Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (10): 1468-1477.doi: 10.3724/SP.J.1006.2019.91012

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic diversity assessment in derivative offspring of Mazhamai and Xiaobaimai wheat

BAI Yan-Ming1,2,LI Long2,WANG Hui-Yan1,2,LIU Yu-Ping2,WANG Jing-Yi2,MAO Xin-Guo2,CHANG Xiao-Ping2,SUN Dai-Zhen1,*(),JING Rui-Lian2,*()   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030800, Shanxi, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-02-01 Accepted:2019-04-15 Online:2019-10-12 Published:2019-09-10
  • Contact: Dai-Zhen SUN,Rui-Lian JING E-mail:sdz64@126.com;jingruilian@caas.cn
  • Supported by:
    This study was financially supported by the National Key Research and Development Program of China(2017YFD0300202);the Key Research and Development Program of Shanxi Province(201703D211007-6)

Abstract:

“Mazhamai” originated in Guanzhong region of Shaanxi province, and “Xiaobaimai” in Pingyao county of Shanxi province, two landraces of wheat (Triticum aestivum L.), are the primitive founder parents of wheat cultivars in northern China. The genetic diversity assessment of “Mazhamai”, “Xiaobaimai” and their derivative offsprings will be helpful to wheat cultivar improvement. In this study, a wheat 660K SNP Array was used to perform genome-wide scanning for analyzing genetic diversity of “Mazhamai”, “Xiaobaimai” and their derivatives. The polymorphic SNP marker number in three genomes was B>A>D, and the fourth homoeologous group had the least number of polymorphic markers. The gene diversity (H) and nucleotide diversity (π) ranges were 0.095-0.500 and 0.272-0.435, with corresponding average values of 0.336 and 0.340 in 149 wheat accessions, respectively. The genetic similarity coefficient (GS) ranged from 0.335 to 0.997, with an average value of 0.619 in the wheat panel. It indicated a low genetic diversity in the derivative offsprings of “Mazhamai” and “Xiaobaimai”. Cluster analysis exhibited that the derived cultivars of “Mazhamai” and “Xiaobaimai” were divided into five clusters, “Mazhamai” and “Xiaobaimai” were closely grouped into Cluster I. The cultivars released before 2000 were mainly the single derivatives of “Mazhamai” or “Xiaobaimai” in Cluster I, II and III and grouped, while the most cultivars released after 2000 possessed both blood of “Mazhamai” and “Xiaobaimai” with higher genetic diversity than the former, and grouped in Cluster IV and V just like commercial cultivars widely grown. Therefore, we should strengthen the introduction of beneficial genetic resources, broaden the genetic basis of wheat cultivars, resulting in improved breeding level.

Key words: wheat, landrace, founder parent, SNP marker, nucleotide diversity

Fig. 1

Distribution of polymorphic SNP markers on chromosomes (A), homoeologous groups (B), and genomes (C)"

Fig. 2

Frequency distributions of genetic similarity among accessions"

Table 1

Nucleotide diversity of accessions released in different eras"

年代
Era
π值
π value
品种数
No. of accession
Pre-1960 0.389 12
1960s 0.391 26
1970s 0.352 19
1980s 0.387 13
1990s 0.387 19
2000s 0.388 34
2010s 0.388 26

Table 2

Information of different generations derived from Mazhamai"

衍生世代
Generation
品种名称
Accession
品种数
No. of
accession
核苷酸多样性
Nucleotide
diversity (π)
1 碧蚂2号 Bima 2 1
2 衡水6404, 邢选1号, 北京8号, 陕农4号, 徐州6号, 淮沭10号, 昌乐5号, 济南2号, 石家庄54, 青春1号, 青春2号, 陕农17-17, 郑州24, 陕合6号, 陕农1号, 陕农18
Hengshui 6404, Xingxuan 1, Beijing 8, Shaannong 4, Xuzhou 6, Huaishu 10, Changle 5, Jinan 2, Shijiazhuang 54, Qingchun 1, Qingchun 2, Shaannong 17-17, Zhengzhou 24, Shaanhe 6, Shaannong 1, Shaannong 18
16 0.348
3 北京13, 农大198, 济南10号, 冀麦2号, 平凉35, 西峰9号, 冀麦1号
Beijing 13, Nongda 198, Jinan 10, Jimai 2, Pingliang 35, Xifeng 9, Jimai 1
7 0.305
4 晋麦29, 庆丰1号, ZHM 44, 晋麦47, 长武702, 丰抗13, 平凉21
Jinmai 29, Qingfeng 1, ZHM 44, Jinmai 47, Changwu 702, Fengkang 13, Pingliang 21
7 0.353
5 运旱20410, 临旱6号, 运旱22-33, 洛旱13, 晋麦79, 晋麦33, 洛旱2号, 丰抗8号, 丰抗7号, 京农79-13, 丰抗10号, 兰天4号, 京437, ZHM 40, ZHM 42, ZHM 43, 洛旱15, 中麦36
Yunhan 20410, Linhan 6, Yunhan 22-33, Luohan 13, Jinmai 79, Jinmai 33, Luohan 2, Fengkang 8, Fengkang 7, Jingnong 79-13, Fengkang 10, Lantian 4, Jing 437, ZHM 40, ZHM 42, ZHM 43, Luohan 15, Zhongmai 36
18 0.305
6 晋麦100, 晋麦92, 晋太170, 晋麦63, 西峰20, 中麦175, 北京8694, 京冬8号
Jinmai 100, Jinmai 92, Jintai 170, Jinmai 63, Xifeng 20, Zhongmai 175, Beijing 8694, Jingdong 8
8 0.355
7 陇育5号, 长4640, 长6878, 长6154, 长6452, 晋麦87, 长7016, 临丰615, 洛旱11, 洛旱9号, 洛旱6号, 洛旱3号
Longyu 5, Chang 4640, Chang 6878, Chang 6154, Chang 6452, Jinmai 87, Chang 7016, Linfeng 615, Luohan 11, Luohan 9, Luohan 6, Luohan 3
12 0.333
8 长武134, 宁冬16, 晋太1310, 晋太114, 长8744, 长6794, 长5222, 运旱137, 长麦6197, 长7050, ZHM 35, 鲁麦14, 衡136
Changwu 134, Ningdong 16, Jintai 1310, Jintai 114, Chang 8744, Chang 6794, Chang 5222, Yunhan 137, Changmai 6197, Chang 7050, ZHM 35, Lumai 14, Heng 136
13 0.339
9 长6990, 长6388, 长9499, ZHM 41, ZHM 45
Chang 6990, Chang 6388, Chang 9499, ZHM 41, ZHM 45
5 0.275

Table 3

Information of different generations derived from Xiaobaimai/Yanda 1817"

衍生世代
Generation
品种名称
Accession
品种数
No. of
accession
核苷酸多样性Nucleotide
diversity (π)
1 农大36, 农大183, 农大311, 农大90, 太原566, 石家庄407, 北京5号, 北京6号, 北京
7号
Nongda 36, Nongda 183, Nongda 311, Nongda 90, Taiyuan 566, Shijiazhuang 407, Beijing 5, Beijing 6, Beijing 7
9 0.233
2 晋麦1号, 农大155, 农大166, 工农12, 渭麦4号, 科遗29, 旱选1号, 旱选2号, 旱选3号, 晋麦5号, 晋麦8号, 晋麦17, 冀麦32, 延安15, 冀麦6号, 洛农10号, 济南10号
Jinmai 1, Nongda 155, Nongda 166, Gongnong 12, Weimai 4, Keyi 29, Hanxuan 1, Hanxuan 2, Hanxuan 3, Jinmai 5, Jinmai 8, Jinmai 17, Jimai 32, Yanan 15, Jimai 6, Luonong 10, Jinan 10
17 0.299
3 晋麦44, 晋麦16, 长治515, 东方红3号, 晋麦13, 冀麦9号, 西峰16, 沧麦6005, 北京10号, 北京13, 丰抗8号, 丰抗7号, 京农79-13, 丰抗10号, 衡水6404, 邢选1号, 晋麦29
Jinmai 44, Jinmai 16, Changzhi 515, Dongfanghong 3, Jinmai 13, Jimai 9, Xifeng 16, Cangmai 6005, Beijing 10, Beijing 13, Fengkang 8, Fengkang 7, Jingnong 79-13, Fengkang 10, Hengshui 6404, Xingxuan 1, Jinmai 29
17 0.323
4 冀麦22, 兰天10号, 冀麦29, 晋麦18, 晋麦51, 兰天9号, 晋麦33, 农大198, 庆丰1号, 北京8694, 京冬8号
Jimai 22, Lantian 10, Jimai 29, Jinmai 18, Jinmai 51, Lantian 9, Jinmai 33, Nongda 198, Qingfeng 1, Beijing 8694, Jingdong 8
11 0.359
5 晋麦46, 晋麦53, 晋麦92, 晋麦79, 洛旱2号, 兰天4号, 晋麦47
Jinmai 46, Jinmai 53, Jinmai 92, Jinmai 79, Luohan 2, Lantian 4, Jinmai 47
7 0.375
6 太10604, 运旱20410, 临旱6号, 运旱22-33, 长武134, 晋麦100, 洛旱13, 晋麦63, 西峰20, 京437, ZHM 40, ZHM 42, ZHM 43, 洛旱15, 中麦36
Tai 10604, Yunhan 20410, Linhan 6, Yunhan 22-33, Changwu 134, Jinmai 100, Luohan 13, Jinmai 63, Xifeng 20, Jing 437, ZHM 40, ZHM 42, ZHM 43, Luohan 15, Zhongmai 36
15 0.304
7 陇育5号, 长4640, 晋太170, 长6878, 长6154, 长6452, 晋麦87, 长7016, 中麦175
Longyu 5, Chang 4640, Jintai 170, Chang 6878, Chang 6154, Chang 6452, Jinmai 87, Chang 7016, Zhongmai 175
9 0.306
8 宁冬16, 晋太1310, 晋太114, 长8744, 长6794, 长5222, 运旱137, 长麦6197, 长7050, ZHM 35
Ningdong 16, Jintai 1310, Jintai 114, Chang 8744, Chang 6794, Chang 5222, Yunhan 137, Changmai 6197, Chang 7050, ZHM 35
10 0.329
9 长6990, 长6388, 长9499, ZHM 41, ZHM 45, 鲁麦14
Chang 6990, Chang 6388, Chang 9499, ZHM 41, ZHM 45, Lumai 14
6 0.259
10 ZHM 44 ZHM 44 1

Fig. 3

Cluster analysis of 149 accessions based on the polymorphic SNP The black fonts indicate Mazhamai and Xiaobaimai/Yanda 1817. The purple fonts indicate the derivative varieties (lines) of Mazhamai. The red fonts indicate the derivative varieties (lines) of Xiaobaimai. The blue fonts indicate derivative varieties (lines) with both kinship of Mazhamai and Xiaobaimai. The green fonts indicate commercial varieties."

Table 4

Released eras of accessions in each subgroup"

育成年代
Released era
亚群I
Subgroup I
亚群II
Subgroup II
亚群III
Subgroup III
亚群IV
Subgroup IV
亚群V
Subgroup V
Pre-1960 11 1
1960s 11 6 7 2
1970s 6 6 6 1
1980s 3 3 6 1
1990s 6 2 7 2 2
2000s 1 2 17 15
2010s 1 2 2 9 11
合计Total 39 19 30 32 29

Table 5

Geographical distribution of accessions in each subgroup"

来源
Origin
亚群I
Subgroup I
亚群II
Subgroup II
亚群III
Subgroup III
亚群IV
Subgroup IV
亚群V
Subgroup V
山西Shanxi 17 7 15 9
陕西Shaanxi 7 1 3 4 2
河北Hebei 5 1 3 4 1
河南Henan 1 4 7
北京Beijing 7 8 12 5 4
甘肃Gansu 1 4 5
江苏Jiangsu 1 1
山东Shandong 1 3 5
宁夏Ningxia 1
合计Total 39 19 30 32 29

Table 6

Genetic similarities among Mazhamai, Xiaobaimai, and Yanda 1817"

品种
Accession
D1 (岐山蚂蚱麦)
Mazhamai of Qishan
D2 (武功蚂蚱麦)
Mazhamai of Wugong
D3 (扶风蚂蚱麦)
Mazhamai of Fufeng
D4 (冠县蚂蚱麦)
Mazhamai of Guanxian
D5 (小白麦)
Xiaobaimai
D2 (武功蚂蚱麦)
Mazhamai of Wugong
0.747
D3 (扶风蚂蚱麦)
Mazhamai of Fufeng
0.889 0.802
D4 (冠县蚂蚱麦)
Mazhamai of Guanxian
0.738 0.849 0.787
D5 (小白麦)
Xiaobaimai
0.798 0.663 0.636 0.628
D7 (燕大1817)
Yanda 1817
0.799 0.664 0.635 0.628 0.989
[1] Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C . Food security: the challenge of feeding 9 billion people. Science, 2010,327:812-818.
[2] Tilman D, Balzer C, Hill J, Befort B L . Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011,108:20260-20264.
[3] Ray D K, Mueller N D, West P C, Foley J A . Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013,8:e66428
[4] 赵俊晔, 于振文 . 中国小麦生产“十三五”发展规划研究. 北京: 中国农业科学技术出版社, 2017. pp 1-2.
Zhao J Y, Yu Z W. Study on The Development Plan of China’s Wheat Production During The 13th Five-Year Plan Period. Beijing: China Agricultural Science and Technology Press, 2017. pp 1-2(in Chinese).
[5] 庄巧生 . 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 34-170.
Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. pp 34-170(in Chinese).
[6] Tanksley S D, McCouch S R . Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997,277:1063-1066.
[7] Royo C, Elias E M, Manthey F A . Durum Wheat Breeding. Springer US, 2009. pp 199-226.
[8] 曹廷杰, 谢菁忠, 吴秋红, 陈永兴, 王振忠, 赵虹, 王西成, 詹克慧, 徐如强, 王际睿, 罗明成, 刘志勇 . 河南省近年审定小麦品种基于系谱和SNP标记的遗传多样性分析. 作物学报, 2015,41:197-206.
Cao T J, Xie J Z, Wu Q H, Chen Y X, Wang Z Z, Zhao H, Wang X C, Zhan K H, Xu R Q, Wang J R, Luo M C, Liu Z Y . Genetic diversity of registered wheat varieties in henan province based on pedigree and single-nucleotide polymorphism. Acta Agron Sin, 2015,41:197-206 (in Chinese with English abstract).
[9] Wilson E O . The biological diversity crisis. Bioscience, 1985,35:700-706.
[10] 陈天青, 黄芳, 李文贞, 蒋选利, 王伟, 刘冬成, 阳文龙, 张爱民, 张立异 . 西南地区小麦抗条锈病种质的遗传多样性及群体结构分析. 植物遗传资源学报, 2015,16:1157-1167.
Chen T Q, Huang F, Li W Z, Jiang X L, Wang W, Liu D C, Yang W L, Zhang A M, Zhang L Y . Investigation and analysis of genetic diversity and population structure for wheat germplasms resistant to stripe rust in southwest China. J Plant Genet Resour, 2015,16:1157-1167 (in Chinese with English abstract).
[11] Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y . Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res, 2002,9:163-171.
[12] 邹喻苹, 葛颂 . 新一代分子标记——SNPs及其应用. 生物多样性, 2003,11:370-382.
Zou Y P, Ge S . A novel molecular marker—SNPs and its application. Biodiversity Sci, 2003,11:370-382 (in Chinese with English abstract)
[13] Chao S, Rouse M N, Acevedo M, Szabo-Hever A, Bockelman H, Bonman J M, Elias E, Klindworth D, Xu S . Evaluation of genetic diversity and host resistance to stem rust in USDA NSGC durum wheat accessions. Plant Genome, 2017,10:1-13.
[14] 陈广凤, 田纪春 . 基于SNP标记小麦自然群体遗传多样性及复合图谱的构建. 分子植物育种, 2015,13:1441-1449.
Chen G F, Tian J C . Genetic analysis of natural population of wheat and construction of composite map using SNP markers. Mol Plant Breed, 2015,13:1441-1449 (in Chinese with English abstract).
[15] 刘新伦, 王长有, 王亚娟, 张宏, 吉万全 . 小麦骨干亲本阿夫及其衍生品种(系)重要性状的演变规律. 西北农林科技大学学报(自然科学版), 2011,39(1):96-102.
Liu X L, Wang C Y, Wang Y J, Zhang H, Ji W Q . Evolution trend of important characters of wheat core parents Funo and its derived varieties. J Northwest A&F Univ ( Nat Sci Edn), 2011,39(1):96-102 (in Chinese with English abstract).
[16] 李小军 . 小麦骨干亲本碧蚂4号的遗传效应分析. 中国农业科学院博士学位论文, 北京, 2009.
Li X J . Analysis of Genetic Effects of Wheat (Triticum aestivum L.) Variety Bima 4 as a Founder Parent . PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2009 (in Chinese with English abstract).
[17] 韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇 . 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析. 作物学报, 2009,35:1395-1404.
Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y . Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program. Acta Agron Sin, 2009,35:1395-1404 (in Chinese with English abstract).
[18] Saghai Maroof M A, Biyashev R M, Yang G P, Zhang Q, Allard R W . Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA, 1994,91:5466-5470.
[19] Liu K, Muse S V . PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005,21:2128-2129.
[20] Nei M . Genetic distance between populations. Am Nat, 1972,106:283-292.
[21] Jing R L, Chang X P, M Broggio, Jia J Z . Detection of allelic variation in Chinese wheat ( Triticum aestivum L.) germplasm with drought tolerance using SSR markers. Agric Sci China, 2002,1:1083-1088.
[22] 魏添梅, 昌小平, 闵东红, 景蕊莲 . 小麦抗旱品种的遗传多样性分析及株高优异等位变异挖掘. 作物学报, 2010,36:895-990.
Wei T M, Chang X P, Min D H, Jing R L . Analysis of genetic diversity and tapping elite alleles for plant height in drought-tolerant wheat varieties. Acta Agron Sin, 2010,36:895-990 (in Chinese with English abstract).
[23] 张莉莉, 韩芳, 马守才, 亓佳佳, 陈蕴文, 余欣欣, 薛小雁, 郑雅潞, 张改生, 牛娜 . 小麦品种豫麦2号及其衍生系的遗传差异分析. 中国农业大学学报, 2015,20(4):1-11.
Zhang L L, Han F, Ma S C, Yuan J J, Chen Y W, Yu X X, Xue X Y, Zheng Y L, Zhang G S, Niu N . Genetic differentiation analysis on derived lines from wheat cultivar Yumai 2. J China Agric Univ, 2015,20(4):1-11 (in Chinese with English abstract).
[24] 张德强, 宋晓朋, 冯洁, 连俊芳, 孙道杰 . 小麦周8425B及其衍生品种与黄淮麦区主栽品种的遗传解析. 麦类作物学报, 2016,36:1328-1334.
Zhang D Q, Song X P, Feng J, Lian J F, Sun D J . Genetic dissection on the derived lines from wheat cultivar Zhou 8425B and widely grown cultivars in Huang huai region. J Triticeae Crops, 2016,36:1328-1334 (in Chinese with English abstract).
[25] Guo J, Shi W, Zhang Z, Cheng J, Sun D, Yu J, Li X, Guo P, Hao C . Association of yield-related traits in founder genotypes and derivatives of common wheat ( Triticum aestivum L.). BMC Plant Biol, 2018, 1471-1486.
[26] Ma F F, Xu Y F, Ma Z Q, Li L H, An D G . Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6. Mol Breed, 2018,38:91-105.
[27] 贾继增, 张正斌, Devos K, Gale M D . 小麦21条染色体RFLP作图位点遗传多样性分析. 中国科学: C辑, 2001,31:13-21.
Jia J Z, Zhang Z B, Devos K, Gale M D . Genetic diversity of 21 chromosomes in wheat revealed by RFLP mapping. Sci China ( Ser C), 2001,31:13-21 (in Chinese).
[28] 景蕊莲, 昌小平 . SSR标记在小麦种质资源研究中的应用. 作物品种资源, 1999, ( 2):17-20.
Jing R L, Chang X P . Application of SSR markers in the study of wheat germplasm resources. Crop Germplasm Resour, 1999, ( 2):17-20 (in Chinese).
[29] Maccaferri M, Sanguineti M C, Donini P, Tuberosa R . Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet, 2003,107:783-797.
[30] Cui D, Li J, Tang C, A X, Yu T, Ma X, Zhang E, Cao G, Xu F, Qiao Y, Dai L, Han L . Diachronic analysis of genetic diversity in rice landraces under on-farm conservation in Yunnan, China. Theor Appl Genet, 2016,129:155-168.
[31] Rashid M A, Zhao Y, Zhang H, Li J, Li Z . Nucleotide diversity, natural variation, and evolution of flexible culm-1 and strong culm-2 lodging resistance genes in rice. Genome, 2016,59:473-483.
[32] 庄巧生 . 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 54-55.
Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. pp 54-55(in Chinese).
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[5] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[6] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[7] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[8] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[9] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[10] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[11] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[12] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[13] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[14] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[15] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!