Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1769-1783.doi: 10.3724/SP.J.1006.2025.44170

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification and characterization of Alternative oxidase (AOX) genes in leguminous crops and their expression patterns in response to abiotic stresses in common bean

YAN Zhi-Lan1(), ZHAO Qin1, CHANG Tian-Da1, WANG Yi-Ming1, WANG Bi-Hui1, WANG Peng1, HUANG Chun-Guo1, ZHANG Hui2, WANG Li-Xiang1, HAO Xiao-Peng3,*(), ZHAO Bo1,*()   

  1. 1College of Agriculture, Shanxi Agricultural University / Shanxi Houji Laboratory, Taiyuan 030031, Shanxi, China
    2College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    3Agricultural Gene Resources Research Center, Shanxi Agricultural University / Key Laboratory of Germplasm Resources Exploration and Genetic Improvement of Coarse Cereals, Taiyuan 030031, Shanxi, China
  • Received:2024-10-06 Accepted:2025-04-27 Online:2025-07-12 Published:2025-05-13
  • Contact: *E-mail: bozhao2022@sxau.edu.cn; E-mail: hxp9802@163.com
  • Supported by:
    National Key R&D Program of China(2023YFD1202700);National Key R&D Program of China(2023YFD1202703);National Natural Science Foundation of China(32301778);Shanxi Province’s Reward Fund for Doctoral Graduates and Postdoctoral Researchers to Work in Shanxi Province(SXBYKY2023004);Shanxi Provincial Basic Research Program-free Exploration Category(202403021211051);Shanxi Provincial Basic Research Program-free Exploration Category(202203021222147);Shanxi Houji Laboratory Self-initiated Research Projects(202304010930003-03);Special Fund for Science and Technology Innovation Teams of Shanxi Province(202204051002013)

Abstract:

Alternative oxidase (AOX), a key terminal oxidase in the mitochondrial electron transport chain, plays a pivotal role in plant response to various abiotic stresses. Leguminous crops are not only important sources of plant-based protein but also contribute significantly to sustainable agricultural development. However, their yield and quality have been increasingly compromised by frequent extreme climatic events, highlighting the urgent need to enhance their stress tolerance. In this study, we systematically identified and analyzed the AOX gene family in four leguminous crops: soybean, common bean, tepary bean, and mung bean. Our analysis included assessments of protein structure, physicochemical properties, promoter cis-acting elements, and the expression patterns of AOX genes in common bean under different abiotic stress treatments. We identified four, three, three, and three AOX genes in soybean, common bean, tepary bean, and mung bean, respectively. Phylogenetic analysis grouped these genes into three distinct subfamilies. Cis-element analysis of promoter regions revealed an abundance of hormone-responsive and stress-responsive elements. Expression profiling in common bean demonstrated that AOX genes exhibit differential responses to various abiotic stresses, with distinct temporal expression patterns. Notably, PvAOX1A;2 was strongly upregulated under multiple stress conditions. PvAOX2;2_2 showed high induction under salt and heat stress, while PvAOX2;2_1 was significantly upregulated in response to cold stress. Collectively, these results suggest that AOX genes play important roles in the abiotic stress responses in common bean. This study provides valuable insights into the functional characteristics of AOX genes in leguminous crops and identifies potential candidate genes for the molecular improvement of stress tolerance in common bean.

Key words: common bean, AOX, leguminous crops, abiotic stress, expression pattern

Table S1

AOX genes accession numbers in 10 crops"

物种名称
Species name
基因名称
Gene ID
登录号
Accession no.
拟南芥Arabidopsis thaliana AtAOX1D;1 AT1G32350
AtAOX1B;3 AT3G22360
AtAOX1A;3 AT3G22370
AtAOX1C;3 AT3G27620
AtAOX2;5 AT5G64210
大豆Glycine max GmAOX1A;4 GLYMA_04G123800
GmAOX2;5 GLYMA_05G117200
GmAOX2;8_1 GLYMA_08G072200
GmAOX2;8_2 GLYMA_08G072300
普通菜豆Phaseolus vulgaris PvAOX1A;2 PHAVU_002G127100g
PvAOX2;2_2 PHAVU_002G209100g
PvAOX2;2_1 PHAVU_002G209200g
绿豆Vigna radiata VrAOX2;9_1 Vradi09g03140
VrAOX2;9_2 Vradi09g03150
VrAOX1A;11 Vradi11g08000
宽叶菜豆Phaseolus acutifolius PaAOX1A;2 Phacu.CVR.002G149400
PaAOX2;2_2 Phacu.CVR.002G238600
PaAOX2;2_1 Phacu.CVR.002G238900
玉米Zea mays ZmAOX4;2_1 Zm00001eb071880
ZmAOX4;2_2 Zm00001eb071870
ZmAOX5;2 Zm00001eb071890
ZmAOX5;5 Zm00001eb251680
谷子Setaria italica SiAOX4;VII_1 SETIT_010566mg
SiAOX4;VII_2 SETIT_010539mg
SiAOX5;VII_1 SETIT_010540mg
SiAOX5;I SETIT_017726mg
小麦Triticum aestivum TaAOX3;3B TraesCS3B02G087900
TaAOX4;2B_1 TraesCS2B02G459000
TaAOX4;2A_1 TraesCS2A02G438300
TaAOX4;2A_2 TraesCS2A02G439100
TaAOX4;2D_1 TraesCS2D02G436100
TaAOX4;2B_2 TraesCS2B02G459100
TaAOX4;2D_2 TraesCS2D02G43620
TaAOX4;2A_3 TraesCS2A02G438200
TaAOX5;2D TraesCS2D02G436700
TaAOX5;2B TraesCS2B02G459300
TaAOX5;2A TraesCS2A02G439400
TaAOX5;6D TraesCS6D02G245800
TaAOX5;6B TraesCS6B02G296400
TaAOX5;6A TraesCS6A02G269100
高粱Sorghum bicolor SbAOX4;6_1 SORBI_3006G202600
SbAOX4;6_2 SORBI_3006G203000
SbAOX5;6 SORBI_3006G202500
SbAOX5;4 SORBI_3004G270500
水稻Oryza sativa OsAOX3;2 Os02g0318100
OsAOX4;4 Os04g0600300
OsAOX5;4 Os04g0600200
OSAOX5;2 Os02g0700400

Table 1

List of qRT-PCR primers"

基因名称Gene name 正向引物Forward primer (5'-3') 反向引物Reverse primer(5'-3')
PvAOX1A;2 TGACGTTCATGGAAGTGGCA CCCTTAAAGTGGCGTCTGGT
PvAOX2;2_2 AGAGTGTGGTGGAGTCCAGT ACATCCCTCCTACCATGCCA
PvAOX2;2_1 CACCTCCCAACAGCGAAGAT ACAGTTCCATGGCCACTCAG
PvActin GAAGTTCTCTTCCAACCATCC TTTCCTTGCTCATTCTGTCCG

Table 2

Basic properties of AOX family proteins in the target species"

物种名称
Species
name
基因名称
Gene ID
蛋白质长度
Protein
length (aa)
相对分子质量
Molecular
weight (Da)
等电点
pI
亲水性
GRAVY
不稳定性指数
Instability
index
α-螺旋
Alpha
helix (%)
延伸链
Extended
strand (%)
β-折叠
Beta
turn (%)
无规则卷曲
Random
coil (%)
亚细胞定位
Subcellular localization
拟南芥Arabidopsis thaliana AtAOX1D;1 318 36,202.41 8.65 −0.29 36.39 49.06 8.49 7.86 34.59 线粒体Mitochondrion
AtAOX1B;3 325 37,432.24 8.55 −0.35 42.26 46.46 12.62 6.15 34.77 线粒体Mitochondrion
AtAOX1A;3 354 39,979.87 8.56 −0.33 35.04 51.41 13.28 4.24 31.07 线粒体Mitochondrion
AtAOX1C;3 329 37,816.51 6.91 −0.33 47.15 47.42 13.68 6.99 31.91 线粒体Mitochondrion
AtAOX2;5 353 40,086.65 9.14 −0.17 29.53 43.20 15.41 5.44 35.95 线粒体Mitochondrion
大豆
Glycine max
GmAOX1A;4 321 36,476.17 8.57 −0.24 39.23 48.29 13.08 6.54 32.09 线粒体Mitochondrion
GmAOX2;5 317 36,007.69 9.01 −0.18 35.81 55.84 9.15 7.26 27.76 线粒体Mitochondrion
GmAOX2;8_1 326 37,115.48 8.68 −0.32 37.20 49.08 13.19 7.36 30.37 线粒体Mitochondrion
GmAOX2;8_2 333 38,142.27 9.36 −0.27 38.75 51.95 11.41 8.41 28.23 线粒体Mitochondrion
普通菜豆
Phaseolus vulgaris
PvAOX1A;2 319 36,338.91 8.26 −0.30 40.34 55.17 9.09 5.02 30.72 线粒体Mitochondrion
PvAOX2;2_2 329 37,772.83 9.04 −0.26 41.88 56.84 10.64 6.99 25.53 线粒体Mitochondrion
PvAOX2;2_1 332 37,817.18 7.88 −0.38 36.44 53.61 9.94 4.82 31.63 线粒体Mitochondrion
绿豆
Vigna radiata
VrAOX2;9_1 332 37,952.48 8.67 −0.34 40.98 50.30 9.34 3.01 37.35 线粒体Mitochondrion
VrAOX2;9_2 369 42,303.71 6.72 −0.27 41.53 46.07 13.55 6.50 33.88 线粒体Mitochondrion
VrAOX1A;11 321 36,426.04 8.26 −0.28 37.00 47.35 10.59 5.61 36.45 线粒体Mitochondrion
宽叶菜豆Phaseolus acutifolius PaAOX1A;2 319 36,369.90 8.22 −0.30 42.00 52.98 9.09 4.39 33.54 线粒体Mitochondrion
PaAOX2;2_2 329 37,789.92 9.13 −0.23 41.09 48.02 11.55 6.99 33.43 线粒体Mitochondrion
PaAOX2;2_1 332 37,802.21 8.36 −0.36 34.45 57.83 9.34 5.12 27.71 线粒体Mitochondrion

Fig. 1

Three-dimensional structures of AOX proteins from four legume crops and Arabidopsis thaliana The AOX proteins from the target species are classified into three subgroups based on their phylogenetic relationship: Subgroup I, Subgroup II and Subgroup III. The name of each AOX protein is displayed below its corresponding protein three-dimensional structure."

Fig. 2

Phylogenetic tree of AOX family members from 10 species and collinearity analysis between AOX members of four legume crops and Arabidopsis thaliana A: phylogenetic evolutionary tree of AOX family members across ten species. The numerical values at each branch node represent bootstrap values, with higher values indicating greater confidence in the corresponding branch. B: a synteny plot of AOX members among five species. Gray lines in the background denote all collinear relationships between different plant genomes, while colored lines specifically indicate synteny between AOX members across different species. At: Arabidopsis thaliana; Os: Oryza sativa; Gm: Glycine max; Ta: Triticum aestivum; Pa: Phaseolus acutifolius; Pv: Phaseolus vulgaris; Vr: Vigna radiata; Si: Setaria italica; Zm: Zea mays; Sb: Sorghum bicolor."

Fig. S1

Chromosomal localization of AOX genes in target species A: Arabidopsis thaliana; B: Phaseolus acutifolius; C: Vigna radiata; D: Phaseolus vulgaris; E: Glycine max."

Fig. 3

Phylogenetic tree (A), conserved motifs (B), conserved domains (C), and gene structure (D) of AOX gene family members in five species"

Table S2

Basic physicochemical properties of AOX gene family members in target species"

物种
Species
基因 ID
Gene ID
转录本长度
Transcript
length (bp)
染色体
Chr.
基因组位置
Genomic location
5'UTR数
Number of
5'UTR
3'UTR数
Number of
3'UTR
外显子数
Number of exon
内含子数
Number of intron
拟南芥
Arabidopsis thaliana
AtAOX1D;1 1429 1 11,666,886-11,668,690 1 1 4 3
AtAOX1B;3 1229 3 7,904,097-7,905,576 1 1 4 3
AtAOX1A;3 1764 3 7,906,521-7,908,746 1 1 4 3
AtAOX1C;3 1346 3 10,229,045-10,230,707 1 1 4 3
AtAOX2;5 1324 5 25,683,770-25,685,731 1 1 5 4
大豆
Glycine max
GmAOX1A;4 2448 4 16,009,828-16,014,505 1 1 4 3
GmAOX2;5 954 5 31,012,789-31,015,519 0 0 5 3
GmAOX2;8_1 1487 8 5,530,937-5,533,495 1 1 4 3
GmAOX2;8_2 1527 8 5,534,625-5,537,952 1 1 4 3
普通菜豆
Phaseolus vulgaris
PvAOX1A;2 1353 2 25,631,296-25,635,132 1 1 4 3
PvAOX2;2_2 1496 2 36,912,163-36,915,354 1 1 4 3
PvAOX2;2_1 1263 2 36,916,649-36,918,323 1 1 4 3
绿豆
Vigna radiata
VrAOX2;9_1 1513 9 3,689,595-3,691,839 1 1 4 3
VrAOX2;9_2 1133 9 3,719,512-3,724,510 1 0 6 5
VrAOX1A;11 1282 11 8,412,330-8,414,861 1 1 4 3
宽叶菜豆Phaseolus acutifolius PaAOX1A;2 1601 2 21,877,429-21,879,874 1 1 3 2
PaAOX2;2_2 1024 2 32,731,956-32,734,686 0 1 4 3
PaAOX2;2_1 1671 2 32,745,753-32,747,820 1 1 4 3

Table S3

Ka/Ks of orthologous AOX proteins between different species"

物种1 AOX
AOXs in species1
染色体编号
Chr.
物种2 AOX
AOXs in species2
染色体编号
Chr.
非同义替换率Ka 同义替换率
Ks
非同义替换/同义替换
Ka/Ks
AtAOX1D;1 1 AtAOX1B;3 3 0.29 2.04 0.14
AtAOX1D;1 1 AtAOX1C;3 3 0.29 1.64 0.18
AtAOX1B;3 3 AtAOX1A;3 3 0.13 1.04 0.13
AtAOX1B;3 3 AtAOX1C;3 3 0.09 0.57 0.15
AtAOX1B;3 3 AtAOX2;5 5 0.27 1.66 0.16
AtAOX1A;3 3 AtAOX1C;3 3 0.15 1.30 0.11
AtAOX1A;3 3 AtAOX2;5 5 0.32 2.67 0.12
AtAOX1C;3 3 AtAOX2;5 5 0.29 1.47 0.20
VrAOX2;9_1 9 VrAOX2;9_2 9 0.22 2.23 0.10
VrAOX2;9_1 9 PaAOX2;2_1 11 0.29 3.26 0.09
PaAOX2;2_1 11 AtAOX1D;1 1 0.26 3.53 0.07
VrAOX2;9_1 9 GmAOX2;5 5 0.22 1.53 0.14
VrAOX2;9_1 9 GmAOX2;8_1 8 0.04 0.50 0.08
PaAOX2;2_1 11 GmAOX1A;4 4 0.06 0.43 0.14
GmAOX1A;4 4 GmAOX2;8_1 8 0.31 3.26 0.10
GmAOX2;5 5 GmAOX2;8_1 8 0.24 1.54 0.15
GmAOX2;5 5 GmAOX2;8_2 8 0.04 0.18 0.19
GmAOX2;8_1 8 GmAOX2;8_2 8 0.23 1.39 0.16
GmAOX2;5 5 AtAOX2;5 5 0.27 2.42 0.11
GmAOX1A;4 4 PvAOX1A;2 2 0.05 0.37 0.13
GmAOX2;5 5 PvAOX2;2_2 2 0.06 0.29 0.20
GmAOX2;8_1 8 PvAOX2;2_2 2 0.20 1.47 0.14
PvAOX2;2_2 2 AtAOX2;5 5 0.25 3.41 0.07
PvAOX1A;2 2 PvAOX2;2_1 2 0.30 2.69 0.11
PvAOX1A;2 2 PaAOX2;2_1.1 11 0.09 0.57 0.15
PvAOX2;2_2 2 PvAOX2;2_1 2 0.23 1.53 0.15
PvAOX2;2_2 2 VrAOX2;9_1 9 0.22 1.59 0.14
PaAOX2;2_2 2 PaAOX2;2_1 2 0.23 1.55 0.15
PaAOX2;2_2 2 AtAOX2;5 5 0.24 2.80 0.09
PaAOX1A;2 2 GmAOX1A;4 4 0.04 0.36 0.12
PaAOX2;2_2 2 GmAOX2;5 5 0.05 0.29 0.18
PaAOX2;2_2 2 GmAOX2;8_1 8 0.20 1.58 0.13
PaAOX2;2_2 2 PvAOX2;2_2 2 0.01 0.03 0.45
PaAOX1A;2 2 PvAOX1A;2 2 0.01 0.08 0.13
PaAOX1A;2 2 PaAOX2;2_1 11 0.04 0.23 0.19
PaAOX2;2_2 2 VrAOX2;9_1 9 0.21 1.72 0.12

Fig. 4

Analysis of cis-acting elements in the promoter region of AOX genes in the target species The predicted cis-regulatory elements in the AOX genes are in the promoter region, upstream of the start codon by 2000 bp. These cis-regulatory elements are categorized into three groups: those associated with plant growth, hormone responses, and both abiotic and biotic stress responses. The numbers in each heatmap box represent the count of specific elements, while the bar chart on the right illustrates the statistical distribution of these elements across the AOX genes."

Table S4

List of putative miRNAs targeted AOX gene identified by psRNATarget online tool"

miRNA序号
miRNA accession
靶基因 ID
Target accession
E值
Expectation
抑制作用
Inhibition
miRNA起始
miRNA start
miRNA终止
miRNA end
基因起始
Target start
基因终止
Target end
ath-miR863-3p AtAOX1C;3 3.5 裂解Cleavage 1 21 1119 1139
ath-miR5021 AtAOX1C;3 2.5 裂解Cleavage 1 20 6 25
ath-miR414 GmAOX1A;4 2.5 裂解Cleavage 1 21 260 280
gra-miR8787 GmAOX1A;4 2.5 裂解Cleavage 1 23 2370 2392
osa-miR414 GmAOX1A;4 2.5 裂解Cleavage 1 21 260 280
mtr-miR2619b-5p GmAOX1A;4 3.0 裂解Cleavage 1 21 2386 2406
aly-miR838-3p PaAOX1A;2 2.5 裂解Cleavage 1 21 1493 1513
ptc-miR7814 PaAOX1A;2 2.5 裂解Cleavage 1 21 1244 1264
ata-miR1432-3p PaAOX1A;2 3.0 裂解Cleavage 1 21 264 284
ath-miR414 PaAOX1A;2 3.0 裂解Cleavage 1 21 248 268
osa-miR414 PaAOX1A;2 3.0 裂解Cleavage 1 21 248 268
ppt-miR414 PaAOX1A;2 3.0 裂解Cleavage 1 21 248 268
ppt-miR1211-5p PaAOX2;2_2 2.5 裂解Cleavage 1 21 1911 1931
gma-miR4392 PaAOX2;2_2 3.0 裂解Cleavage 1 22 715 736
sbi-miR6218-3p PaAOX2;2_2 3.0 裂解Cleavage 1 21 2061 2081
ptc-miR6462c-5p PaAOX2;2_1 3.0 裂解Cleavage 1 22 1513 1534
aly-miR838-3p PvAOX1A;2 2.5 裂解Cleavage 1 21 657 677
ath-miR414 PvAOX1A;2 3.0 裂解Cleavage 1 21 119 139
osa-miR414 PvAOX1A;2 3.0 裂解Cleavage 1 21 119 139
-miR414 PvAOX1A;2 3.0 裂解Cleavage 1 21 119 139
aly-miR838-3p VrAOX1A;11 3.0 裂解Cleavage 1 21 646 666
ath-miR1886.3 VrAOX1A;11 3.0 裂解Cleavage 1 21 1168 1188
sbi-miR5385 VrAOX1A;11 3.0 翻译Translation 1 22 172 193

Fig. 5

Transcriptional expression levels of AOX genes in different tissues and developmental stages of common bean Heatmap showing the expression levels of AOX genes in various tissues of common bean at different developmental stages. Expression data were retrieved from the Phytozome database using keyword-based searches. The heat map colors represent the level of gene transcripts, blue represents a low value, and red represents a high value; the color scale change indicates the level of expression, the transcript data is log normalized, the gene column is normalized by normal standardization and 0-1 standardization, and the value in the heat map represents the original FPKM value."

Fig. 6

Relative expression levels of AOX genes in common bean under alkali stress (A), salt stress(B), and PEG drought stress (C) *, **, ***, and **** indicate significant differences at the 0.05, 0.01, 0.001, and 0.0001 probability levels, respectively. ns: no significant difference. AS, SA, and PEG represent the treatment groups of alkali stress, salt stress, and PEG stress, respectively, CK represents the corresponding control group, and the following number is the treatment duration."

Fig. 7

Relative expression levels of AOX genes in common bean under cold stress (A) and heat stress (B) *, **, ***, and **** indicate significant differences at the 0.05, 0.01, 0.001, and 0.0001 probability levels, respectively. ns: no significant difference. CS and HT represent the treatment groups of cold stress and high temperature stress, respectively, CK represents the corresponding control group, and the following number is the treatment duration."

[1] Florez-Sarasa I, Ribas-Carbo M, Del-Saz N F, Schwahn K, Nikoloski Z, Fernie A R, Flexas J. Unravelling the in vivo regulation and metabolic role of the alternative oxidase pathway in C3 species under photoinhibitory conditions. New Phytol, 2016, 212: 66-79.
doi: 10.1111/nph.14030 pmid: 27321208
[2] Selinski J, Scheibe R, Day D A, Whelan J. Alternative oxidase is positive for plant performance. Trends Plant Sci, 2018, 23: 588-597.
doi: S1360-1385(18)30080-3 pmid: 29665989
[3] Feng H Q, Guan D D, Sun K, Wang Y F, Zhang T G, Wang R F. Expression and signal regulation of the alternative oxidase genes under abiotic stresses. Acta Biochim Biophys Sin, 2013, 45: 985-994.
[4] Clifton R, Harvey Millar A H, Whelan J. Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim Biophys Acta, 2006, 1757: 730-741.
doi: 10.1016/j.bbabio.2006.03.009 pmid: 16859634
[5] Zhang H, Luo Y D, Wang Y J, Zhao J, Wang Y Y, Li Y J, Pu Y H, Wang X C, Ren X M, Zhao B. Genome-wide identification and characterization of Alternative oxidase (AOX) genes in foxtail millet (Setaria italica): insights into their abiotic stress response. Plants, 2024, 13: 2565.
[6] Zhang S L, Yan C P, Lu T R, Fan Y C, Ren Y M, Zhao J S, Shan X J, Guan Y Y, Song P W, Li D F, et al. New insights into molecular features of the genome-wide AOX family and their responses to various stresses in common wheat (Triticum aestivum L.). Gene, 2023, 888: 147756.
[7] 王慧, 马艺文, 乔正浩, 常彦彩, 术琨, 丁海萍, 聂永心, 潘光堂. AOX基因家族的结构和功能特征分析. 生物技术通报, 2022, 38(7): 160-170.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1285
Wang H, Ma Y W, Qiao Z H, Chang Y C, Shu K, Ding H P, Nie Y X, Pan G T. Structural and functional characterization of AOX gene family. Biotechnol Bull, 2022, 38(7): 160-170 (in Chinese with English abstract).
[8] Sweetman C, Soole K L, Jenkins C L D, Day D A. Genomic structure and expression of Alternative oxidase genes in legumes. Plant Cell Environ, 2019, 42: 71-84.
doi: 10.1111/pce.13161
[9] Oh G G K, O’Leary B M, Signorelli S, Millar A H. Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. Plant Physiol, 2022, 188: 1521-1536.
[10] Aziz S, Germano T A, Thiers K L L, Batista M C, de Souza Miranda R, Arnholdt-Schmitt B, Costa J H. Transcriptome analyses in a selected gene set indicate Alternative oxidase (AOX) and early enhanced fermentation as critical for salinity tolerance in rice. Plants, 2022, 11: 2145.
[11] Considine M J, Holtzapffel R C, Day D A, Whelan J, Millar A H. Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol, 2002, 129: 949-953.
doi: 10.1104/pp.004150 pmid: 12114550
[12] Costa J H, Mota E F, Cambursano M V, Lauxmann M A, de Oliveira L M N, Silva Lima M D, Orellano E G, Fernandes de Melo D. Stress-induced co-expression of two alternative oxidase (VuAox1 and 2b) genes in Vigna unguiculata. J Plant Physiol, 2010, 167: 561-570.
[13] Brasileiro A C M, Morgante C V, Araujo A C G, Leal-Bertioli S C M, Silva A K, Martins A C Q, Vinson C C, Santos C M R, Bonfim O, Togawa R C, et al. Transcriptome profiling of wild Arachis from water-limited environments uncovers drought tolerance candidate genes. Plant Mol Biol Rep, 2015, 33: 1876-1892.
pmid: 26752807
[14] Bartoli C G, Gomez F, Gergoff G, Guiamét J J, Puntarulo S. Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. J Exp Bot, 2005, 56: 1269-1276.
doi: 10.1093/jxb/eri111 pmid: 15781442
[15] Gandin A, Duffes C, Day D A, Cousins A B. The absence of Alternative oxidase AOX1A results in altered response of photosynthetic carbon assimilation to increasing CO2 in Arabidopsis thaliana. Plant Cell Physiol, 2012, 53: 1627-1637.
[16] Parsons H L, Yip J Y, Vanlerberghe G C. Increased respiratory restriction during phosphate-limited growth in transgenic tobacco cells lacking Alternative oxidase. Plant Physiol, 1999, 121: 1309-1320.
doi: 10.1104/pp.121.4.1309 pmid: 10594118
[17] Ohtsu K, Ito Y, Saika H, Nakazono M, Tsutsumi N, Hirai A. ABA-independent expression of rice Alternative oxidase genes under environmental stresses. Plant Biotechnol, 2002, 19: 187-190.
[18] Weston D J, Karve A A, Gunter L E, Jawdy S S, Yang X H, Allen S M, Wullschleger S D. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. Plant Cell Environ, 2011, 34: 1488-1506.
[19] Li D F, Su Z, Dong J L, Wang T. An expression database for roots of the model legume Medicago truncatula under salt stress. BMC Genomics, 2009, 10: 517.
[20] Wu J, Wang L F, Fu J J, Chen J B, Wei S H, Zhang S L, Zhang J, Tang Y S, Chen M L, Zhu J F, et al. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat Genet, 2020, 52: 118-125.
doi: 10.1038/s41588-019-0546-0 pmid: 31873299
[21] Nawaz M, Sun J f, Shabbir S, Khattak W A, Ren G Q, Nie X J, Bo Y W, Javed Q, Du D L. A review of plants strategies to resist biotic and abiotic environmental stressors. Sci Total Environ, 2023, 900: 165832.
[22] Nadarajah K K. ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci, 2020, 21: 5208.
[23] Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroeder J I. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 2022, 23: 680-694.
[24] Brown M T. Understanding the Common bean (Phaseolus vulgaris L.) Transcriptome in Response to Salinity Stress. MS Thesis of Delaware State University, Dover, Delaware, America, 2019.
[25] 李龙, 王兰芬, 武晶, 景蕊莲, 王述民. 普通菜豆抗旱生理特性. 作物学报, 2014, 40: 702-710.
doi: 10.3724/SP.J.1006.2014.00702
Li L, Wang L F, Wu J, Jing R L, Wang S M. Physiological characteristics of drought resistance in common bean (Phaseolus vulgaris L.). Acta Agron Sin, 2014, 40: 702-710 (in Chinese with English abstract).
[26] Zhang B S, Liu Z, Zhou R N, Cheng P, Li H B, Wang Z Y, Liu Y, Li M Y, Zhao Z Q, Hu Z B, et al. Genome-wide analysis of soybean DnaJA-family genes and functional characterization of GmDnaJA6 responses to saline and alkaline stress. Crop J, 2023, 11: 1230-1241.
[27] Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J, Liu Y L, Feng J T, Chen H, He Y H, et al. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733-1742.
[28] Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci, 1995, 11: 681-684.
[29] Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-Collier C J, Nakai K T. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585-W587.
[30] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析. 作物学报, 2023, 49: 1480-1495.
doi: 10.3724/SP.J.1006.2023.24113
Liu J, Zou X Y, Ma J F, Wang Y F, Dong Z P, Li Z Y, Bai H. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet. Acta Agron Sin, 2023, 49: 1480-1495 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24113
[31] 侯思宇, 王欣芳, 杜伟, 冯晋华, 韩渊怀, 李红英, 刘龙龙, 孙朝霞. 苦荞WOX家族全基因组鉴定及响应愈伤诱导率表达分析. 中国农业科学, 2021, 54: 3573-3586.
doi: 10.3864/j.issn.0578-1752.2021.17.002
Hou S Y, Wang X F, Du W, Feng J H, Han Y H, Li H Y, Liu L L, Sun Z X. Genome-wide identification of WOX family and expression analysis of callus induction rate in tartary buckwheat. Sci Agric Sin, 2021, 54: 3573-3586 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.17.002
[32] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant Cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[33] Borges A, Tsai S M, Caldas D G G. Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Plant Cell Rep, 2012, 31: 827-838.
doi: 10.1007/s00299-011-1204-x pmid: 22193338
[34] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[35] 郝候艳. 拟南芥AOX的功能分析. 西北大学硕士学位论文, 陕西西安, 2019.
Hao H Y. The Functional Analysis of AOX in Arabidopsis thaliana. MS Thesis of Northwest University, Xi’an, Shaanxi, China, 2019 (in Chinese with English abstract).
[36] Moore A L, Albury M S, Crichton P G, Affourtit C. Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci, 2002, 7: 478-481.
doi: 10.1016/s1360-1385(02)02366-x pmid: 12417142
[37] Ahmad B, Zhang S L, Yao J, Rahman M U, Hanif M, Zhu Y X, Wang X P. Genomic organization of the B3-domain transcription factor family in grapevine (Vitis vinifera L.) and expression during seed development in seedless and seeded cultivars. Int J Mol Sci, 2019, 20: 4553.
[38] Xu G X, Guo C C, Shan H Y, Kong H Z. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109: 1187-1192.
doi: 10.1073/pnas.1109047109 pmid: 22232673
[39] Yang H L, Deng L B, Liu H F, Fan S H, Hua W, Liu J. Overexpression of BnaAOX1b confers tolerance to osmotic and salt stress in rapeseed. G3: Genes Genomes Genet, 2019, 9: 3501-3511.
[40] Costa J H, Hasenfratz-Sauder M P, Pham-Thi A T, da Guia Silva Lima M, Dizengremel P, Jolivet Y, Fernandes de Melo D. Identification in Vigna unguiculata (L.) Walp. of two cDNAs encoding mitochondrial alternative oxidase orthologous to soybean alternative oxidase genes 2a and 2b. Plant Sci, 2004, 167: 233-239.
[41] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响. 作物学报, 2021, 47: 2490-2500.
doi: 10.3724/SP.J.1006.2021.04246
Zhang Y, Wang D M, Wang X Y, Ren Q W, Tang K, Zhang L Y, Wu Y H, Liu P. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress. Acta Agron Sin, 2021, 47: 2490-2500 (in Chinese with English abstract).
[42] Pang F, Solanki M K, Xing Y X, Dong D F, Wang Z. Streptomyces improves sugarcane drought tolerance by enhancing phenylalanine biosynthesis and optimizing the rhizosphere environment. Plant Physiol Biochem, 2024, 217: 109236.
[43] Mishra S, Roychowdhury R, Ray S, Hada A, Kumar A, Sarker U, Aftab T, Das R. Salicylic acid (SA)-mediated plant immunity against biotic stresses: an insight on molecular components and signaling mechanism. Plant Stress, 2024, 11: 100427.
[44] 刘美君. 线粒体交替氧化酶呼吸途径对植物叶片的光破坏防御作用及其调控机制. 山东农业大学博士学位论文, 山东泰安, 2016.
Liu M J. The Role and Up-Regulation Mechanism of Mitochondrial Alternative Oxidase Pathway in Plant Photoprotection. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).
[45] Li C R, Liang D D, Li J, Duan Y B, Li H, Yang Y C, Qin R Y, Li L, Wei P C, Yang J B. Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice ALTERNATIVE OXIDASE 1 genes. Plant Cell Environ, 2013, 36: 775-788.
[46] Wang X J, Geng X, Bi X R, Li R C, Chen Y Z, Lu C F. Genome-wide identification of AOX family genes in Moso bamboo and functional analysis of PeAOX1b_2 in drought and salinity stress tolerance. Plant Cell Rep, 2022, 41: 2321-2339.
[1] SHEN Ao, LIU Min, NI Di-An, LIU Wei. Promoter characterization and expression pattern analysis of the m6A methyltransferase gene SiMTA1 in foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(7): 1969-1978.
[2] GUO Bing, QIN Jia-Fan, LI Na, SONG Meng-Yao, WANG Li-Ming, LI Jun-Xia, MA Xiao-Qian. Genome-wide identification and expression analysis of SHMT gene family in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2025, 51(3): 586-5897.
[3] XU Lin-Shan, GAO Geng-Dong, WANG Yu, WANG Jia-Xing, YANG Ji-Zhao, WU Ya-Rui, ZHANG Xiao-Han, CHANG Ying, LI Zhen, XIE Xiong-Ze, GONG De-Ping, WANG Jing, GE Xian-Hong. Analysis of expression patterns of laccase gene family members in Brassica napus and their association with stem fracture resistance [J]. Acta Agronomica Sinica, 2025, 51(1): 134-148.
[4] QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309.
[5] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[6] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
[7] YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164.
[8] ZUO Chun-Yang, LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2344-2361.
[9] WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182.
[10] MA Chun-Min, LI Wei-Xi, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification and expression analysis of nitrate transporter NRT gene family in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1496-1517.
[11] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
[12] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[13] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[14] DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686.
[15] HUANG Zhen, WU Qi-Jing, CHEN Can-Ni, WU Xia, CAO Shan, ZHANG Hui, YUE Jiao, HU Ya-Li, LUO Deng-Jie, LI Yun, LIAO Chang-Jun, LI Ru, CHEN Peng. Role of calmodulin gene (HcCaM7) and its protein acetylation is involved in kenaf response to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(2): 402-413.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[10] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .