Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (5): 1230-1247.doi: 10.3724/SP.J.1006.2025.41072
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Qing(), WANG Yi-Xiu, LI Yue-Nan, LYU Yong-Hui, ZHANG Hai-Bo, LIU Na*(
), CHENG Hong-Yan*(
)
[1] | Hussain B, Ashraf M N, Shafeeq-Ur-Rahman, Abbas A, Li J M, Farooq M. Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Sci Total Environ, 2021, 754: 142188. |
[2] | 范业赓, 廖洁, 王天顺, 丘立杭, 陈荣发, 黄杏, 莫磊兴, 吴建明. 镉胁迫对甘蔗抗氧化酶系统及非蛋白巯基物质的影响. 湖南农业科学, 2019, (4): 23-27. |
Fan Y G, Liao J, Wang T S, Qiu L H, Chen R F, Huang X, Mo L X, Wu J M. Effects of cadmium stress on antioxidant enzyme system and non-protein thiols substances in sugarcane. Hunan Agric Sci, 2019, (4): 23-27 (in Chinese with English abstract). | |
[3] | Xu J H, Hu C Y, Wang M L, Zhao Z S, Zhao X X, Cao L, Lu Y F, Cai X Y. Changeable effects of coexisting heavy metals on transfer of cadmium from soils to wheat grains. J Hazard Mater, 2022, 423: 127182. |
[4] |
Xing W Q, Zhang H Y, Scheckel K G, Li L P. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan province, China. Environ Monit Assess, 2016, 188: 23.
doi: 10.1007/s10661-015-5023-3 pmid: 26661959 |
[5] | Hu B F, Shao S, Ni H, Fu Z Y, Huang M X, Chen Q X, Shi Z. Assessment of potentially toxic element pollution in soils and related health risks in 271 cities across China. Environ Pollut, 2021, 270: 116196. |
[6] |
刘娜, 张少斌, 郭欣宇, 宁瑞艳. 小麦籽粒镉含量影响因素Meta分析和决策树分析. 环境科学, 2023, 44: 2265-2274.
pmid: 37040975 |
Liu N, Zhang S B, Guo X Y, Ning R Y. Influencing factors of cadmium content in wheat grain: a meta-analysis and decision tree analysis. Environ Sci, 2023, 44: 2265-2274 (in Chinese with English abstract).
doi: 10.13227/j.hjkx.202204090 pmid: 37040975 |
|
[7] | 唐舒庭, 卢一铭, 肖盛柏, 崔浩, 魏世强. 稻田土壤砷、镉复合污染阻控技术研究进展. 环境科学, 2023, 44: 5704-5717. |
Tang S T, Lu Y M, Xiao S B, Cui H, Wei S Q. Research advances in barrier technology of paddy soil co-contaminated with As and Cd. Environ Sci, 2023, 44: 5704-5717 (in Chinese with English abstract). | |
[8] | Liu C, Peng L M, Lei M F, Li Y F. Research on crossing tunnels’ seismic response characteristics. KSCE J Civ Eng, 2019, 23: 4910-4920. |
[9] | Liu N, Huang X M, Sun L M, Li S S, Chen Y H, Cao X Y, Wang W X, Dai J L, Rinnan R. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China. Chemosphere, 2020, 241: 125065. |
[10] | 郭震华, 蔡丽君, 潘国君, 王立楠, 周雪松, 杜晓东, 蔡永盛, 张希瑞, 韩笑, 周通, 等. 低温胁迫下水稻孕穗期幼穗的转录组动态分析. 种子, 2024, 43(8): 60-68. |
Guo Z H, Cai L J, Pan G J, Wang L N, Zhou X S, Du X D, Cai Y S, Zhang X R, Han X, Zhou T, et al. Transcriptome dynamic analysis on young panicle of rice at booting stage under cold stress. Seed, 2024, 43(8): 60-68 (in Chinese with English abstract). | |
[11] | 王慧敏. 谷子苗期响应盐碱胁迫的生理和转录组分析及SiAAAPs家族研究. 河北科技师范学院硕士学位论文, 河北秦皇岛, 2024. |
Wang H M. Physiological Investigation, Transcriptome Analysis, and SiAAAPs Family Study of Foxtail Millet Response to Saline-alkali Stress at the Seedling Stage. MS Thesis of Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China, 2024 (in Chinese with English abstract). | |
[12] | 姚琦, 石俊婷, 鲁振强, 刘大丽. 甜菜镉胁迫应答基因ZAT10的克隆与功能预测. 中国糖料, 2024, 46(3): 1-9. |
Yao Q, Shi J T, Lu Z Q, Liu D L. Cloning and functional prediction of the sugar beet cadmium stress-responsive gene ZAT10. Sugar Crops China, 2024, 46(3): 1-9 (in Chinese with English abstract). | |
[13] | Wang Z Q, Zhang W Y, Huang W J, Biao A, Lin S, Wang Y, Yan S J, Zeng S H. Salt stress affects the fruit quality of Lycium ruthenicum Murr. Ind Crops Prod, 2023, 193: 116240. |
[14] | 倪显春, 任建国, 庞玉新, 王俊丽. 转录组测序分析艾纳香对镉胁迫响应机制. 分子植物育种, 网络首发[2023-01-19], https://kns.cnki.net/kcms/detail//46.1068.S.20230119.0907.002.html. |
Ni X C, Ren J G, Pang Y X, Wang J L. Transcriptome sequencing analysis of the response mechanism of blumea balsamifera Dc to cadmium stress. Mol Plant Breed, Published online [2023-01-19], https://kns.cnki.net/kcms/detail//46.1068.S.20230119.0907.002.html (in Chinese with English abstract). | |
[15] | 张大众. 不同镉耐受性小麦对镉胁迫的响应和耐受分子机制研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2022. |
Zhang D Z. Response and Tolerant Molecular Mechanism of Cadmium Stress in Common Wheat with Distinct Cadmium Tolerance. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2022 (in Chinese with English abstract). | |
[16] | Zhang D Z, Liu J J, Zhang Y B, Wang H R, Wei S W, Zhang X, Zhang D, Ma H S, Ding Q, Ma L J. Morphophysiological, proteomic and metabolomic analyses reveal cadmium tolerance mechanism in common wheat (Triticum aestivum L.). J Hazard Mater, 2023, 445: 130499. |
[17] | Wang M, Li H B, Dang F, Cheng B X, Cheng C, Ge C H, Zhou D M. Common metabolism and transcription responses of low- cadmium-accumulative wheat (Triticum aestivum L.) cultivars sprayed with nano-selenium. Sci Total Environ, 2024, 948: 174936. |
[18] | 丁艳. 小麦叶片对Cd、Hg和1, 2, 4-三氯苯胁迫应答的蛋白组学研究. 扬州大学硕士学位论文, 江苏扬州, 2008. |
Ding Y. Proteomic Study for Wheat Leaves Responding to Cd, Hg and TCB Stress. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2008 (in Chinese with English abstract). | |
[19] |
陈倩, 谢旗. 内质网胁迫在植物中的研究进展. 生物技术通报, 2018, 34(1): 15-25.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0996 |
Chen Q, Xie Q. The research progress of the endoplasmic reticulum (ER) stress response in plant. Biotechnol Bull, 2018, 34(1): 15-25 (in Chinese with English abstract). | |
[20] | Liu J X, Srivastava R, Che P, Howell S H. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J, 2007, 51: 897-909. |
[21] |
McCracken A A, Brodsky J L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol, 1996, 132: 291-298.
pmid: 8636208 |
[22] | 白雨婷, 张文晓, 周倩, 向凤宁. 转录因子在植物内质网胁迫中的作用及分子机制研究进展. 植物生理学报, 2024, 60: 1055-1067. |
Bai Y T, Zhang W X, Zhou Q, Xiang F N. Advances in roles and molecular mechanisms of transcription factors in endoplasmic reticulum stress in plants. Plant Physiol J, 2024, 60: 1055-1067 (in Chinese with English abstract). | |
[23] |
Liu L J, Cui F, Li Q L, Yin B J, Zhang H W, Lin B Y, Wu Y R, Xia R, Tang S Y, Xie Q. The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Res, 2011, 21: 957-969.
doi: 10.1038/cr.2010.181 pmid: 21187857 |
[24] |
Ciobanu L G, Sachdev P S, Trollor J N, Reppermund S, Thalamuthu A, Mather K A, Cohen-Woods S, Stacey D, Toben C, Schubert K O, et al. Co-expression network analysis of peripheral blood transcriptome identifies dysregulated protein processing in endoplasmic reticulum and immune response in recurrent MDD in older adults. J Psychiatr Res, 2018, 107: 19-27.
doi: S0022-3956(18)30744-1 pmid: 30312913 |
[25] |
Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich W, Bacher A, Meeley R B, Briggs S P, et al. Analysis of a chemical plant defense mechanism in Grasses. Science, 1997, 277: 696-699.
doi: 10.1126/science.277.5326.696 pmid: 9235894 |
[26] | Tzin V, Hojo Y, Strickler S R, Bartsch L J, Archer C M, Ahern K R, Zhou S Q, Christensen S A, Galis I, Mueller L A, et al. Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding. J Exp Bot, 2017, 68: 4709-4723. |
[27] |
von Rad U, Hüttl R, Lottspeich F, Gierl A, Frey M. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant J, 2001, 28: 633-642.
pmid: 11851909 |
[28] |
Poschenrieder C, Tolrà R P, Barceló J. A role for cyclic hydroxamates in aluminium resistance in maize. J Inorg Biochem, 2005, 99: 1830-1836.
pmid: 16054220 |
[29] | Niculaes C, Abramov A, Hannemann L, Frey M. Plant protection by benzoxazinoids—recent insights into biosynthesis and function. Agronomy, 2018, 8: 143. |
[30] | Zhao Z K, Gao X F, Ke Y, Chang M M, Xie L, Li X F, Gu M H, Liu J P, Tang X L. A unique aluminum resistance mechanism conferred by aluminum and salicylic-acid-activated root efflux of benzoxazinoids in maize. Plant Soil, 2019, 437: 273-289. |
[31] | 苏小雨. 干旱胁迫下褪黑素对玉米幼苗生理生化的调控及蛋白组分析. 河南农业大学博士学位论文, 河南郑州, 2018. |
Su X Y. The Role of Melatonin on Regulation Mechanism of Physiological and Proteome Analysis in Maize Seedlings Under Drought Stress. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2018 (in Chinese with English abstract). | |
[32] |
Adeva-Andany M M, Carneiro-Freire N, Seco-Filgueira M, Fernández-Fernández C, Mouriño-Bayolo D. Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion, 2019, 46: 73-90.
doi: S1567-7249(17)30289-1 pmid: 29551309 |
[33] | Yu H L, Du X Q, Zhang F X, Zhang F, Hu Y, Liu S C, Jiang X N, Wang G D, Liu D. A mutation in the E2 subunit of the mitochondrial pyruvate dehydrogenase complex in Arabidopsis reduces plant organ size and enhances the accumulation of amino acids and intermediate products of the TCA cycle. Planta, 2012, 236: 387-399. |
[34] | 刘缨, 霍诗睿, 李婷, 赫荣乔. 在教学中通过脱羧线索解析三羧酸循环. 微生物学通报, 2024, 51: 5270-5281. |
Liu Y, Huo S R, Li T, He R Q. Teaching of tricarboxylic acid cycle via decarboxylation clues. Microbiol China, 2024, 51: 5270-5281 (in Chinese with English abstract). | |
[35] | Hoffland E, Kuyper T W, Wallander H, Plassard C, Gorbushina A A, Haselwandter K, Holmstrom S, Landeweert R, Lundstrom U S, Rosling A, et al. The role of fungi in weathering. Front Ecol Environ, 2004, 2: 258. |
[36] | 伏贝贝. 改造酿酒酵母乙酰辅酶A合成途径及其在香叶醇生产中的应用. 齐鲁工业大学硕士学位论文, 山东济南, 2018. |
Fu B B. A Thesis Submitted for the Spplication of the Master’s Degree of Engineering. MS Thesis of Qilu University of Technology, Jinan, Shandong, China, 2018 (in Chinese with English abstract). | |
[37] | 谢探春. Cd-芘复合污染土壤柳树修复及强化技术研究. 南京大学硕士学位论文, 江苏南京, 2019. |
Xie T C. Phytoremediation and Enhancement of Willow for Cd and Pyrene Co-contaminated Soils. MS Thesis of Nanjing University, Nanjing, Jiangsu, China, 2019 (in Chinese with English abstract). | |
[38] | 樊扬帆. 外源螯合剂柠檬酸和NTA对苎麻修复重金属Cd污染土壤的研究. 湖南大学硕士学位论文, 湖南长沙, 2015. |
Fan Y F. The Effects of Exogenous CA and NTA on Phytoremediation of Cadmium by Boehmeria nivea (L.) Gaud. MS Thesis of Hunan University, Changsha, Hunan, China, 2015 (in Chinese with English abstract). | |
[39] | Shen C, Huang B F, Hu L, Yuan H W, Huang Y Y, Wang Y B, Sun Y F, Li Y, Zhang J R, Xin J L. Comparative transcriptome analysis and Arabidopsis thaliana overexpression reveal key genes associated with cadmium transport and distribution in root of two Capsicum annuum cultivars. J Hazard Mater, 2024, 465: 133365. |
[40] |
Tang L, Mao B G, Li Y K, Lyu Q M, Zhang L P, Chen C Y, He H J, Wang W P, Zeng X F, Shao Y, et al. Knockout of OsNramp 5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep, 2017, 7: 14438.
doi: 10.1038/s41598-017-14832-9 pmid: 29089547 |
[41] | 贺章咪. 不同辣椒品种镉吸收差异及其积累关键基因表达研究. 西南大学硕士学位论文, 重庆, 2020. |
He Z M. Difference of Cadmium Absorption Characteristic and Expression of the Key Cadmium Accumulated Genes in Different Pepper Varieties. MS Thesis of Southwest University, Chongqing, China, 2020 (in Chinese with English abstract). | |
[42] | 吴雪. 富氢水缓解小白菜(Brassica chinensis L.)镉胁迫的机理研究. 南京农业大学博士学位论文, 江苏南京, 2020. |
Wu X. The Mechanism of Hydrogen-rich Water Alleviating Cadmium Toxicity in Pak Choi. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2020 (in Chinese with English abstract). | |
[43] | 付珊. 水稻ABC转运蛋白OsABCG36的耐镉分子机制研究. 广西大学博士学位论文, 广西南宁, 2019. |
Fu S. Molecular Mechanism of ABC Transporter OsABCG36 in Rice Cadmium Tolerance. PhD Dissertation of Guangxi University, Nanning, Guangxi, China, 2019 (in Chinese with English abstract). | |
[44] |
Fu S, Lu Y S, Zhang X, Yang G Z, Chao D, Wang Z G, Shi M X, Chen J G, Chao D Y, Li R B, et al. The ABC transporter ABCG36 is required for cadmium tolerance in rice. J Exp Bot, 2019, 70: 5909-5918.
doi: 10.1093/jxb/erz335 pmid: 31328224 |
[45] |
Planta R J, Mager W H. The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast, 1998, 14: 471-477.
pmid: 9559554 |
[46] | 高明阳, 杨宣叶, 吴玉湖, 王进千. 核糖体相关质量控制在精微调控蛋白质合成中的作用机制及意义. 微生物学通报, 2024, 51: 2741-2752. |
Gao M Y, Yang X Y, Wu Y H, Wang J Q. Mechanism and significance of ribosome-associated quality control in protein synthesis. Microbiol China, 2024, 51: 2741-2752 (in Chinese with English abstract). | |
[47] |
Rogalski M, Schöttler M A, Thiele W, Schulze W X, Bock R. Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell, 2008, 20: 2221-2237.
doi: 10.1105/tpc.108.060392 pmid: 18757552 |
[48] | Berka M, Luklová M, Dufková H, Berková V, Novák J, Saiz-Fernández I, Rashotte A M, Brzobohatý B, Cerný M. Barley root proteome and metabolome in response to cytokinin and abiotic stimuli. Front Plant Sci, 2020, 11: 590337. |
[49] | Zhang Q Y, Gao M, Wu L W, Wu H, Chen Y C, Wang Y D. Expression network of transcription factors in resistant and susceptible tung trees responding to Fusarium wilt disease. Ind Crops Prod, 2018, 122: 716-725. |
[50] | Wu X Z, Yan J Y, Qin M Z, Li R Z, Jia T, Liu Z G, Ahmad P, El-Sheikh M A, Yadav K K, Rodríguez-Díaz J M, et al. Comprehensive transcriptome, physiological and biochemical analyses reveal that key role of transcription factor WRKY and plant hormone in responding cadmium stress. J Environ Manag, 2024, 367: 121979. |
[51] | Xian J P, Wang Y, Niu K J, Ma H L, Ma X. Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis. Chemosphere, 2020, 250: 126158. |
[52] | Wu X L, Chen Q, Chen L L, Tian F F, Chen X X, Han C Y, Mi J X, Lin X Y, Wan X Q, Jiang B B, et al. A WRKY transcription factor, PyWRKY75, enhanced cadmium accumulation and tolerance in poplar. Ecotoxicol Environ Saf, 2022, 239: 113630. |
[53] | Sun K L, Wang H Y, Xia Z L. The maize bHLH transcription factor bHLH105 confers manganese tolerance in transgenic tobacco. Plant Sci, 2019, 280: 97-109. |
[54] | Zhu S J, Shi W J, Jie Y C, Zhou Q M, Song C B. A MYB transcription factor, BnMYB2, cloned from ramie (Boehmeria nivea) is involved in cadmium tolerance and accumulation. PLoS One, 2020, 15: e0233375. |
[55] | Zhang L Y, Xu Y F, Wang A W, Wu T Y, Guo J L, Shi G Y, Tian B M, Wei F, Cao G Q. Integrated physiological and transcriptomic analysis reveals the involvement of photosynthesis and redox homeostasis in response of Arundo donax to low and high nitrogen supply. Ind Crops Prod, 2024, 221: 119377. |
[1] | MENG Xiang-Yu, DIAO Deng-Chao, LIU Ya-Rui, LI Yun-Li, SUN Yu-Chen, WU Wei, ZHAO Wen, WANG Yu, WU Jian-Hui, LI Chun-Lian, ZENG Qing-Dong, HAN De-Jun, ZHENG Wei-Jun. Genetic analysis of high yield and yield stability characteristics of new wheat variety Xinong 877 [J]. Acta Agronomica Sinica, 2025, 51(5): 1261-1276. |
[2] | WANG Jia-Jie, WANG Zheng-Nan, BATOOL Maria, WANG Wang-Nian, WEN Jing, REN Chang-Zhong, HE Feng, WU You-You, XU Zheng-Hua, WANG Jing, KUAI Jie, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Comparison of physiological characteristics of salt and alkali tolerance between rapeseed and wheat [J]. Acta Agronomica Sinica, 2025, 51(5): 1215-1229. |
[3] | WANG Dong, WANG Sen, SHANG Li, FENG Hao-Wei, ZHANG Yong-Qiao, CUI Jia-Ming, LI Shuang, ZHANG Jia-Cong, CHE Huan. Effect of supplementary irrigation on winter wheat yield and water use efficiency in semi humid areas of the Loess Plateau [J]. Acta Agronomica Sinica, 2025, 51(5): 1312-1325. |
[4] | CHENG Hong-Na, QIN Dan-Dan, XU Fu-Chao, XU Qing, PENG Yan-Chun, SUN Long-Qing, XU Le, GUO Ying, YANG Xin-Quan, XU De-Ze, DONG Jing. Comparative analysis of metabolomics of colored hulless barley and colored wheat grains [J]. Acta Agronomica Sinica, 2025, 51(4): 932-942. |
[5] | LI Hui-Min, XING Zhi-Peng, ZHANG Hai-Peng, WEI Hai-Yan, ZHANG Hong-Cheng, LI Guang-Yan. Application of chemical regulators and other cultivation measures in lodging resistance and high-yield cultivation of wheat [J]. Acta Agronomica Sinica, 2025, 51(4): 847-862. |
[6] | LI Pei-Hua, LI Jie, MENG Xiang-Yu, SUN Yu-Chen, FENG Yong-Jia, LI Yun-Li, DIAO Deng-Chao, ZHAO Wen, WU Wei, HAN De-Jun, ZHANG Song-Wu, ZHENG Wei-Jun. Evaluation of stress tolerance and physiological response of cold-type wheat under heat stress [J]. Acta Agronomica Sinica, 2025, 51(4): 1118-1130. |
[7] | LI Qiao, YE Yang-Chun, CHANG Xu-Hong, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, MA Rui-Qi, ZHAO Guang-Cai, CAI Rui-Guo, ZHANG Min, LIU Xi-Wei. Effects of high temperature and drought stresses on photosynthetic characteristics and yield of winter wheat after anthesis [J]. Acta Agronomica Sinica, 2025, 51(4): 1077-1090. |
[8] | WANG Jiao, BAI Hai-Xia, HAN Yu-Yan, LIANG Hui, FENG Ya-Nan, ZHANG Dong-Sheng, LI Ping, ZONG Yu-Zheng, SHI Xin-Rui, HAO Xing-Yu. Effects of elevated CO2 concentration, increased temperature and their interaction on the carbon and nitrogen metabolism in Liangxing 99 winter wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(4): 1061-1076. |
[9] | ZHANG Heng, FENG Ya-Lan, TIAN Wen-Zhong, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of TaSnRK gene family and expression analysis under localized root zone drought in wheat [J]. Acta Agronomica Sinica, 2025, 51(3): 632-649. |
[10] | ZHANG Jin-Ze, ZHOU Qing-Guo, YANG Xu, WANG Qian, XIAO Li-Jing, JIN Hai-Run, OU-YANG Qing-Jing, YU Kun-Jiang, TIAN En-Tang. Analysis of genes associated with expression characteristics and high resistance in response to Sclerotinia sclerotiorum infection in Brassica juncea [J]. Acta Agronomica Sinica, 2025, 51(3): 621-631. |
[11] | ZHAN Zong-Bing, JIN Qi-Feng, LIU Di, LYU Ying-Chun, GUO Ying, ZHANG Xue-Ting, HU Meng-Xia, WANG Shang, YANG Fang-Ping. Molecular characterization and evaluation of important traits of landrace wheat Laomangmai in Gansu province, China [J]. Acta Agronomica Sinica, 2025, 51(3): 609-620. |
[12] | YANG Fang-Ping, GUO Ying, TIAN Yuan-Yuan, XU Yu-Feng, WANG Lan-Lan, BAI Bin, ZHAN Zong-Bing, ZHANG Xue-Ting, XU Yin-Ping, LIU Jin-Dong. Effect of vernalization and photoperiod genes and evaluation of cold tolerance for wheat landraces from Gansu province, China [J]. Acta Agronomica Sinica, 2025, 51(2): 370-382. |
[13] | LIANG Miao, LI Pan, ZHAO Lian-Hao, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, CHAI Qiang, YIN Wen. Effect of soil conditioner and slow-release nitrogen fertilizer on dry matter accumulation and yield of wheat [J]. Acta Agronomica Sinica, 2025, 51(2): 470-484. |
[14] | WANG Peng-Bo, ZHANG Dong-Xia, QIAO Chang-Chang, HUANG Ming, WANG He-Zheng. Effects of straw returning and phosphorus application on soil enzyme activity and yield formation of wheat in dry land of western Henan, China [J]. Acta Agronomica Sinica, 2025, 51(2): 534-547. |
[15] | ZHANG Jun, HU Chuan, ZHOU Qi-Hui, REN Kai-Ming, DONG Shi-Yan, LIU Ao-Han, WU Jin-Zhi, HUANG Ming, LI You-Jun. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat [J]. Acta Agronomica Sinica, 2025, 51(1): 207-220. |
|