Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Genome-wide identification and characterization of Alternative oxidase (AOX) genes in leguminous crops and their expression patterns in response to abiotic stresses in common bean

YAN Zhi-Lan1,ZHAO Qin1,CHANG Tian-Da1,WANG Yi-Ming1,WANG Bi-Hui1,WANG Peng1,HUANG Chun-Guo1,ZHANG Hui2,WANG Li-Xiang1,HAO Xiao-Peng3,*,ZHAO Bo1,*   

  1. 1 College of Agriculture, Shanxi Agricultural University / Shanxi Houji Laboratory, Taiyuan 030031, Shanxi, China; 2 College of Life Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China; 3 Agricultural Gene Resources Research Center, Shanxi Agricultural University / Key Laboratory of Germplasm Resources Exploration and Genetic Improvement of Coarse Cereals, Taiyuan 030031, Shanxi, China
  • Received:2024-10-06 Revised:2025-04-27 Accepted:2025-04-27 Published:2025-05-13
  • Supported by:
    This study was supported by National Key R&D Program of China (2023YFD1202700, 2023YFD1202703), the National Natural Science Foundation of China (32301778), the Shanxi Province’s Reward Fund for Doctoral Graduates and Postdoctoral Researchers to Work in Shanxi Province (SXBYKY2023004), the Shanxi Provincial Basic Research Program-Free Exploration Category (202403021211051, 202203021222147), the Shanxi Houji Laboratory Self-initiated Research Projects (202304010930003-03), and the Special Fund for Science and Technology Innovation Teams of Shanxi Province (202204051002013).

Abstract:

Alternative oxidase (AOX), a key terminal oxidase in the mitochondrial electron transport chain, plays a pivotal role in plant response to various abiotic stresses. Leguminous crops are not only important sources of plant-based protein but also contribute significantly to sustainable agricultural development. However, their yield and quality have been increasingly compromised by frequent extreme climatic events, highlighting the urgent need to enhance their stress tolerance. In this study, we systematically identified and analyzed the AOX gene family in four leguminous crops: soybean, common bean, tepary bean, and mung beanOur analysis included assessments of protein structure, physicochemical properties, promoter cis-acting elements, and the expression patterns of AOX genes in common bean under different abiotic stress treatments. We identified four, three, three, and three AOX genes in soybean, common bean, tepary bean, and mung bean, respectively. Phylogenetic analysis grouped these genes into three distinct subfamilies. Cis-element analysis of promoter regions revealed an abundance of hormone-responsive and stress-responsive element. Expression profiling in common bean demonstrated that AOX genes exhibit differential responses to various abiotic stresses, with distinct temporal expression patterns. Notably, PvAOX1A;2 was strongly upregulated under multiple stress conditions. PvAOX2;2_2 showed high induction under salt and heat stress, while PvAOX2;2_1 was significantly upregulated in response to cold stress. Collectively, these results suggest that AOX genes play important roles in the abiotic stress responses in common bean. This study provides valuable insights into the functional characteristics of AOX genes in leguminous crops and identifies potential candidate genes for the molecular improvement of stress tolerance in common bean.

Key words: common bean, AOX, leguminous crops, abiotic stress, expression pattern

[1] Florez-Sarasa I, Ribas-Carbo M, Del-Saz N F, Schwahn K, Nikoloski Z, Fernie A R, Flexas J. Unravelling the in vivo regulation and metabolic role of the alternative oxidase pathway in C3 species under photoinhibitory conditions. New Phytol, 2016, 212: 66–79.

[2] Selinski J, Scheibe R, Day D A, Whelan J. Alternative oxidase is positive for plant performance. Trends Plant Sci, 2018, 23: 588–597.

[3] Feng H Q, Guan D D, Sun K, Wang Y F, Zhang T G, Wang R F. Expression and signal regulation of the alternative oxidase genes under abiotic stresses. Acta Biochim Biophys Sin, 2013, 45: 985994.

[4] Clifton R, Harvey Millar A H, Whelan J. Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim Biophys Acta, 2006, 1757: 730–741.

[5] Zhang H, Luo Y D, Wang Y J, Zhao J, Wang Y Y, Li Y J, Pu Y H, Wang X C, Ren X M, Zhao B. Genome-wide identification and characterization of Alternative oxidase (AOX) genes in foxtail millet (Setaria italica): insights into their abiotic stress response. Plants, 2024, 13: 2565.

[6] Zhang S L, Yan C P, Lu T R, Fan Y C, Ren Y M, Zhao J S, Shan X J, Guan Y Y, Song P W, Li D F, et al. New insights into molecular features of the genome-wide AOX family and their responses to various stresses in common wheat (Triticum aestivum L.). Gene, 2023, 888: 147756.

[7] 王慧, 马艺文, 乔正浩, 常彦彩, 术琨, 丁海萍, 聂永心, 潘光堂. AOX基因家族的结构和功能特征分析. 生物技术通报, 2022, 38(7): 160–170.

Wang H, Ma Y W, Qiao Z H, Chang Y C, Shu K, Ding H P, Nie Y X, Pan G T. Structural and functional characterization of AOX gene family. Biotechnol Bull, 2022, 38(7): 160–170 (in Chinese with English abstract).

[8] Sweetman C, Soole K L, Jenkins C L D, Day D A. Genomic structure and expression of alternative oxidase genes in legumes. Plant Cell Environ, 2019, 42: 71–84.

[9] Oh G G K, O’Leary B M, Signorelli S, Millar A H. Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. Plant Physiol, 2022, 188: 1521–1536.

[10] Aziz S, Germano T A, Thiers K L L, Batista M C, de Souza Miranda R, Arnholdt-Schmitt B, Costa J H. Transcriptome analyses in a selected gene set indicate alternative oxidase (AOX) and early enhanced fermentation as critical for salinity tolerance in rice. Plants, 2022, 11: 2145.

[11] Considine M J, Holtzapffel R C, Day D A, Whelan J, Millar A H. Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol, 2002, 129: 949–953.

[12] Costa J H, Mota E F, Cambursano M V, Lauxmann M A, de Oliveira L M N, Silva Lima M D, Orellano E G, Fernandes de Melo D. Stress-induced co-expression of two alternative oxidase (VuAox1 and 2b) genes in Vigna unguiculata. J Plant Physiol, 2010, 167: 561–570.

[13] Brasileiro A C M, Morgante C V, Araujo A C G, Leal-Bertioli S C M, Silva A K, Martins A C Q, Vinson C C, Santos C M R, Bonfim O, Togawa R C, et al. Transcriptome profiling of wild Arachis from water-limited environments uncovers drought tolerance candidate genes. Plant Mol Biol Rep, 2015, 33: 1876–1892.

[14] Bartoli C G, Gomez F, Gergoff G, Guiamét J J, Puntarulo S. Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. J Exp Bot, 2005, 56: 1269–1276.

[15] Gandin A, Duffes C, Day D A, Cousins A B. The absence of alternative oxidase AOX1A results in altered response of photosynthetic carbon assimilation to increasing CO2 in Arabidopsis thaliana. Plant Cell Physiol, 2012, 53: 1627–1637.

[16] Parsons H L, Yip J Y, Vanlerberghe G C. Increased respiratory restriction during phosphate-limited growth in transgenic tobacco cells lacking alternative oxidase. Plant Physiol, 1999, 121: 1309–1320.

[17] Ohtsu K, Ito Y, Saika H, Nakazono M, Tsutsumi N, Hirai A. ABA-independent expression of rice alternative oxidase genes under environmental stresses. Plant Biotechnol, 2002, 19: 187–190.

[18] Weston D J, Karve A A, Gunter L E, Jawdy S S, Yang X H, Allen S M, Wullschleger S D. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. Plant Cell Environ, 2011, 34: 1488–1506.

[19] Li D F, Su Z, Dong J L, Wang T. An expression database for roots of the model legume Medicago truncatula under salt stress. BMC Genomics, 2009, 10: 517.

[20] Wu J, Wang L F, Fu J J, Chen J B, Wei S H, Zhang S L, Zhang J, Tang Y S, Chen M L, Zhu J F, et al. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat Genet, 2020, 52: 118–125.

[21] Nawaz M, Sun J f, Shabbir S, Khattak W A, Ren G Q, Nie X J, Bo Y W, Javed Q, Du D L. A review of plants strategies to resist biotic and abiotic environmental stressors. Sci Total Environ, 2023, 900: 165832.

[22] Nadarajah K K. ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci, 2020, 21: 5208.

[23] Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroeder J I. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 2022, 23: 680–694.

[24] Brown M T. Understanding the Common bean (Phaseolus vulgaris L.) Transcriptome in Response to Salinity Stress. MS Thesis of Delaware State University, Dover, Delaware, America, 2019.

[25] 李龙, 王兰芬, 武晶, 景蕊莲, 王述民. 普通菜豆抗旱生理特性. 作物学报, 2014, 40: 702–710.

Li L, Wang L F, Wu J, Jing R L, Wang S M. Physiological characteristics of drought resistance in common bean (Phaseolus vulgaris L.). Acta Agron Sin, 2014, 40: 702–710 (in Chinese with English abstract).

[26] Zhang B S, Liu Z, Zhou R N, Cheng P, Li H B, Wang Z Y, Liu Y, Li M Y, Zhao Z Q, Hu Z B, et al. Genome-wide analysis of soybean DnaJA-family genes and functional characterization of GmDnaJA6 responses to saline and alkaline stress. Crop J, 2023, 11: 1230–1241.

[27] Chen C J, Wu Y, Li J W, Wang X, Zeng Z H, Xu J, Liu Y L, Feng J T, Chen H, He Y H, et al. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733–1742.

[28] Geourjon C, Deléage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci, 1995, 11: 681–684.

[29] Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams-Collier C J, Nakai K T. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585–W587.

[30] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析. 作物学报, 2023, 49: 1480–1495.

Liu J, Zou X Y, Ma J F, Wang Y F, Dong Z P, Li Z Y, Bai H. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet. Acta Agron Sin, 2023, 49: 1480–1495 (in Chinese with English abstract).

[31] 侯思宇, 王欣芳, 杜伟, 冯晋华, 韩渊怀, 李红英, 刘龙龙, 孙朝霞. 苦荞WOX家族全基因组鉴定及响应愈伤诱导率表达分析. 中国农业科学, 2021, 54: 3573–3586.

Hou S Y, Wang X F, Du W, Feng J H, Han Y H, Li H Y, Liu L L, Sun Z X. Genome-wide identification of WOX family and expression analysis of callus induction rate in Tartary buckwheat. Sci Agric Sin, 2021, 54: 3573–3586 (in Chinese with English abstract).

[32] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant Cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325–327.

[33] Borges A, Tsai S M, Caldas D G G. Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Plant Cell Rep, 2012, 31: 827–838.

[34] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25: 402–408.

[35] 郝候艳. 拟南芥AOX的功能分析. 西北大学硕士学位论文, 陕西西安, 2019.

Hao H Y. The Functional Analysis of AOX in Arabidopsis thaliana. MS Thesis of Northwest University, Xi’an, Shaanxi, China, 2019 (in Chinese with English abstract).

[36] Moore A L, Albury M S, Crichton P G, Affourtit C. Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci, 2002, 7: 478–481.

[37] Ahmad B, Zhang S L, Yao J, Rahman M U, Hanif M, Zhu Y X, Wang X P. Genomic organization of the B3-domain transcription factor family in grapevine (Vitis vinifera L.) and expression during seed development in seedless and seeded cultivars. Int J Mol Sci, 2019, 20: 4553.

[38] Xu G X, Guo C C, Shan H Y, Kong H Z. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109: 1187–1192.

[39] Yang H L, Deng L B, Liu H F, Fan S H, Hua W, Liu J. Overexpression of BnaAOX1b confers tolerance to osmotic and salt stress in rapeseed. G3, 2019, 9: 3501–3511.

[40] Costa J H, Hasenfratz-Sauder M P, Pham-Thi A T, da Guia Silva Lima M, Dizengremel P, Jolivet Y, Fernandes de Melo D. Identification in Vigna unguiculata (L.) Walp. of two cDNAs encoding mitochondrial alternative oxidase orthologous to soybean alternative oxidase genes 2a and 2b. Plant Sci, 2004, 167: 233–239.

[41] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响. 作物学报, 2021, 47: 2490–2500.

Zhang Y, Wang D M, Wang X Y, Ren Q W, Tang K, Zhang L Y, Wu Y H, Liu P. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress. Acta Agron Sin, 2021, 47: 2490–2500 (in Chinese with English abstract).

[42] Pang F, Solanki M K, Xing Y X, Dong D F, Wang Z. Streptomyces improves sugarcane drought tolerance by enhancing phenylalanine biosynthesis and optimizing the rhizosphere environment. Plant Physiol Biochem, 2024, 217: 109236.

[43] Mishra S, Roychowdhury R, Ray S, Hada A, Kumar A, Sarker U, Aftab T, Das R. Salicylic acid (SA)-mediated plant immunity against biotic stresses: an insight on molecular components and signaling mechanism. Plant Stress, 2024, 11: 100427.

[44] 刘美君. 线粒体交替氧化酶呼吸途径对植物叶片的光破坏防御作用及其调控机制. 山东农业大学博士学位论文, 山东泰安, 2016.

Liu M J. The Role and Up-Regulation Mechanism of Mitochondrial Alternative Oxidase Pathway in Plant Photoprotection. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).

[45] Li C R, Liang D D, Li J, Duan Y B, Li H, Yang Y C, Qin R Y, Li L, Wei P C, Yang J B. Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice ALTERNATIVE OXIDASE 1 genes. Plant Cell Environ, 2013, 36: 775–788.

Wang X J, Geng X, Bi X R, Li R C, Chen Y Z, Lu C F. Genome-wide identification of AOX family genes in Moso bamboo and functional analysis of PeAOX1b_2 in drought and salinity stress tolerance. Plant Cell Rep, 2022, 41: 2321–2339.

[1] GUO Bing, QIN Jia-Fan, LI Na, SONG Meng-Yao, WANG Li-Ming, LI Jun-Xia, MA Xiao-Qian. Genome-wide identification and expression analysis of SHMT gene family in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2025, 51(3): 586-5897.
[2] XU Lin-Shan, GAO Geng-Dong, WANG Yu, WANG Jia-Xing, YANG Ji-Zhao, WU Ya-Rui, ZHANG Xiao-Han, CHANG Ying, LI Zhen, XIE Xiong-Ze, GONG De-Ping, WANG Jing, GE Xian-Hong. Analysis of expression patterns of laccase gene family members in Brassica napus and their association with stem fracture resistance [J]. Acta Agronomica Sinica, 2025, 51(1): 134-148.
[3] QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309.
[4] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[5] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
[6] YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164.
[7] ZUO Chun-Yang, LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2344-2361.
[8] WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182.
[9] MA Chun-Min, LI Wei-Xi, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification and expression analysis of nitrate transporter NRT gene family in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1496-1517.
[10] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
[11] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[12] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[13] DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686.
[14] HUANG Zhen, WU Qi-Jing, CHEN Can-Ni, WU Xia, CAO Shan, ZHANG Hui, YUE Jiao, HU Ya-Li, LUO Deng-Jie, LI Yun, LIAO Chang-Jun, LI Ru, CHEN Peng. Role of calmodulin gene (HcCaM7) and its protein acetylation is involved in kenaf response to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(2): 402-413.
[15] YANG Jia-Bao, ZHANG Zhan, ZHOU Zhi-Ming, LYU Xin-Hua, SUN Li. Cloning and function analysis of a HaLACS9 gene in Helianthus annuus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 426-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!