prodnovic. 中国小麦品种醇溶蛋白Gli-1Gli-2编码位点等位基因组成分析. 农业生物技术学报, 2000, 8: 23–27.

Yan Y M, Ru Y Y, Yu J Z, Liu G T, Prodnovic S. Analysis of gliadin allele composition at gli-1 and gli-2 loci in Chinese wheat cultivars. J Agric Biotechnol, 2000, 8: 23–27 (in Chinese with English abstract).

[38] 张茶, 梁虹, 王睿辉, 安浩军, 王静华, 赵金峰, 赵玉新, 常文锁. 河北省主栽小麦品种醇溶蛋白遗传多样性分析. 中国农学通报, 2008, 24(1): 191–196.

Zhang C, Liang H, Wang R H, An H J, Wang J H, Zhao J F, Zhao Y X, Chang W S. Analysis on genetic diversity among Hebei major wheat cultivars based on gliadins. Chin Agric Sci Bull, 2008, 24(1): 191–196 (in Chinese with English abstract).

[39] 郝晨阳. 甘肃春小麦种质资源贮藏蛋白遗传变异研究. 甘肃农业大学硕士学位论文, 甘肃兰州, 2001.

Hao C Y. Studies on Genetic Variation of Storage Protein in Gansu-grown Spring Wheat Germplasm Resources. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2001 (in Chinese with English abstract).

[40] 魏育明, 郑有良, 刘登才, 周永红, 兰秀锦. 四川小麦地方品种Gli-1Gli-2Glu-1位点的遗传多样性. 植物学报, 2000, 42: 496–501.

Wei Y M, Zheng Y L, Liu D C, Zhou Y H, Lan X J. Genetic diversity of Gli-1Gli-2 and Glu-1 loci in Sichuan wheat landraces. Chin J Crop Sci, 2000, 42: 496–501 (in Chinese with English abstract).

[41] 刘筱颖, 李晓华, 郑兴卫, 乔玲, 赵佳佳, 葛川, 乔麟轶, 张树伟, 郑军. 山西小麦育成品种农艺性状演变趋势及关联分析. 中国农业科技导报, 2020, 22(3): 14–23.

Liu X Y, Li X H, Zheng X W, Qiao L, Zhao J J, Ge C, Qiao L Y, Zhang S W, Zheng J. Evolution and relevant analysis of agronomic characters of wheat in Shanxi province. J Agric Sci Technol, 2020, 22(3): 14–23 (in Chinese with English abstract).

[42] 郑军, 李晓华, 赵佳佳, 尚保华, 曹勇, 马小飞, 张晓军, 乔玲, 乔麟轶, 郑兴卫, 等. 山西省小麦育成品种遗传多样性分析. 植物遗传资源学报, 2018, 19: 619–626.

Zheng J, Li X H, Zhao J J, Shang B H, Cao Y, Ma X F, Zhang X J, Qiao L, Qiao L Y, Zheng X W, et al. Genetic diversity analysis of wheat cultivars in Shanxi Province. J Plant Genet Resour, 2018, 19: 619–626 (in Chinese with English abstract).

[43] 康志钰, 王建军. 河西灌区小麦地方品种醇溶蛋白的遗传多样性分析. 麦类作物学报, 2011, 31: 455461.

Kang Z Y, Wang J J. Genetic diversity on gliadin loci of wheat landraces from Hexi irrigation region. J Triticeae Crops2011, 31: 455461 (in Chinese with English abstract).

[44] 韩雪, 杨丹丹, 孔欣欣, 赵鹏飞, 金建猛, 苏亚中, 赵国轩, 赵国建. 200份小麦种质品质性状及醇溶蛋白遗传多样性分析. 作物杂志, 2024, (6): 113.

Han X, Yang D D, Kong X X, Zhao P F, Jin J M, Su Y Z, Zhao G X, Zhao G J. Genetic diversity analysis of quality traits and gliadin in 200 wheat germplasm resources. Crops, 2024, (6): 113 (in Chinese with English abstract).

[45] 马晓岗, 李凤珍, 王晓辉, 李德志. 青海省小麦种质材料醇溶蛋白的遗传多样性分析. 麦类作物学报, 2012, 32: 1060–1065.

Ma X G, Li F Z, Wang X H, Li D Z. Gliadin genetic diversity analysis of wheat cultivars and germplasms from Qinghai province. J Triticeae Crops, 2012, 32: 1060–1065 (in Chinese with English abstract).

[46] 陶先萍, 李洪杰, 李秀全, 杨欣明, 李立会. 中国小麦地方品种内和品种间醇溶蛋白遗传多样性分析. 植物遗传资源学报, 2006, 7: 387–392.

Tao X P, Li H J, Li X Q, Yang X M, Li L H. Genetic heterogeneity and diversity within and among Chinese wheat landraces as revealed by gliadin composition. J Plant Genet Resour, 2006, 7: 387–392 (in Chinese with English abstract).

[47] 雷梦林. 山西小麦地方种质资源评价与重要农艺性状的全基因组关联分析. 山西农业大学博士学位论文, 太谷山西, 2022.

Lei M L. Evaluation of Local Wheat Germplasm Resources and Genome Wide Association Study of Important Agronomic Traits in Shanxi Wheat. PhD Dissertation of Shanxi agricultural University, Taigu, Shanxi, China, 2022 (in Chinese with English abstract).

[48] 谢炜, 郭青云, 郭小敏, 杨欣明, 李秀全, 李立会. 同名小麦地方品种小红芒和小红芒麦形态学和HMW-GS组成的演变分析. 植物遗传资源学报, 2011, 12: 381–388.

Xie W, Guo Q Y, Guo X M, Yang X M, Li X Q, Li L H. Evolution on morphology and HMW-GS composition of wheat landraces Xiaohongmang and Xiaohongmangmai. J Plant Genet Resour, 2011, 12: 381–388 (in Chinese with English abstract).

[49] 张玲丽, 王辉, 李立会, 李洪杰, 李小军, 李秀全, 杨欣明. 中国小麦地方品种大青芒遗传多样性研究. 中国农业科学, 2007, 40: 1579–1586.

Zhang L L, Wang H, Li L H, Li H J, Li X J, Li X Q, Yang X M. Genetic diversity analysis of common wheat Landrace daqingmang in various growing areas. Sci Agric Sin, 2007, 40: 1579–1586 (in Chinese with English abstract).

[50] Branlard G, Dardevet M. Diversity of grain proteins and bread wheat quality Ⅰ Correlation between Gliadin Bands and Flour quality characteristics. J Cereal Sci, 1985, 3: 329–343.

[51] 王曙光, 杨海峰, 孙黛珍, 李中青, 史雨刚, 范华, 曹亚萍. 小麦醇溶蛋白亚基与品质性状的相关性分析. 中国粮油学报, 2013, 28(5): 31–35.

Wang S G, Yang H F, Sun D Z, Li Z Q, Shi Y G, Fan H, Cao Y P. Analysis of correlation between gliadin subunits and quality characters in wheat. J Chin Cereals Oils Assoc, 2013, 28(5): 31–35 (in Chinese with English abstract).

[1] ZHAN Zong-Bing, JIN Qi-Feng, LIU Di, LYU Ying-Chun, GUO Ying, ZHANG Xue-Ting, HU Meng-Xia, WANG Shang, YANG Fang-Ping. Molecular characterization and evaluation of important traits of landrace wheat Laomangmai in Gansu province, China [J]. Acta Agronomica Sinica, 2025, 51(3): 609-620.
[2] YANG Fang-Ping, GUO Ying, TIAN Yuan-Yuan, XU Yu-Feng, WANG Lan-Lan, BAI Bin, ZHAN Zong-Bing, ZHANG Xue-Ting, XU Yin-Ping, LIU Jin-Dong. Effect of vernalization and photoperiod genes and evaluation of cold tolerance for wheat landraces from Gansu province, China [J]. Acta Agronomica Sinica, 2025, 51(2): 370-382.
[3] NIE Bo-Tao, LIU De-Quan, CHEN Jian, CUI Zheng-Guo, HOU Yun-Long, CHEN Liang, QIU Hong-Mei, WANG Yue-Qiang. Analysis and comprehensive evaluation of agronomic and quality traits of spring soybean varieties in northern China [J]. Acta Agronomica Sinica, 2024, 50(9): 2248-2266.
[4] HUANG Lin-Yu, ZHANG Xiao-Yue, LI Hao, DENG Mei, KANG Hou-Yang, WEI Yu-Ming, WANG Ji-Rui, JIANG Yun-Feng, CHEN Guo-Yue. Mapping of QTL for adult plant stripe rust resistance genes in a Sichuan wheat landrace and the evaluation of their breeding effects [J]. Acta Agronomica Sinica, 2024, 50(9): 2167-2178.
[5] ZHANG Hong-Yan, MIN Yu-Xia, TENG Chang-Cai, PENG Xiao-Xing, CHEN Zhi-Kai, ZHOU Xian-Li, LOU Shu-Bao, LIU Yu-Jiao. Genetic diversity analysis of Chinese faba bean (Vicia faba L.) germplasm resources using 130K liquid phase chips [J]. Acta Agronomica Sinica, 2024, 50(8): 1989-2000.
[6] PENG Xiao-Ai, LU Mao-Ang, ZHANG Ling, LIU Tong, CAO Lei, SONG You-Hong, ZHENG Wen-Yin, HE Xian-Fang, ZHU Yu-Lei. Genome-wide association study of major grain quality traits in wheat based on 55K SNP arrays [J]. Acta Agronomica Sinica, 2024, 50(8): 1948-1960.
[7] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[8] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[9] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[10] YANG Jing-Lei, WU Bing-Jie, WANG An-Zhou, XIAO Ying-Jie. Genomic prediction of maize agronomic and quality traits using multi-omics data [J]. Acta Agronomica Sinica, 2024, 50(2): 373-382.
[11] XUE Ya-Peng, XIN Xu-Xia, WANG Ruo-Nan, YU Xiao-Han, LIU Shao-Xiong, WANG Rui-Yun, LIU Min-Xuan. Analysis of agronomic, quality traits and genetic diversity of domestic and foreign foxtail millet resources [J]. Acta Agronomica Sinica, 2024, 50(10): 2468-2482.
[12] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[13] WANG Qian, ZHANG Li-Yuan, XU Yue, LI Hai, LIU Shao-Xiong, XUE Ya-Peng, LU Ping, WANG Rui-Yun, LIU Min-Xuan. High motif EST-SSR markers development and genetic diversity evaluation for 200 core germplasms in proso millet [J]. Acta Agronomica Sinica, 2023, 49(8): 2308-2318.
[14] LU Mao-Ang, PENG Xiao-Ai, ZHANG Ling, WANG Jian-Lai, HE Xian-Fang, ZHU Yu-Lei. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray [J]. Acta Agronomica Sinica, 2023, 49(6): 1708-1714.
[15] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[2] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[9] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[10] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .