[1] Jeffrey Chen Z, Scheffler B E, Dennis E, Triplett B A, Zhang T Z, Guo
W Z, Chen X Y, Stelly D M, Rabinowicz P D, Town C D, et al.
Toward sequencing cotton (Gossypium) genomes. Plant Physiol, 2007,
145: 1303–1310.
[2] Qi H K, Wang N,
Qiao W Q, Xu Q H, Zhou H, Shi J B, Yan G T, Huang Q. Construction of a
high-density genetic map using genotyping by sequencing (GBS) for quantitative
trait loci (QTL) analysis of three plant morphological traits in upland cotton
(Gossypium hirsutum L.). Euphytica, 2017, 213: 83.
[3] 董合忠, 张艳军, 张冬梅, 代建龙, 张旺锋. 基于集中收获的新型棉花群体结构. 中国农业科学, 2018, 51: 4615–4624.
Dong H Z, Zhang Y J, Zhang D M, Dai J L, Zhang W F. New
grouped harvesting-based population structures of cotton. Sci Agric Sin,
2018, 51: 4615–4624 (in Chinese with English abstract).
[4] Wang B H, Wu Y
T, Huang N T, Zhu X F, Guo W Z, Zhang T Z. QTL mapping for plant architecture
traits in upland cotton using RILs and SSR markers. J Genet Genomics, 2006, 33: 161–170.
[5] 王新坤, 潘兆娥, 孙君灵, 何守朴, 唐灿明, 杜雄明. 陆地棉矮秆突变体株高和纤维品质的QTL定位及相关性研究. 核农学报, 2011, 25: 448–455.
Wang X K, Pan Z E, Sun J L, He S P, Tang C M, Du X M. Correlation analysis and QTL
mapping for plant height and fiber quality of dwarf mutant in upland cotton (Gossypium
hirsutum L.). J Nucl Agric Sci, 2011, 25: 448–455 (in Chinese with English
abstract).
[6] Li C, Song L,
Zhao H, Xia Z, Jia Z, Wang X, Dong N, Wang Q. Quantitative trait loci mapping
for plant architecture traits across two upland cotton populations using SSR
markers. J Agric Sci, 2014, 152: 275–287.
[7] Li C Q, Song L,
Zhao H H, Wang Q L, Fu Y Z. Identification of quantitative trait loci with main
and epistatic effects for plant architecture traits in Upland cotton (Gossypium
hirsutum L.). Plant Breed, 2014, 133: 390–400.
[8] 何蕊, 石玉真, 张金凤, 梁燕, 张保才, 李俊文, 王涛, 龚举武, 刘爱英, 商海红, 等. 利用染色体片段代换系定位陆地棉株高QTL. 作物学报, 2014, 40: 457–465.
He R, Shi Y Z, Zhang J F, Liang Y, Zhang B C, Li J W, Wang T,
Gong J W, Liu A Y, Shang H H, et al. QTL mapping for plant height using
chromosome segment substitution lines in upland cotton. Acta Agron Sin,
2014, 40: 457–465 (in Chinese with English abstract).
[9] Shang L G, Liu
F, Wang Y M, Abduweli A, Cai S H, Wang K B, Hua J P. Dynamic QTL mapping for
plant height in Upland cotton (Gossypium hirsutum). Plant Breed,
2015, 134: 703–712.
[10] Jia X Y, Pang C
Y, Wei H L, Wang H T, Ma Q F, Yang J L, Cheng S S, Su J J, Fan S L, Song M Z,
et al. High-density linkage map construction and QTL analysis for
earliness-related traits in Gossypium hirsutum L. BMC Genomics,
2016, 17: 909.
[11] Ma L L, Ijaz B,
Wang Y M, Hua J P. Dynamic QTL analysis and validation for plant height using
maternal and paternal backcrossing populations in Upland cotton. Euphytica,
2018, 214: 167.
[12] Ma J J, Pei W F,
Ma Q F, Geng Y H, Liu G Y, Liu J, Cui Y P, Zhang X, Wu M, Li X L, et al. QTL
analysis and candidate gene identification for plant height in cotton based on
an interspecific backcross inbred line population of Gossypium hirsutum × Gossypium barbadense. Theor Appl Genet, 2019, 132: 2663–2676.
[13] Liu R X, Xiao X
H, Gong J W, Li J W, Zhang Z, Liu A Y, Lu Q W, Shang H H, Shi Y Z, Ge Q, et al.
QTL mapping for plant height and fruit branch number based on RIL population of
upland cotton. J Cotton Res, 2020, 3: 5.
[14] Wu J, Mao L L,
Tao J C, Wang X X, Zhang H J, Xin M, Shang Y Q, Zhang Y N, Zhang G H, Zhao Z T,
et al. Dynamic quantitative trait loci mapping for plant height in recombinant
inbred line population of upland cotton. Front Plant Sci, 2022, 13:
914140.
[15] Li C, Huang L Y,
Huang Y W, Kuang M, Wu Y Z, Ma Z Y, Fu X Q. Fine-mapping of a major QTL
controlling plant height by BSA-seq and transcriptome sequencing in cotton. Theor
Appl Genet, 2024, 137: 217.
[16] Li C Q, Ai N J,
Zhu Y J, Wang Y Q, Chen X D, Li F, Hu Q Y, Wang Q L. Association mapping and
favourable allele exploration for plant architecture traits in upland cotton (Gossypium
hirsutum L.) accessions. J Agric Sci, 2016, 154: 567–583.
[17] Huang C, Nie X
H, Shen C, You C Y, Li W, Zhao W X, Zhang X L, Lin Z X. Population structure
and genetic basis of the agronomic traits of upland cotton in China revealed by
a genome-wide association study using high-density SNPs. Plant Biotechnol J,
2017, 15: 1374–1386.
[18] Su J J, Li L B,
Zhang C, Wang C X, Gu L J, Wang H T, Wei H L, Liu Q B, Huang L, Yu S X.
Genome-wide association study identified genetic variations and candidate genes
for plant architecture component traits in Chinese upland cotton. Theor Appl
Genet, 2018, 131: 1299–1314.
[19] Wen T W, Dai B
S, Wang T, Liu X X, You C Y, Lin Z X. Genetic variations in plant architecture
traits in cotton (Gossypium hirsutum) revealed by a genome-wide
association study. Crop J, 2019, 7: 209–216.
[20] Ye Y L, Wang P
L, Zhang M, Abbas M, Zhang J X, Liang C Z, Wang Y, Wei Y X, Meng Z G, Zhang R.
UAV-based time-series phenotyping reveals the genetic basis of plant height in
upland cotton. Plant J, 2023, 115: 937–951.
[21] Cho S, Kim K,
Kim Y J, Lee J K, Cho Y S, Lee J Y, Han B G, Kim H, Ott J, Park T. Joint
identification of multiple genetic variants via elastic-net variable selection
in a genome-wide association analysis. Ann Hum Genet, 2010, 74: 416–428.
[22] Lippert C,
Listgarten J, Liu Y, Kadie C M, Davidson R I, Heckerman D. FaST linear mixed models
for genome-wide association studies. Nat Methods, 2011, 8: 833–835.
[23] Segura V,
Vilhjálmsson B J, Platt A, Korte A, Seren Ü, Long Q, Nordborg M. An efficient
multi-locus mixed-model approach for genome-wide association studies in
structured populations. Nat Genet, 2012, 44: 825–830.
[24] Zhou X,
Carbonetto P, Stephens M. Polygenic modeling with Bayesian sparse linear
mixed models. PLoS Genet, 2013, 9: e1003264.
[25] Wang S B, Feng
J Y, Ren W L, Huang B, Zhou L, Wen Y J, Zhang J, Dunwell J M, Xu S Z, Zhang Y
M. Improving power and accuracy of genome-wide association studies via a
multi-locus mixed linear model methodology. Sci Rep, 2016, 6:
19444.
[26] Wen Y J, Zhang
H W, Ni Y L, Huang B, Zhang J, Feng J Y, Wang S B, Dunwell J M, Zhang Y M, Wu R
L. Methodological implementation of mixed linear models in multi-locus
genome-wide association studies. Brief Bioinform, 2018, 19: 700–712.
[27] Korte A,
Vilhjálmsson B J, Segura V, Platt A, Long Q, Nordborg M. A mixed-model approach for
genome-wide association studies of correlated traits in structured populations. Nat Genet, 2012, 44: 1066–1071.
[28] Huang T, Hu F
B. Gene-environment interactions and obesity: recent developments and future
directions. BMC Med Genomics, 2015, 8: S2.
[29] Casale F P,
Horta D, Rakitsch B, Stegle O. Joint genetic analysis using variant sets
reveals polygenic gene-context interactions. PLoS Genet, 2017, 13:
e1006693.
[30] Robinson M R,
English G, Moser G, Lloyd-Jones L R, Triplett M A, Zhu Z H, Nolte I M, van
Vliet-Ostaptchouk J V, Snieder H, Study L C, et al. Genotype-covariate
interaction effects and the heritability of adult body mass index. Nat Genet,
2017, 49: 1174–1181.
[31] Moore R, Casale
F P, Bonder M J, Horta D, Consortium B I O
S, Franke L, Barroso I, Stegle O. A linear mixed-model approach to study
multivariate gene-environment interactions. Nat Genet, 2019, 51:
180–186.
[32] Li M, Zhang Y W,
Zhang Z C, Xiang Y, Liu M H, Zhou Y H, Zuo J F, Zhang H Q, Chen Y, Zhang Y M. A
compressed variance component mixed model for detecting QTNs and
QTN-by-environment and QTN-by-QTN interactions in genome-wide association
studies. Mol Plant, 2022, 15: 630–650.
[33] Cai C P, Zhu G
Z, Zhang T Z, Guo W Z. High-density 80 K SNP array is a powerful tool for
genotyping G. hirsutum accessions and genome analysis. BMC Genomics,
2017, 18: 654.
[34] Hubisz M J,
Falush D, Stephens M, Pritchard J K. Inferring weak population structure with
the assistance of sample group information. Mol Ecol Resour, 2009, 9:
1322–1332.
[35] Evanno G,
Regnaut S, Goudet J. Detecting the number of clusters of individuals using the
software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611–2620.
[36] Li M, Zhang Y W,
Xiang Y, Liu M H, Zhang Y M. IIIVmrMLM: The R and C++ tools
associated with 3VmrMLM, a comprehensive GWAS method for dissecting
quantitative traits. Mol Plant, 2022, 15: 1251–1253.
[37] Li C Q, Wang Y
Y, Ai N J, Li Y, Song J F. A genome-wide association study of early-maturation
traits in upland cotton based on the CottonSNP80K array. J Integr Plant Biol,
2018, 60: 970–985.
[38] Dong C G, Wang
J, Yu Y, Ju L Z, Zhou X F, Ma X M, Mei G F, Han Z G, Si Z F, Li B C, et al.
Identifying functional genes influencing Gossypium hirsutum fiber
quality. Front Plant Sci, 2019, 9: 1968.
[39] Zhang T Z, Hu Y,
Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E,
Stelly D M, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol,
2015, 33: 531–537.
[40] Hu Y, Chen J D,
Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, et al. Gossypium
barbadense and Gossypium hirsutum genomes provide insights into the
origin and evolution of allotetraploid cotton. Nat Genet, 2019, 51:
739–748.
[41] Lyu F Y, Han F
R, Ge C L, Mao W K, Chen L, Hu H P, Chen G G, Lang Q L, Fang C. OmicStudio: a composable bioinformatics cloud
platform with real-time feedback that can generate high-quality graphs for
publication. Imeta, 2023, 2: e85.
[42] Tang
D D, Chen M J, Huang X H, Zhang G C, Zeng L, Zhang G S, Wu S J, Wang Y W.
SRplot: a free online platform for data visualization and graphing. PLoS One,
2023, 18: e0294236.
[43] Lander
E S, Botstein D. Mapping mendelian factors underlying quantitative traits using
RFLP linkage
maps. Genetics, 1989, 121: 185–199.
[44] Kao C H, Zeng Z
B. Modeling
epistasis of quantitative trait loci using Cockerham’s model. Genetics,
2002, 160: 1243–1261.
[45] Li S S, Wang J
K, Zhang L Y. Inclusive composite interval mapping of QTL by environment
interactions in biparental populations. PLoS One, 2015, 10: e0132414.
[46] Zhao Q, Shi X S,
Wang T, Chen Y, Yang R, Mi J M, Zhang Y W, Zhang Y M. Identification of QTNs,
QTN-by-environment interactions, and their candidate genes for grain size
traits in main crop and ratoon rice. Front Plant Sci, 2023, 14: 1119218.
[47] Wei N C, Zhang
S Q, Liu Y, Wang J, Wu B B, Zhao J J, Qiao L, Zheng X W, Wang J L, Zheng J.
Genome-wide association study of coleoptile length with Shanxi wheat. Front
Plant Sci, 2022, 13: 1016551.
[48] Wen Y J, Wu X Y,
Wang S M, Han L, Shen B L, Wang Y, Zhang J. Identification of
QTN-by-environment interactions for yield related traits in maize under
multiple abiotic stresses. Front Plant Sci, 2023, 14: 1050313.
[49] Han X, Tang Q Q,
Xu L P, Guan Z L, Tu J X, Yi B, Liu K D, Yao X, Lu S P, Guo L. Genome-wide
detection of genotype environment interactions for flowering time in Brassica
napus. Front Plant Sci, 2022, 13: 1065766.
[50] Han Z M, Ke H F,
Li X Y, Peng R X, Zhai D D, Xu Y, Wu L Q, Wang W S, Cui Y R. Detection of
epistasis interaction loci for fiber quality-related trait via 3VmrMLM in
upland cotton. Front Plant Sci, 2023, 14: 1250161.
[51] Li C Q, Pu Y N,
Gao X, Cao Y, Bao Y Y, Xu Q L, Du L, Tan J R, Zhu Y H, Zhang H Y, et al.
Detection of quantitative trait nucleotides (QTNs) and QTN-by-environment and
QTN-by-QTN interactions for cotton early-maturity traits using the 3VmrMLM
method. Ind Crops Prod, 2024, 216: 118706.
[52] Tian Z L, Chen
B J, Li H G, Pei X X, Sun Y R, Sun G F, Pan Z E, Dai P H, Gao X, Geng X L, et
al. Strigolactone-gibberellin crosstalk mediated by a distant silencer
fine-tunes plant height in upland cotton. Mol Plant, 2024, 17:
1539–1557.
[53] Li X, Wang Z,
Sun S F, Dai Z R, Zhang J, Wang W B, Peng K, Geng W H, Xia S H, Liu Q C, et al.
IbNIEL-mediated degradation of IbNAC087 regulates jasmonic acid-dependent salt
and drought tolerance in sweet potato. J Integr Plant Biol, 2024, 66:
176–195.
[54] Du C, Liu M,
Yan Y J, Guo X Y, Cao X P, Jiao Y Z, Zheng J X, Ma Y C, Xie Y T, Li H B, et al.
The U-box E3 ubiquitin ligase PUB35 negatively regulates ABA signaling through
AFP1-mediated degradation of ABI5. Plant Cell, 2024, 36: 3277–3297.
[55] 刘利, 高东升. 植物中钼的吸收转运及钼辅因子与钼酶的研究进展. 植物生理学报, 2016, 52: 381–393.
Liu L, Gao D S. Advances in molybdenum uptake and
translocation, molybdenum cofactors and molybdenum enzymes in plants. Plant
Physiol J, 2016, 52: 381–393 (in Chinese with English abstract).
[56] Vadlamani G,
Sukhoverkov K V, Haywood J, Breese K J, Fisher M F, Stubbs K A, Bond C S, Mylne
J S. Crystal structure of Arabidopsis thaliana HPPK/DHPS, a bifunctional
enzyme and target of the herbicide asulam. Plant Commun, 2022, 3: 100322.
[57] Navarrete O,
Van Daele J, Stove C, Lambert W, Storozhenko S, Van Der Straeten D. Isolation
and characterisation of an antifolate insensitive (afi1) mutant of Arabidopsis
thaliana. Plant Biol, 2013, 15: 37–44.
[58] Zhang Y M,
Zhang G, Xiao N, Wang L N, Fu Y P, Sun Z X, Fang R X, Chen X Y. The rice
‘nutrition response and root growth’ (NRR) gene regulates heading date. Mol
Plant, 2013, 6: 585–588.
[59] Peleman J D,
van der Voort J R. Breeding by design. Trends Plant Sci, 2003, 8:
330–334.
[60] 万建民. 作物分子设计育种. 作物学报, 2006, 32: 455–462.
Wan J M. Perspectives of molecular design breeding in crops. Acta
Agron Sin, 2006, 32: 455–462 (in Chinese with English abstract).
[61] 王建康, 李慧慧, 张学才, 尹长斌, 黎裕, 马有志, 李新海, 邱丽娟, 万建民. 中国作物分子设计育种. 作物学报, 2011, 37: 191–201.
Wang J K, Li H H, Zhang X C, Yin C B, Li Y, Ma Y Z, Li X H,
Qiu L J, Wan J M. Molecular design breeding in crops in China. Acta Agron
Sin, 2011, 37: 191–201 (in Chinese with English abstract).
[62] Wang J K, Wan X
Y, Li H H, Pfeiffer W H, Crouch J, Wan J M. Application of identified
QTL-marker associations in rice quality improvement through a design-breeding
approach. Theor Appl Genet, 2007, 115: 87–100.
[63] Zhang L Y, Li H
H, Wang J K. Blib is a multi-module simulation platform for genetics studies
and intelligent breeding. Commun Biol, 2022, 5: 1167.
[64] Podlich D W,
Cooper M. QU-GENE: a simulation platform for quantitative analysis of genetic models. Bioinformatics,
1998, 14: 632–653.
[65] Liu H M, Tessema B B, Jensen J, Cericola F, Andersen J R,
Sørensen A C. ADAM-Plant: a software for stochastic simulations of plant
breeding from molecular to phenotypic level and from simple selection to
complex speed breeding programs. Front Plant Sci, 2019, 9: 1926.
[66] Chen C J, Garrick D, Fernando R, Karaman E,
Stricker C, Keehan M, Cheng H. XSim version 2: simulation of modern breeding
programs. G3: Genes Genomes Genetics, 2022, 12: jkac032.
[67] Li H H, Zhang L Y, Gao S, Wang J K. Prediction by simulation in
plant breeding. Crop J, 2025, 13: 501–509.
[68] Si Z F, Jin S K,
Li J Y, Han Z G, Li Y Q, Wu X N, Ge Y X, Fang L, Zhang T Z, Hu Y. The design,
validation, and utility of the “ZJU CottonSNP40K” liquid chip through
genotyping by target sequencing. Ind Crops Prod, 2022, 188: 115629.
[69] Li C Q, Dong C
G, Zhao H H, Wang J, Du L, Ai N J. Identification of superior parents with high
fiber quality using molecular markers and phenotypes based on a core collection
of upland cotton (Gossypium hirsutum L.). Mol Breed, 2022, 42:
30.
|