Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 609-620.doi: 10.3724/SP.J.1006.2025.41021

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular characterization and evaluation of important traits of landrace wheat Laomangmai in Gansu province, China

ZHAN Zong-Bing1(), JIN Qi-Feng2, LIU Di3, LYU Ying-Chun4, GUO Ying1, ZHANG Xue-Ting1, HU Meng-Xia1, WANG Shang1,5, YANG Fang-Ping1,*()   

  1. 1Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3Guangzhou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Guangzhou 510000, Guangdong, China
    4Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    5Agronomy College, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-03-13 Accepted:2024-10-25 Online:2025-03-12 Published:2024-11-14
  • Contact: *E-mail: yfp1023@163.com
  • Supported by:
    Regional Collaborative Innovation Project of Gansu Academy of Agricultural Sciences(2024GAAS05);Key Research and Development Plan(23YFNA0033);Special Mission Project of Gansu Province Science and Technology Plan Project(22CX8NA027);National Natural Science Foundation of China(32060481);National Natural Science Foundation of China(32260485)

Abstract:

This study aimed to clarify the heterogeneity of ten Laomangmai landrace wheat varieties from Gansu, which share the same name but originate from different regions. Agronomically important traits and disease resistance were evaluated in the field, and AFLP markers were used to create genetic fingerprints. Alleles at four vernalization loci, one photoperiod locus, four dwarfing loci, three multi-resistance loci, and key alleles related to gluten strength and pigment content were detected. The results were as follows: (1) The genetic similarity among the ten Laomangmai landraces was very low, indicating high heterogeneity. (2) In terms of yield-related traits, all materials carried recessive alleles at the vernalization loci Vrn-A1, Vrn-B1, and Vrn-B3. Seven landraces, including six Laomangmai varieties and the check variety Juanmangheshangtou, had the dominant allele at Vrn-D1, resulting in significantly earlier heading after spring sowing, but no effect on heading date under autumn sowing conditions. Only one variety (code 5) contained the photoperiod-insensitive allele Ppd-D1a. Of the four dwarfing genes studied, five landraces carried the dwarfing allele at the Rht-24 locus, while the remaining landraces exhibited high allelic variation. The Rht-24 dwarfing allele did not significantly reduce plant height but was associated with a higher number of grains per spike compared to the tall genotypes. (3) All materials showed poor lodging resistance. Four Laomangmai landraces exhibited strong cold tolerance, including three winter and one spring growth habit varieties. Three Laomangmai landraces (codes 1, 4, and 10) were highly resistant to stripe rust, despite not carrying known stripe rust resistance genes. Additionally, three other landraces, including two Laomangmai varieties (codes 7 and 9) and the check variety, contained the pleiotropic resistance gene Yr18/Lr34/Sr57/Pm38. (4) The gluten strength of the studied landraces was weak. Only four varieties (codes 5, 6, 7, and 8) carried low PPO-activity alleles, while all materials carried alleles for high yellow pigment content and high peroxidase activity. (5) The varieties carrying the dominant allele at Vrn-D1 could be useful for spring wheat cultivation in central and western Gansu Province, the upstream Jialing River winter wheat region, and similar ecological areas. The five varieties carrying the dwarfing allele Rht-24b could be employed for breeding fusarium head blight resistance in Gansu Longnan, and the middle and lower Yangtze River valley. Landraces carrying Yr18/Lr34/Sr57/Pm38, with high resistance to stripe rust, hold potential for breeding disease-resistant varieties in Longnan, Tianshui, Longdong, and other stripe rust hot spots. Additionally, the four varieties with alleles for low polyphenol oxidase activity could be useful for improving pigment content in wheat breeding. This study clarified the genetic characteristics, strengths, and weaknesses of important traits in the Laomangmai varieties from different regions in Gansu province, providing guidance for their application in wheat breeding programs.

Key words: common wheat, landrace, Laomangmai, AFLP, molecular marker detection, heterogeneity, character evaluation

Table 1

Information of partial characters of the resource catalog of tested materials"

种子库编号
Seed bank number
全国统一编号
National
unified code
品种名称
Landrace name
品种代号Landrace code 原产地
Source area

Awn
壳色
Shell color
粒色
Grain color
0002 ZM004681 老芒麦Laomangmai 1 永登Yongdeng 长Long 白White 红Red
0050 ZM004723 老芒麦Laomangmai 2 临洮Lintao 长Long 红Red 红Red
0251 ZM005060 老芒麦Laomangmai 3 岷县 Minxian 长Long 红Red 红Red
0252 ZM005047 老芒麦Laomangmai 4 秦安Qin’an 长Long 红Red 红Red
0314 ZM004955 老芒麦Laomangmai 5 宁县Ningxian 长Long 白White 红Red
0456 ZM020682 老芒麦Laomangmai 6 徽县Huixian 长Long 红Red 红Red
0486 ZM020683 老芒麦Laomangmai 7 漳县Zhangxian 长Long 红Red 红Red
0523 老芒麦Laomangmai 8 顶Tip 红Red 红Red
0572 ZM020685 老芒麦Laomangmai 9 两当Liangdang 长Long 白White 红Red
0804 老芒麦Laomangmai 10 定西Dingxi 长Long 白White 红Red
0014 ZM004701 卷芒和尚头
Juanmang heshangtou
11 宕昌Tanchang 中Medium 白White 红Red
种子库编号
Seed bank number
全国统一编号
National unified code
品种名称
Landrace name
品种代号Landrace code 冬春性
Winter and spring habit
成熟期
Maturity stage
株高
Plant height (cm)
千粒重1000-grain weight (g)
0002 ZM004681 老芒麦Laomangmai 1 弱冬Weak winter 中Medium 106 35
0050 ZM004723 老芒麦Laomangmai 2 弱冬Weak winter 中Medium 109 27
0251 ZM005060 老芒麦Laomangmai 3 冬Winter 晚Late 126 27
0252 ZM005047 老芒麦Laomangmai 4 弱冬Weak winter 中Medium 115 31
0314 ZM004955 老芒麦Laomangmai 5 强冬Strong winter 晚Late 73 0
0456 ZM020682 老芒麦Laomangmai 6 强冬Strong winter 中Medium 102 17
0486 ZM020683 老芒麦Laomangmai 7 强冬Strong winter 中Medium 108 24
0523 老芒麦Laomangmai 8 冬Winter 63 22
0572 ZM020685 老芒麦Laomangmai 9 春Spring 晚Late 110 26
0804 老芒麦Laomangmai 10 130 28
0014 ZM004701 卷芒和尚头
Juanmang heshangtou
11 春Spring 中Medium 94 25

Table 2

Primer names and sequences of AFLP markers"

Pst I引物
Pst I primer
序列
Sequence (5'-3')
Mse I引物
Mse I primer
序列
Sequence (5'-3')
P00 GACTGCGTACATGCAG M00 GATGAGTCCTGAGTAAC
P36 GACTGCGTACATGCAGACC M31 GATGAGTCCTGAGTACCA
P46 GACTGCGTACATGCAGATT M32 GATGAGTCCTGAGTACCC
P47 GACTGCGTACATGCAGCAA M33 GATGAGTCCTGAGTACCG
P48 GACTGCGTACATGCAGCAC M34 GATGAGTCCTGAGTACCT
P50 GACTGCGTACATGCAGCAT M35 GATGAGTCCTGAGTACGA
P76 GACTGCGTACATGCAGGTC M36 GATGAGTCCTGAGTACGC
P77 GACTGCGTACATGCAGGTG M37 GATGAGTCCTGAGTACGG
P78 GACTGCGTACATGCAGGTT M38 GATGAGTCCTGAGTACGT

Fig. 1

AFLP finger printing from primer combination P36/M32 1 -10 indicate Laomangmai landraces (Seed bank numbers are 0002, 0050, 0251, 0252, 0314, 0456, 0486, 0523, 0572, and 0804, respectively) from different regions, and 11 indicates Juanmang heshangtou (0014)."

Table 3

Polymorphism comparisons of bands amplified by three selective primer combinations"

品种代号
Variety code
P36/M32 P47/M31 P78/M33
总带数
Number
of bands
多态性带Polymorphic bands 多态性占比
Polymorphic band percentage
(%)
总带数
Number of bands
多态性带
Polymorphic bands
多态性占比
Polymorphic
band percentage (%)
总带数
Number of bands
多态性带
Polymorphic bands
多态性带占比
Polymorphic
band percentage (%)
1 26 3 11.54 23 8 34.78 8 3 37.50
2 32 12 37.50 17 8 47.06 23 12 52.17
3 30 10 33.33 22 13 59.09 19 9 47.37
4 26 4 15.38 20 12 60.00 20 13 65.00
5 31 11 35.48 17 9 52.94 14 4 28.57
6 32 11 34.38 12 4 33.33 29 21 72.41
7 28 8 28.57 20 9 45.00 26 12 46.15
8 29 6 20.69 23 15 65.22 31 20 64.52
9 30 8 26.67 16 8 50.00 11 3 27.27
10 29 9 31.03 19 7 36.84 12 8 66.67
11 26 5 19.23 11 4 36.36 32 22 68.75
合计Total 319 87 27.27 200 97 48.50 225 127 56.44

Fig. 2

Dendrogram of eleven landraces from Gansu province based on AFLP data"

Fig. 3

Dendrogram of eleven landraces from Gansu province based on data of agronomic traits"

Table 4

Alleles of vernalization and photoperiod genes in the tested materials and their heading dates"

品种代号
Variety code
1 2 3 4 5 6
种子库库号Seed bank number 0002 0050 0251 0252 0314 0456
冬春性Winter and spring growth habit
Spring
弱春
Weak spring

Spring

Spring
强冬
Strong winter
强冬
Strong winter
抽穗期(月/日)
Heading time (month/day)
2022清水2022 Qingshui 05/19 05/18 05/19 05/09 05/10 05/21
2023清水2023 Qingshui 05/21 05/14 05/24 05/18 05/18 05/18
2023武威2023 Wuwei 06/09 06/09 06/13 06/11 06/29 06/26
VGLA Vrn-B1 vrn-B1 vrn-B1 vrn-B1 vrn-B1 vrn-B1 vrn-B1
Vrn-A1 vrn-A1 vrn-A1 vrn-A1 vrn-A1 vrn-A1 vrn-A1
Vrn-D1 Vrn-D1 Vrn-D1 Vrn-D1 Vrn-D1 vrn-D1 vrn-D1
Vrn-B3 vrn-B3 vrn-B3 vrn-B3 vrn-B3 vrn-B3 vrn-B3
PGLA Ppd-D1 Ppd-D1b Ppd-D1b Ppd-D1b Ppd-D1b Ppd-D1a Ppd-D1b
品种代号
Variety code
7 8 9 10 11
种子库库号Seed bank number 0486 0523 0572 0804 0014
冬春性Winter and spring growth habit 强冬
Strong winter

Winter

Spring

Spring

Spring
抽穗期(月/日)
Heading time (month/day)
2022清水2022 Qingshui 05/23 05/13 05/21 05/26 05/15
2023清水2023 Qingshui 05/18 05/25 05/22 05/23 05/26
2023武威2023 Wuwei 06/26 06/27 06/15 06/11 06/09
VGLA Vrn-B1 vrn-B1 vrn-B1 vrn-B1 vrn-B1 vrn-B1
Vrn-A1 vrn-A1 vrn-A1 vrn-A1 vrn-A1 vrn-A1
Vrn-D1 vrn-D1 vrn-D1 Vrn-D1 Vrn-D1 Vrn-D1
Vrn-B3 vrn-B3 vrn-B3 vrn-B3 vrn-B3 vrn-B3
PGLA Ppd-D1 Ppd-D1b Ppd-D1b Ppd-D1b Ppd-D1b Ppd-D1b

Table 5

Dwarfing genes and plant height, spike and grain traits of the tested materials"

品种代号
Variety code
1 2 3 4 5 6
矮秆基因标记及等位变异
Markers and alleles of dwarfing gene
S1066954 Rht-24a Rht-24b Rht-24a Rht-24a Rht-24b Rht-24b
S983322 Rht-24a Rht-24b Rht-24a Rht-24a Rht-24b Rht-24b
Rht-B1 Rht-B1a Rht-B1a Rht-B1a Rht-B1a Rht-B1a Rht-B1a
Rht-D1 Rht-D1a Rht-D1a Rht-D1a Rht-D1a Rht-D1a Rht-D1a
DG273 rht8 rht8 rht8 rht8 rht8 rht8
株高
Plant height (cm)
2022清水2022 Qingshui 108.0 83.0 99.5 101.5 128.3 110.0
2023清水2023 Qingshui 139.0 138.0 137.0 129.0 142.0 140.0
2023武威2023 Wuwei 122.0 120.0 108.0 113.5 137.0
穗粒数
Kernels per spike
2022清水2022 Qingshui 29.00 29.30 26.80 41.45
2023清水2023 Qingshui 25.75 31.00 43.10 26.65 30.60 41.20
2023武威2023 Wuwei 29.00 33.00 27.00 32.00 70.00
千粒重
Thousand seeds weight (g)
2022清水2023 Qingshui 27 21 23 28 23 20
2023清水2023 Qingshui 37 30 22 24 25 26
2023武威2023 Wuwei 42 39 30 46 30
穗长
Spike length (cm)
2022清水2022 Qingshui 11 10 10 9 8 8
2023清水2023 Qingshui 10 9 10 8 6 6
2023武威2023 Wuwei 9 8 10 10 7 8
小穗数
Spikelet number
2022清水2022 Qingshui 10 9 10 9 7 5
2023清水2023 Qingshui 17 19 19 17 15 14
2023武威2023 Wuwei 14 16 12 14 17 20
品种代号
Variety code
7 8 9 10 11
矮秆基因标记及等位变异
Markers and alleles of dwarfing gene
S1066954 Rht-24b Rht-24b Rht-24a Rht-24a Rht-24a
S983322 Rht-24b Rht-24a Rht-24a
Rht-B1 Rht-B1a Rht-B1a Rht-B1a Rht-B1a Rht-B1a
Rht-D1 Rht-D1a Rht-D1a Rht-D1a Rht-D1a Rht-D1a
DG273 rht8 rht8 rht8 rht8 rht8
株高
Plant height (cm)
2022清水2022 Qingshui 104.0 106.0 110.0 99.0 104.0
2023清水2023 Qingshui 146.0 137.0 137.0 129.0
2023武威2023 Wuwei 123.5 120.0 116.0 113.0
穗粒数
Kernels per spike
2022清水2022 Qingshui 32.50 31.60 24.05 29.90
2023清水2023 Qingshui 28.65 20.50 21.40 25.00
2023武威2023 Wuwei 51.00 32.00 39.00 32.00 34.00
千粒重
Thousand seeds weighs (g)
2022清水2023 Qingshui 20.0 20.0 18.0 28.6
2023清水2023 Qingshui 30.0 22.0 28.0 31.9
2023武威2023 Wuwei 30.0 22.0 37.0 39.0 36.6
穗长
Spike length (cm)
2022清水2022 Qingshui 11.0 8.0 11.0 15.0 101.0
2023清水2023 Qingshui 9.0 7.0 9.0 9.0
2023武威2023 Wuwei 10.0 7.0 11.0 10.0 9.4
小穗数
Spikelet number
2022清水2022 Qingshui 9 8 10 11 19
2023清水2023 Qingshui 16 18 17 18
2023武威2023 Wuwei 23 18 15 14 15

Table 6

Allelic variation of several multi-resistance genes in the tested materials and their stress tolerance"

品种代号
Variety code
1 2 3 4 5 6 7 8 9 10 11
条锈病基因
Stripe rust gene
Yr9/Lr26/Sr31/Pm8 - - - - - - - - - - -
Yr29/Lr46/Sr58/Pm39 - - - - - - - - - - -
Yr18/Lr34/Sr57/Pm38 - - - - - - + - + - +
条锈病严重度
Stripe rust severity (%)
2022清水
2022 Qingshui
5 60 40 5 90 60 100 100 90 1 30
2023清水
2023 Qingshui
5 90 60 10 60 60 80 70 90 / 40
抗寒性
Cold hardiness
2023清水
2023 Qingshui
5 4 4 5 1 2 1 1 4 4 5

Table 7

Allelic variation of high molecular weight glutenin subunits and pigment genes in wheat landraces Laomangmai"

品种代号
Variety code
1 2 3 4 5 6
HMW-GS类型及等位变异
HMW-GS type and allelic variation
Ax N N N N N N
Dx5
黄色素基因染色体及等位变异
Chromosome and allelic variations of yellow pigment gene
黄色素/2D
Yellow pigment/2D
TaPds-D1a TaZds-D1a TaZds-D1a TaZds-D1a TaZds-D1a TaZds-D1a
黄色素/7A
Yellow pigment/7A
Psy-A1a Psy-A1a Psy-A1a Psy-A1a Psy-A1a Psy-A1a
过氧化酶基因位点及等位变异
Peroxidase gene locus and allelic variations
Pod-A1 TaPod-A1a TaPod-A1a TaPod-A1a TaPod-A1a
多酚氧化酶基因位点及等位变异
Polyphenol oxidase gene locus and allelic variations
Ppo-A1 Ppo-A1a Ppo-A1a Ppo-A1a Ppo-A1a Ppo-A1b Ppo-A1b
品种代号
Variety code
7 8 9 10 11
HMW-GS类型及等位变异
HMW-GS type and allelic variation
Ax N N N N N
Dx5
黄色素基因染色体及等位变异
Chromosome and allelic variations of yellow pigment gene
黄色素/2D
Yellow pigment/2D
TaZds-D1a TaZds-D1a TaZds-D1a TaZds-D1a TaZds-D1a
黄色素/7A
Yellow pigment/7A
Psy-A1a Psy-A1a Psy-A1a Psy-A1a Psy-A1a
过氧化酶基因位点及等位变异
Peroxidase gene locus and allelic variations
Pod-A1 TaPod-A1a TaPod-A1a TaPod-A1a TaPod-A1a
多酚氧化酶基因位点及等位变异
Polyphenol oxidase gene locus and allelic variations
Ppo-A1 Ppo-A1b Ppo-A1b Ppo-A1a Ppo-A1a Ppo-A1a
[1] 田清震, 贾继增. AFLP分子标记在小麦种质资源研究中的应用. 麦类作物学报, 2002, 22: 95-99.
Tian Q Z, Jia J Z. Application of amplified fragment length polymorphism (AFLP) in Wheat Germplasm. J Triticeae Crops, 2002, 22: 95-99 (in Chinese with English abstract).
[2] Zhang X K, Xiao Y G, Zhang Y, Xia X C, Dubcovsky J, He Z H. Allelic variation at the vernalization genes vrn-a1, vrn-b1, vrn-d1, and vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci, 2008, 48: 458-470.
[3] Yang F P, Zhang X K, Xia X C, Laurie D A, Yang W X, He Z H. Distribution of the photoperiod insensitive Ppd-D1a allele in Chinese wheat cultivars. Euphytica, 2009, 165: 445-452.
[4] 杨芳萍, 夏先春, 张勇, 张晓科, 刘建军, 唐建卫, 杨学明, 张俊儒, 刘茜, 李式昭, 何中虎. 春化、光周期和矮秆基因在不同国家小麦品种中的分布及其效应. 作物学报, 2012, 38: 1155-1166.
doi: 10.3724/SP.J.1006.2012.01155
Yang F P, Xia X C, Zhang Y, Zhang X K, Liu J J, Tang J W, Yang X M, Zhang J R, Liu Q, Li S Z, He Z H. Distribution of allelic variation for vernalization, photoperiod, and dwarfing genes and their effects on growth period and plant height among Cultivars from major wheat producing countries. Acta Agron Sin, 2012, 38: 1155-1166 (in Chinese with English abstract).
[5] 张自阳, 姜小苓, 王智煜, 朱启迪, 刘明久, 茹振钢. 不同来源小麦种质高分子质量谷蛋白亚基多样性及其与加工品质的关系. 华北农学报, 2019, 34: 75-81.
doi: 10.7668/hbnxb.201751750
Zhang Z Y, Jiang X L, Wang Z Y, Zhu Q D, Liu M J, Ru Z G. Genetic diversity of HMW-GS and its relationship with quality of wheat germplasms from different regions. Acta Agric Boreali-Sin, 2019, 34: 75-81 (in Chinese with English abstract).
doi: 10.7668/hbnxb.201751750
[6] He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47-58.
doi: 10.1007/s00122-007-0539-8 pmid: 17426955
[7] He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet, 2008, 116: 213-221.
doi: 10.1007/s00122-007-0660-8 pmid: 17943267
[8] Wei J X, Geng H W, Zhang Y, Liu J D, Wen W E, Zhang Y, Xia X C, Chen X M, He Z H. Mapping quantitative trait loci for peroxidase activity and developing gene-specific markers for TaPod-A1 on wheat chromosome 3AL. Theor Appl Genet, 2015, 128: 2067-2076.
doi: 10.1007/s00122-015-2567-0 pmid: 26133734
[9] Sun D J, He Z H, Xia X C, Zhang L P, Morris C F, Appels R, Ma W J, Wang H. A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed, 2005, 16: 209-218.
[10] Graybosch R A. Mini review: uneasy unions: quality effects of rye chromatin transfers to wheat. J Cereal Sci, 2001, 33: 3-16.
[11] 刘建军, 何中虎, Pena R J, 赵振东. 1B/1R易位对小麦加工品质的影响. 作物学报, 2004, 30: 149-153.
Liu J J, He Z H, Pena R J, Zhao Z D. Effect of 1BL/1RS translocation on grain quality and noodle quality in bread wheat. Acta Agron Sin, 2004, 30: 149-153 (in Chinese with English abstract).
[12] Francis H A, Leitch A R, Koebner R M. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element into a fast and robust assay for the presence of rye chromatin in wheat. Theor Appl Genet, 1995, 90: 636-642.
doi: 10.1007/BF00222127 pmid: 24174021
[13] 刘志勇, 张怀志, 白斌, 李俊, 黄林, 徐智斌, 陈永兴, 刘旭, 曹廷杰, 李淼淼, 陆平, 吴秋红, 董玲丽, 韩玉林, 殷贵鸿, 胡卫国, 王西成, 赵虹, 闫素红, 杨兆生, 畅志坚, 王涛, 杨武云, 刘登才, 李洪杰, 杜久元. 中国小麦抗条锈病基因育种利用现状与策略. 中国农业科学, 2024, 57: 34-51.
doi: 10.3864/j.issn.0578-1752.2024.01.004
Liu Z Y, Zhang H Z, Bai B, Li J, Huang L, Xu Z B, Chen Y X, Liu X, Cao T J, Li M M, Lu P, Wu Q H, Dong L L, Han Y L, Yin G H, Hu W G, Wang X C, Zhao H, Yan S H, Yang Z S, Chang Z J, Wang T, Yang W Y, Liu D C, Li H J, Du J Y. Current status and strategies for utilization of stripe rust resistance genes in wheat breeding program of China. Sci Agric Sin, 2024, 57: 34-51 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.01.004
[14] Milec Z, Tomková L, Sumíková T, Pánková K. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Mol Breed, 2012, 30: 317-323.
[15] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129: 1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516
[16] Würschum T, Langer S M, Tucker M R, Leiser W L. A modern Green Revolution gene for reduced height in wheat. Plant J, 2017, 92: 892-903.
[17] Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W, Griffiths S. Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. J Exp Bot, 2012, 63: 4419-4436.
doi: 10.1093/jxb/ers138 pmid: 22791821
[18] Lagudah E S, McFadden H, Singh R P, Huerta-Espino J, Bariana H S, Spielmeyer W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet, 2006, 114: 21-30.
doi: 10.1007/s00122-006-0406-z pmid: 17008991
[19] Zhang C Y, Dong C H, He X Y, Zhang L P, Xia X C, He Z H. Allelic variants at the TaZds-D1 locus on wheat chromosome 2DL and their association with yellow pigment content. Crop Sci, 2011, 51: 1580-1590.
[20] 杨芳萍, 刘金栋, 郭莹, 贾奥琳, 闻伟鄂, 巢凯翔, 伍玲, 岳维云, 董亚超, 夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位. 作物学报, 2019, 45: 1832-1840.
doi: 10.3724/SP.J.1006.2019.91026
Yang F P, Liu J D, Guo Y, Jia A L, Wen W E, Chao K X, Wu L, Yue W Y, Dong Y C, Xia X C. QTL mapping of adult-plant resistance to stripe rust in wheat variety Holdfast. Acta Agron Sin, 2019, 45: 1832-1840 (in Chinese with English abstract).
[21] Peterson R F, Campbell A B, Hannah A E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res, 1948, 26c: 496-500.
[22] 郝晨阳, 王兰芬, 董玉琛, 尚勋武, 张学勇. 我国西北春麦区小麦育成品种遗传多样性的AFLP分析. 植物遗传资源学报, 2003, 4: 285-291.
Hao C Y, Wang L F, Dong Y C, Shang X W, Zhang X Y. Genetic diversity of wheat varieties released in northwest spring wheat region revealed by AFLP. J Plant Genet Resour, 2003, 4: 285-291 (in Chinese with English abstract).
[23] 郑威. 长江流域小麦地方品种农艺品质性状的遗传多样性. 华中农业大学博士学位论文, 湖北武汉, 2013.
Zheng W. Genetic Diversity of Agronomic Quality Traits of Wheat Landraces in the Yangze River Valley. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2013 (in Chinese with English abstract).
[24] Miedaner T, Voss H H. Effect of dwarfing Rht genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Sci, 2008, 48: 2115-2122.
[25] Rebetzke G J, Richards R A. Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Aust J Agric Res, 2000, 51: 235.
[26] 魏育明, 颜泽洪, 吴卫, 兰秀锦, 张志清, 郑有良. 应用PCR技术研究中国特有小麦种子贮藏蛋白基因的遗传变异. 四川农业大学学报, 2004, 22: 287-292.
Wei Y M, Yan Z H, Wu W, Lan X J, Zhang Z Q, Zheng Y L. Genetic variations of storage protein genes among Chinese endemic wheats detected by PCR amplification. J Sichuan Agric Univ, 2004, 22: 287-292 (in Chinese with English abstract).
[27] 陈卫国, 王曙光, 史雨刚, 孙黛珍. 山西省不同来源小麦品种(系)的HMW-GS组成分析. 中国农业大学学报, 2015, 20: 19-28.
Chen W G, Wang S G, Shi Y G, Sun D Z. Analysis on components of HMW-GS in Shanxi wheat cultivars (lines) from different sources. J China Agric Univ, 2015, 20: 19-28 (in Chinese with English abstract).
[28] 李春鑫, 赵明忠, 韩留鹏, 高崇, 李正玲, 王艳, 昝香存, 胡琳. 小麦面粉色泽相关基因在河南地方品种中的分布. 麦类作物学报, 2022, 42: 685-696.
Li C X, Zhao M Z, Han L P, Gao C, Li Z L, Wang Y, Zan X C, Hu L. Distribution of flour color related genes in Henan wheat landraces. J Triticeae Crops, 2022, 42: 685-696 (in Chinese with English abstract).
[29] 简大为, 周阳, 刘宏伟, 杨丽, 买春艳, 于立强, 韩新年, 张宏军, 李洪杰. 利用功能标记揭示新疆小麦改良品种与地方品种的遗传变异. 作物学报, 2018, 44: 657-671.
doi: 10.3724/SP.J.1006.2018.00657
Jian D W, Zhou Y, Liu H W, Yang L, Mai C Y, Yu L Q, Han X N, Zhang H J, Li H J. Functional markers reveal genetic variations in wheat improved cultivars and landraces from Xinjiang. Acta Agron Sin, 2018, 44: 657-671 (in Chinese with English abstract).
[30] 管方念, 龙黎, 姚方杰, 王昱琦, 江千涛, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 152份黄淮海麦区小麦农家品种抗条锈性评价及重要条锈病抗性基因的分子检测. 中国农业科学, 2020, 53: 3629-3637.
doi: 10.3864/j.issn.0578-1752.2020.18.001
Guan F N, Long L, Yao F J, Wang Y Q, Jiang Q T, Kang H Y, Jiang Y F, Li W, Deng M, Li H, Chen G Y. Evaluation of resistance to stripe rust and molecular detection of important known yr gene(s) of 152 Chinese wheat landraces from the Huang-Huai- Hai. Sci Agric Sin, 2020, 53: 3629-3637 (in Chinese with English abstract).
[31] 张海鹏, 叶雪玲, 管方念, 黄林玉, 李伟, 邓梅, 魏育明, 蒋云峰, 陈国跃. 220份四川小麦条锈病抗性鉴定与评价. 四川农业大学学报, 2023, 41: 1020-1031.
Zhang H P, Ye X L, Guan F N, Huang L Y, Li W, Deng M, Wei Y M, Jiang Y F, Chen G Y. Identification and evaluation of stripe rust resistance in 220 Sichuan wheat germplasms. J Sichuan Agric Univ, 2023, 41: 1020-1031 (in Chinese with English abstract).
[32] 张玲丽, 王辉, 李立会, 李洪杰, 李小军, 李秀全, 杨欣明. 中国小麦地方品种大青芒遗传多样性研究. 中国农业科学, 2007, 40: 1579-1586.
Zhang L L, Wang H, Li L H, Li H J, Li X J, Li X Q, Yang X M. Genetic diversity analysis of common wheat landrace Daqingmang in various growing areas. Sci Agric Sin, 2007, 40: 1579-1586 (in Chinese with English abstract).
[33] 杨芳萍, 郭莹, 田媛媛, 曹世勤, 刘金栋, 张雪婷, 鲁清林, 张文涛, 王世红, 虎梦霞, 王雅美. 甘肃省小麦品种(系)矮秆基因检测及分布规律. 植物遗传资源学报, 2024, 25: 206-230.
doi: 10.13430/j.cnki.jpgr.20230804001
Yang F P, Guo Y, Tian Y Y, Cao S Q, Liu J D, Zhang X T, Lu Q L, Zhang W T, Wang S H, Hu M X, Wang Y M. Detection and distribution of dwarf genes of wheat varieties in Gansu province. J Plant Genet Resour, 2024, 25: 206-230 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.20230804001
[34] 杨芳萍, 郭莹, 吕迎春, 董亚超, 李玥, 化青春, 虎梦霞, 刘金栋. 甘肃省小麦地方品种春化、光周期基因分布频率及冬春性分析. 植物遗传资源学报, 2023, 24: 1558-1567.
doi: 10.13430/j.cnki.jpgr.20230320003
Yang F P, Guo Y, Lyu Y C, Dong Y C, Li Y, Hua Q C, Hu M X, Liu J D. Distribution frequency of vernalization and photoperiod genes in Gansu wheat landraces and winter hardness analysis. J Plant Genet Resour, 2023, 24: 1558-1567 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.20230320003
[35] 丛花, 王宏飞, 祁旭升, 高小丽, 张金波, 严勇亮, 章艳凤, 路子峰. 西北地区小麦地方品种高分子量谷蛋白亚基组成分析. 新疆农业科学, 2016, 53: 1373-1382.
Cong H, Wang H F, Qi X S, Gao X L, Zhang J B, Yan Y L, Zhang Y F, Lu Z F. Analysis of genetic diversity of HMW-GS in wheat landraces from Northwest China. Xinjiang Agric Sci, 2016, 53: 1373-1382 (in Chinese with English abstract).
[1] YANG Fang-Ping, GUO Ying, TIAN Yuan-Yuan, XU Yu-Feng, WANG Lan-Lan, BAI Bin, ZHAN Zong-Bing, ZHANG Xue-Ting, XU Yin-Ping, LIU Jin-Dong. Effect of vernalization and photoperiod genes and evaluation of cold tolerance for wheat landraces from Gansu province, China [J]. Acta Agronomica Sinica, 2025, 51(2): 370-382.
[2] HAO Qi, CHEN Tian-Lu, WANG Fu-Gui, WANG Zhen, BAI Lan-Fang, WANG Yong-Qiang, WANG Zhi-Gang. Estimation of canopy nitrogen concentration in maize based on UAV multi- spectral data and spatial nitrogen heterogeneity [J]. Acta Agronomica Sinica, 2025, 51(1): 189-206.
[3] HUANG Lin-Yu, ZHANG Xiao-Yue, LI Hao, DENG Mei, KANG Hou-Yang, WEI Yu-Ming, WANG Ji-Rui, JIANG Yun-Feng, CHEN Guo-Yue. Mapping of QTL for adult plant stripe rust resistance genes in a Sichuan wheat landrace and the evaluation of their breeding effects [J]. Acta Agronomica Sinica, 2024, 50(9): 2167-2178.
[4] LIU Jia, GONG Fang-Yi, LIU Ya-Xi, YAN Ze-Hong, ZHONG Xiao-Ying, CHEN Hou-Lin, HUANG Lin, and WU Bi-Hua. Genome-wide association study for agronomic traits in common wheat lines derived from wild emmer wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1184-1196.
[5] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[6] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[7] ZHAO Xu-Yang, YAO Fang-Jie, LONG Li, WANG Yu-Qi, KANG Hou-Yang, JIANG Yun-Feng, LI Wei, DENG Mei, LI Hao, CHEN Guo-Yue. Evaluation of resistance to stripe rust and molecular detection of resistance genes of 93 wheat landraces from the Qinghai-Tibet spring and winter wheat zones [J]. Acta Agronomica Sinica, 2021, 47(10): 2053-2063.
[8] ZHANG Ping-Ping,YAO Jin-Bao,WANG Hua-Dun,SONG Gui-Cheng,JIANG Peng,ZHANG Peng,MA Hong-Xiang. Soft wheat quality traits in Jiangsu province and their relationship with cookie making quality [J]. Acta Agronomica Sinica, 2020, 46(4): 491-502.
[9] YAN Cai-Xia,WANG Juan,ZHANG Hao,LI Chun-Juan,SONG Xiu-Xia,SUN Quan-Xi,YUAN Cui-Ling,ZHAO Xiao-Bo,SHAN Shi-Hua. Developing the key germplasm of Chinese peanut landraces based on phenotypic traits [J]. Acta Agronomica Sinica, 2020, 46(4): 520-531.
[10] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[11] MA Yan-Ming, LOU Hong-Yao, CHEN Zhao-Yan, XIAO Jing, XU Lin, NI Zhong-Fu, LIU Jie. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1539-1556.
[12] Di JIN,Dong-Zhi WANG,Huan-Xue WANG,Run-Zhi LI,Shu-Lin CHEN,Wen-Long YANG,Ai-Min ZHANG,Dong-Cheng LIU,Ke-Hui ZHAN. Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat [J]. Acta Agronomica Sinica, 2019, 45(6): 807-817.
[13] Fang-Ping YANG,Jin-Dong LIU,Ying GUO,Ao-Lin JIA,Wei-E WEN,Kai-Xiang CHAO,Ling WU,Wei-Yun YUE,Ya-Chao DONG,Xian-Chun XIA. QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast [J]. Acta Agronomica Sinica, 2019, 45(12): 1832-1840.
[14] BAI Yan-Ming,LI Long,WANG Hui-Yan,LIU Yu-Ping,WANG Jing-Yi,MAO Xin-Guo,CHANG Xiao-Ping,SUN Dai-Zhen,JING Rui-Lian. Genetic diversity assessment in derivative offspring of Mazhamai and Xiaobaimai wheat [J]. Acta Agronomica Sinica, 2019, 45(10): 1468-1477.
[15] Dong-Mei BAI,Yun-Yun XUE,Jiao-Jiao ZHAO,Li HUANG,Yue-Xia TIAN,Bao-Quan QUAN,Hui-Fang JIANG. Identification of Cold-tolerance During Germination Stage and Genetic Diversity of SSR Markers in Peanut Landraces of Shanxi Province [J]. Acta Agronomica Sinica, 2018, 44(10): 1459-1467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!