Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (12): 3129-3143.doi: 10.3724/SP.J.1006.2024.41026

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Compensation mechanism of green manure on grain yield and nitrogen uptake of wheat with reduced nitrogen supply

WEI Jin-Gui(), MAO Shou-Fa, JIANG Yu-Xin, FAN Zhi-Long, HU Fa-Long, CHAI Qiang(), YIN Wen()   

  1. State Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-03-27 Accepted:2024-06-20 Online:2024-12-12 Published:2024-07-08
  • Contact: *E-mail: chaiq@gsau.edu.cn; E-mail: yinwen@gsau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U21A20218);National Natural Science Foundation of China(32372238);China Agriculture Research System of MOF and MARA(CARS-22-G-12);Science and Technology Program of Gansu Province(23JRRA704);Science and Technology Program of Gansu Province(23JRRA1407);Fostering Foundation for the Excellent Ph.D. Dissertation of Gansu Agricultural University(YB2024002)

Abstract:

Long-term continuous cropping, excessive nitrogen input, and low nitrogen use efficiency are prevalent issues in wheat production in the Northwest Oasis irrigation area. This study examined the compensatory mechanism on grain yield and nitrogen utilization by reducing nitrogen input in wheat and multi-cropping of green manure after wheat harvest. The goal was to provide a theoretical basis for developing efficient wheat production technologies with reduced nitrogen input. This long-term field experiment, initiated in 2018, collected data from 2020 to 2022. The main plot included four green manures: multi-cropped common vetch mixed with hairy vetch (HCV), common vetch (CV), rapeseed (R), and fallow (F) after the previous wheat harvest. Subplots applied three nitrogen rates: the local conventional rate (N3, 180 kg hm-2), reduced by 20% (N2, 144 kg hm-2), and reduced by 40% (N1, 108 kg hm-2). Our results indicated that reducing conventional nitrogen by 20% and 40% significantly decreased both grain yield and nitrogen uptake. However, multi-cropped hairy vetch mixed with common vetch after wheat harvest could compensate for the yield and nitrogen uptake losses caused by a 40% nitrogen reduction. When combined with a 20% nitrogen reduction, grain yield and nitrogen uptake increased by 21.4% and 6.9%, respectively (P < 0.05). Additionally, this cropping pattern compensated for the decreased nitrogen use efficiency resulting from a 40% nitrogen reduction and, when combined with a 20% nitrogen reduction, enhanced nitrogen use efficiency by 13.4% (P < 0.05). The compensation mechanism was attributed to: (1) Under a 40% nitrogen reduction, multi-cropped hairy vetch mixed with common vetch compensated for nitrogen uptake rate, increased net nitrogen assimilation rate by 34.3% (P < 0.05), maintained nitrogen distribution in the ear, and enhanced the nitrogen transportation rate from the stem by 6.6% (P < 0.05). (2) Compared with fallow after wheat harvest and the conventional nitrogen application rate, multi-cropped hairy vetch mixed with common vetch under a 20% nitrogen reduction increased mean nitrogen uptake efficiency and net nitrogen assimilation rate by 7.2% and 34.1%, respectively (P < 0.05). It also improved nitrogen distribution in the ear from early filling to maturity stages by 6.7% (P < 0.05) and enhanced the contribution rate of nitrogen transportation from stem and leaf to ear by 17.8% and 8.9%, respectively (P < 0.05). Therefore, multi-cropped hairy vetch mixed with common vetch after wheat harvest is a viable measure to reduce nitrogen fertilizer input. When combined with a 20% nitrogen reduction, it can increase grain yield and nitrogen use efficiency in wheat by improving nitrogen uptake rate, net nitrogen assimilation rate, and the contribution rate of nitrogen transportation from leaf and stem to ear, thereby promoting nitrogen distribution in the ear in arid oasis irrigated areas.

Key words: multiple cropped green manure after wheat harvest, nitrogen reduction, grain yield, nitrogen use efficiency, compensation effect

Table 1

Green manure biomass in different treatments"

2019 2020 2021
处理
Treatment
绿肥生物量
Green manure biomass
(kg hm-2)
处理
Treatment
绿肥生物量
Green manure biomass
(kg hm-2)
处理
Treatment
绿肥生物量
Green manure biomass
(kg hm-2)
HCVN1 4413 cd HCVN1 4322 cd HCVN1 4238 de
HCVN2 5664 a HCVN2 5126 a HCVN2 5535 a
HCVN3 4907 b HCVN3 4874 ab HCVN3 5024 b
CVN1 4065 de CVN1 4103 de CVN1 3894 e
CVN2 4717 bc CVN2 4645 abc CVN2 4790 bc
CVN3 4559 bc CVN3 4394 bcd CVN3 4457 cd
RN1 3102 f RN1 2892 g RN1 3074 f
RN2 3767 e RN2 3462 f RN2 4159 de
RN3 3895 e RN3 3724 ef RN3 4081 e

Fig. 1

Effect of grain yield with multi-cropped green manure under reduced nitrogen F, HCV, CV, and R represent fallow, multiple-cropped hairy vetch mixed with common vetch, common vetch, and rapeseed after wheat harvest, respectively. N3, N2, and N1 are local conventional nitrogen application rate, conventional nitrogen reduced by 20% and 40%, respectively. Different letters within the same year indicate significant differences among treatments at the P < 0.05 level."

Fig. 2

Nitrogen accumulation dynamics of wheat with nitrogen reduction under multiple cropped green manure Different letters in the figure indicate significant differences between different treatments within the same year (P < 0.05). Treatments are the same as those given in Fig. 1."

Fig. 3

Effect of economic nitrogen application rate with various multiple cropped green manure"

Fig. 4

Differences of nitrogen use efficiency and nitrogen partial factor productivity of wheat in different multiple cropping patterns and nitrogen reduction Different letters in the figure indicate significant differences between different treatments within the same year (P < 0.05). Treatments are the same as those given in Fig. 1."

Table 2

Nitrogen uptake rate and net assimilation rate of wheat nitrogen with reduced nitrogen under multiple cropped green manure"

年份
Year
绿肥
Green manure
施氮
Nitrogen level
回归方程
Regression equation
R2 氮素最大吸收速率
Maximum uptake
rate of nitrogen
(Vmax, kg hm‒2 d‒1)
氮素最大吸收
速率出现天数 Days of NMUR
(Tm, d)
氮素平均吸收速率
Mean uptake rate of nitrogen
(Vmean, kg N hm‒2 d‒1)
氮素净同化速率
Net assimilation rate of nitrogen (NNAR, g m‒2 d‒1)
2020 F N1 Y=152/(1+e2.066-0.052t) 0.990 1.91 f 35.5 bcd 1.34 d 0.366 e
N2 Y=153/(1+e1.830-0.056t) 0.991 2.14 def 34.2 cd 1.31 d 0.331 f
N3 Y=181/(1+e1.926-0.053t) 0.994 2.41 cd 35.6 bcd 1.56 bc 0.377 e
HCV N1 Y=171/(1+e1.797-0.052t) 0.999 2.22 cde 37.0 ab 1.59 b 0.484 a
N2 Y=192/(1+e2.283-0.061t) 0.957 2.94 a 37.8 a 1.55 bc 0.439 b
N3 Y=188/(1+e2.242-0.062t) 0.994 2.93 a 34.8 cd 1.70 a 0.465 ab
CV N1 Y=152/(1+e1.625-0.039t) 0.998 1.49 g 37.8 a 1.36 d 0.379 de
N2 Y=195/(1+e2.079-0.060t) 0.998 2.94 a 34.8 bcd 1.55 bc 0.421 c
N3 Y=188/(1+e1.876-0.058t) 0.989 2.73 ab 32.7 d 1.54 bc 0.401 d
R N1 Y=149/(1+e1.964-0.052t) 0.982 1.93 ef 37.1 ab 1.29 d 0.350 ef
N2 Y=174/(1+e1.868-0.057t) 0.998 2.50 bc 35.0 cd 1.48 c 0.385 de
N3 Y=181/(1+e1.934-0.060t) 0.930 2.73 ab 34.9 cd 1.56 bc 0.387 de
2021 F N1 Y=150/(1+e2.090-0.052t) 0.992 1.95 g 40.2 a 1.33 f 0.390 g
N2 Y=162/(1+e2.385-0.067t) 0.999 2.72 cd 35.6 bcd 1.54 de 0.426 fg
2021 F N3 Y=183/(1+e1.931-0.056t) 0.953 2.56 de 35.0 cde 1.58 cd 0.422 fg
HCV N1 Y=178/(1+e2.056-0.051t) 0.998 2.26 f 40.6 a 1.61 cd 0.602 ab
N2 Y=197/(1+e2.356-0.060t) 0.992 2.95 b 40.1 a 1.82 a 0.634 a
N3 Y=194/(1+e1.823-0.056t) 0.995 2.73 c 32.4 e 1.64 c 0.522 cd
CV N1 Y=156/(1+e2.157-0.062t) 0.990 2.40 ef 35.2 cde 1.41 ef 0.459 ef
N2 Y=192/(1+e2.267-0.062t) 0.998 2.95 b 37.2 bc 1.77 ab 0.551 bc
N3 Y=191/(1+e2.212-0.067t) 0.995 3.18 a 33.1 de 1.75 ab 0.505 cde
R N1 Y=156/(1+e2.162-0.056t) 0.984 2.18 fg 38.4 ab 1.40 ef 0.430 fg
N2 Y=177/(1+e2.083-0.063t) 0.994 2.77 c 33.3 de 1.59 cd 0.450 efg
N3 Y=187/(1+e2.193-0.065t) 0.987 3.03 ab 34.1 de 1.70 b 0.464 def
2022 F N1 Y=154/(1+e2.130-0.060t) 0.992 2.35 de 35.8 abc 1.31 e 0.376 e
N2 Y=151/(1+e2.020-0.056t) 0.967 2.12 ef 35.9 abc 1.41 de 0.379 e
N3 Y=173/(1+e2.153-0.059t) 0.967 2.57 cd 36.2 abc 1.56 b 0.397 de
HCV N1 Y=166/(1+e1.617-0.067t) 0.992 2.78 bc 24.7 d 1.49 c 0.519 a
N2 Y=189/(1+e2.441-0.072t) 0.993 3.39 a 34.1 abc 1.67 a 0.530 a
N3 Y=184/(1+e2.278-0.056t) 0.997 3.01 b 35.5 abc 1.68 a 0.497 ab
CV N1 Y=166/(1+e2.470-0.065t) 0.927 2.70 bcd 38.1 a 1.35 e 0.422 cde
N2 Y=182/(1+e2.350-0.063t) 0.992 2.84 bc 38.3 a 1.56 b 0.460 bc
N3 Y=180/(1+e2.326-0.062t) 0.998 2.83 bc 38.2 a 1.57 ab 0.439 cd
R N1 Y=145/(1+e1.871-0.053t) 0.983 1.94 f 36.6 ab 1.43 d 0.426 cde
N2 Y=172/(1+e1.858-0.058t) 0.992 2.48 cd 32.2 c 1.56 b 0.426 cde
N3 Y=181/(1+e1.917-0.059t) 0.937 2.68 bcd 32.7 bc 1.67 a 0.440 cd
显著性(P值) Significance (P-value)
绿肥 Green manure (G) * * ** **
施氮Nitrogen application (N) ** ** ** **
绿肥×施氮G×N NS ** ** **

Fig. 5

Nitrogen distribution ratio of wheat organs with nitrogen reduction under multiple cropping green manure"

Table 3

Nitrogen translocation of organs and the contribution rate to ear of wheat with nitrogen reduction under multiple cropping green manure"

年份
Year
绿肥
Green manure
施氮水平
Nitrogen level
叶 Leaf 茎 Stem
NTQ
(kg hm‒2)
NTR
(%)
SCR
(%)
NTQ
(kg hm‒2)
NTR
(%)
SCR
(%)
2020 F N1 20.9 h 45.4 f 22.3 e 17.9 f 48.7 f 19.3 e
N2 36.5 e 64.5 bc 24.9 de 27.3 de 63.4 e 25.9 c
N3 40.3 c 65.8 b 30.7 b 33.0 c 71.1 c 25.2 c
HCV N1 32.1 f 49.6 ef 29.0 c 29.9 d 72.9 b 27.0 c
N2 43.2 b 70.9 ab 33.9 ab 32.2 cd 67.1 d 27.7 b
N3 48.8 a 76.3 a 35.5 a 38.9 a 80.2 a 30.7 a
CV N1 29.6 g 52.4 e 30.4 b 26.0 e 64.4 de 26.6 c
N2 32.5 f 54.2 de 34.7 a 34.4 b 77.5 ab 26.4 c
N3 45.2 b 68.3 ab 32.7 b 37.9 ab 80.1 a 27.5 b
R N1 30.2 fg 63.4 c 27.5 cd 26.2 e 71.7 c 24.0 cd
N2 38.5 d 60.5 cd 31.4 b 31.5 cd 66.4 d 23.4 d
N3 44.2 b 63.8 bc 34.0 ab 38.1 ab 76.4 ab 27.2 b
2021 F N1 23.9 g 53.7 d 24.1 e 20.4 f 46.4 e 20.7 g
N2 37.8 cd 65.3 bc 33.4 ab 31.9 d 56.4 d 28.1 d
N3 34.6 de 60.5 cd 26.1 d 33.6 d 61.4 d 25.2 ef
HCV N1 30.5 ef 54.2 d 31.2 bc 30.1 de 58.2 d 28.1 d
N2 36.8 cd 63.5 c 33.5 ab 36.8 bc 64.1 cd 29.6 c
N3 47.7 ab 71.5 ab 32.7 b 47.7 a 80.8 a 32.7 a
CV N1 35.5 de 66.1 bc 25.4 de 32.0 d 62.8 cd 25.0 ef
N2 40.3 cd 62.7 c 30.5 c 35.9 cd 64.4 cd 27.2 e
N3 49.7 a 77.3 a 34.2 a 45.9 a 71.4 bc 31.6 ab
R N1 28.9 fg 63.8 c 25.7 de 27.4 e 56.7 d 24.4 f
N2 42.3 bc 69.3 b 27.0 cd 37.3 bc 63.0 cd 26.9 e
N3 47.2 ab 69.8 b 33.7ab 42.7 ab 75.4 ab 32.7 a
2022 F N1 33.3 d 63.6 f 24.2 f 28.4 e 52.9 e 23.0 d
N2 37.2 cd 66.1 ef 29.1 d 29.7 de 52.5 e 25.2 cd
N3 36.1 d 61.1 f 32.4 c 32.2 d 55.7 de 29.2 b
2022 HCV N1 37.2 cd 64.4 f 27.7 ef 35.6 c 69.5 ab 23.5 d
N2 51.4 a 86.3 a 36.9 a 44.5 a 72.7 a 29.4 b
N3 49.5 a 81.2 ab 31.6 cd 44.4 a 76.7 a 28.2 bc
CV N1 37.2 cd 67.9 e 28.3 e 32.9 d 63.0 c 24.9 cd
N2 46.6 ab 72.5 d 33.0 b 45.3 a 75.7 a 32.0 a
N3 50.9 a 82.1 ab 35.0 ab 44.8 a 73.4 a 31.0 ab
R N1 36.1 d 68.7 e 31.6 cd 32.8 d 59.4 d 28.9 b
N2 42.5 bc 78.0 bc 31.1 cd 36.1 bc 67.0 b 26.4 c
N3 46.1 ab 74.5 c 32.9 bc 40.7 ab 73.1 a 29.0 b
显著性(P值) Significance (P-value)
绿肥 Green manure (G) ** ** ** ** ** **
施氮Nitrogen application (N) ** ** ** ** ** **
绿肥×施氮G×N * ** ** ** NS NS

Table 4

Incidence matrix and ranking among grain yield, nitrogen uptake, nitrogen distribution and transportation, and nitrogen use efficiency of wheat"

项目
Item
氮素利用率
Nitrogen use
efficiency
排序
Ranking
籽粒产量 Grain yield 0.678 6
氮素积累量 Nitrogen accumulation 0.786 3
氮肥偏生产力 Nitrogen partial factor productivity 0.552 9
花前叶器官氮素向穗的转运量 Nitrogen transportation quantity from leaf to ear before flowering 0.604 8
花前茎器官氮素向穗的转运量 Nitrogen transportation quantity from stem to ear before flowering 0.609 7
穗氮素分配 Nitrogen distribution in ear 0.854 1
氮素最大吸收速率 Maximum uptake rate of nitrogen 0.733 5
氮素平均吸收速率 Mean uptake rate of nitrogen 0.810 2
氮素净同化速率 Net assimilation rate of nitrogen 0.745 4

Fig. 6

Principal component analysis of grain yield, nitrogen uptake, nitrogen distribution and transportation, and nitrogen use efficiency in wheat NUE, NA, GY, NPFP, NDE, TQL, TQS, NVmean, NVmax, and NNAR represent nitrogen use efficiency, nitrogen accumulation, grain yield, nitrogen distribution of ear, nitrogen transportation quantity from leaf to ear before flowering, nitrogen transportation quantity from stem to ear before flowering, maximum uptake rate of nitrogen, mean uptake rate of nitrogen, and net assimilation rate of nitrogen, respectively."

[1] Lassaletta L, Billen G, Garnier J, Bouwman L, Velazquez E, Mueller N D, Gerber J S. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ Res Lett, 2016, 11: 095007.
[2] Wei J G, Chai Q, Yin W, Fan H, Guo Y, Hu F L, Fan Z L, Wang Q M. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions. J Integr Agric, 2024, 23: 122-140.
doi: 10.1016/j.jia.2023.05.006
[3] Zörb C, Ludewig U, Hawkesford M J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci, 2018, 23: 1029-1037.
doi: S1360-1385(18)30192-4 pmid: 30249481
[4] Duan J Z, Shao Y H, He L, Li X, Hou G, Li S N, Feng W, Zhu Y J, Wang Y H, Xie Y X. Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Sci Total Environ, 2019, 697: 134088.
[5] Mi X T, He G, Wang Z H. Comprehensive nitrogen management techniques for wheat self-sufficiency in China. Resour Conserv Recycl, 2022, 178: 106026.
[6] 张建军, 樊廷录, 赵刚, 党翼, 王磊, 李尚中. 长期定位施不同氮源有机肥替代部分含氮化肥对陇东旱塬冬小麦产量和水分利用效率的影响. 作物学报, 2017, 43: 1077-1086.
doi: 10.3724/SP.J.1006.2017.01077
Zhang J J, Fan T L, Zhao G, Dang Y, Wang L, Li S Z. Yield and water use efficiency of winter wheat in response to long-term application of organic fertilizer from different nitrogen resources replacing partial chemical nitrogen in dry land of eastern Gansu Province. Acta Agron Sin, 2017, 43: 1077-1086 (in Chinese with English abstract).
[7] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成. 作物学报, 2023, 49: 1919-1929.
doi: 10.3724/SP.J.1006.2023.23056
Wei J G, Guo Y, Chai Q, Yin W, Fan Z L, Hu F L. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply. Acta Agron Sin, 2023, 49: 1919-1929 (in Chinese with English abstract).
[8] 苟志文, 殷文, 柴强, 樊志龙, 胡发龙, 赵财, 于爱忠, 范虹. 干旱灌区小麦间作玉米麦后复种绿肥的可持续性分析. 中国农业科学, 2022, 55: 1319-1331.
doi: 10.3864/j.issn.0578-1752.2022.07.005
Gou Z W, Yin W, Chai Q, Fan Z L, Hu F L, Zhao C, Yu A Z, Fan H. Analysis of sustainability of multiple cropping green manure in wheat-maize intercropping after wheat harvested in arid irrigation areas. Sci Agric Sin, 2022, 55: 1319-1331 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.07.005
[9] Yu R, Zhang H Y, Chang F D, Song J S, Wang J, Wang X Q, Kan Z R, Zhao N, Li X H, Ma J, Li Y Y. Mixed sowing of Feed rape and Vicia villosa can substitute nitrogen fertilizer to improve soil multifunctionality in the Hetao irrigation District. CATENA, 2024, 235: 107617.
[10] The S V, Snyder R, Tegeder M. Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency. Front Plant Sci, 2021, 11: 628366.
[11] Wei J G, Fan Z L, Hu F L, Mao S F, Yin F, Wang Q M, Chai Q, Yin W. Legume green manure can intensify the function of chemical nitrogen fertilizer substitution via increasing nitrogen supply and uptake of wheat. Crop J, 2024, 12: 1222-1232.
doi: 10.1016/j.cj.2024.07.004
[12] 常单娜, 王慧, 周国朋, 高嵩涓, 刘佳, 徐昌旭, 曹卫东. 赣北地区稻-稻-紫云英轮作体系减施化肥对水稻产量、氮素吸收及土壤供氮能力的影响. 植物营养与肥料学报, 2023, 29: 1449-1460.
Chang D N, Wang H, Zhou G P, Gao S J, Liu J, Xu C X, Cao W D. Yield and nitrogen uptake of rice and soil nitrogen supply capacity under fertilizer reduction in a rice-rice-Chinese milk vetch rotation system, northern Jiangxi province, China. J Plant Nutr Fert, 2023, 29: 1449-1460 (in Chinese with English abstract).
[13] 杨璐, 曾闹华, 白金顺, 周兴, 周国朋, 高嵩涓, 聂军, 曹卫东. 紫云英季土壤固氮微生物对外源碳氮投入的响应. 中国农业科学, 2020, 53: 105-116.
doi: 10.3864/j.issn.0578-1752.2020.01.010
Yang L, Zeng N H, Bai J S, Zhou X, Zhou G P, Gao S J, Nie J, Cao W D. Responses of soil diazotroph community to rice straw, glucose and nitrogen addition during Chinese milk vetch growth. Sci Agric Sin, 2020, 53: 105-116 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.01.010
[14] 李文广, 杨晓晓, 黄春国, 薛乃雯, 夏清, 刘小丽, 张晓琪, 杨思, 杨珍平, 高志强. 饲料油菜作绿肥对后茬麦田土壤肥力及细菌群落的影响. 中国农业科学, 2019, 52: 2664-2677.
doi: 10.3864/j.issn.0578-1752.2019.15.010
Li W G, Yang X X, Huang C G, Xue N W, Xia Q, Liu X L, Zhang X Q, Yang S, Yang Z P, Gao Z Q. Effects of rapeseed green manure on soil fertility and bacterial community in dryland wheat field. Sci Agric Sin, 2019, 52: 2664-2677 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2019.15.010
[15] 柴健, 于爱忠, 李悦, 王玉珑, 王凤, 王鹏飞, 吕汉强, 杨学慧, 尚永盼. 绿肥还田量结合氮肥减施对绿洲灌区小麦产量和氮素吸收利用的影响. 作物学报, 2023, 49: 3131-3140.
doi: 10.3724/SP.J.1006.2023.31017
Chai J, Yu A Z, Li Y, Wang Y L, Wang F, Wang P F, Lyu H Q, Yang X H, Shang Y P. Effects of green manure incorporation combined with nitrogen fertilizer reduction on wheat yield and nitrogen utilization in oasis irrigated area. Acta Agron Sin, 2023, 49: 3131-3140 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.31017
[16] 殷芳, 何小七, 樊志龙, 胡发龙, 范虹, 殷文, 柴强. 复种绿肥补偿减量施氮导致的小麦光合效能和产量损失. 植物营养与肥料学报, 2022, 28: 1990-2000.
Yin F, He X Q, Fan Z L, Hu F L, Fan H, Yin W, Chai Q. Compensation of photosynthesis indexes and yield loss of wheat caused by nitrogen reduction with multiple cropping green manures. J Plant Nutr Fert, 2022, 28: 1990-2000 (in Chinese with English abstract).
[17] 麻碧娇, 苟志文, 殷文, 于爱忠, 樊志龙, 胡发龙, 赵财, 柴强. 干旱灌区麦后复种绿肥与施氮水平对小麦光合性能与产量的影响. 中国农业科学, 2022, 55: 3501-3515.
doi: 10.3864/j.issn.0578-1752.2022.18.003
Ma B J, Gou Z W, Yin W, Yu A Z, Fan Z L, Hu F L, Zhao C, Chai Q. Effects of multiple cropping green manure after wheat harvest and nitrogen application levels on wheat photosynthetic performance and yield in arid irrigated areas. Sci Agric Sin, 2022, 55: 3501-3515 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.18.003
[18] 王永亮, 胥子航, 李申, 梁哲铭, 薛晓蓉, 白炬, 杨治平. 秸秆还田与花后灌溉提高春玉米产量及水氮利用效率. 中国农业科学, 2023, 56: 3599-3614.
doi: 10.3864/j.issn.0578-1752.2023.18.009
Wang Y L, Xu Z H, Li S, Liang Z M, Xue X R, Bai J, Yang Z P. Straw returning and post-silking irrigating improve the grain yield and utilization of water and nitrogen of spring maize. Sci Agric Sin, 2023, 56: 3599-3614 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.18.009
[19] 郭丽, 史建硕, 王丽英, 李若楠, 任燕利, 张彦才. 滴灌水肥一体化条件下施氮量对夏玉米氮素吸收利用及土壤硝态氮含量的影响. 中国生态农业学报, 2018, 26: 668-676.
Guo L, Shi J S, Wang L Y, Li R N, Ren Y L, Zhang Y C. Effects of nitrogen application rate on nitrogen absorption and utilization in summer maize and soil NO3--N content under driP fertigation. Chin J Eco-Agric, 2018, 26: 668-676 (in Chinese with English abstract).
[20] 殷文, 陈桂平, 郭瑶, 樊志龙, 胡发龙, 范虹, 于爱忠, 赵财, 柴强. 春小麦秸秆还田对后茬玉米干物质积累及产量形成的调控效应. 中国生态农业学报, 2020, 28: 1210-1218.
Yin W, Chen G P, Guo Y, Fan Z L, Hu F L, Fan H, Yu A Z, Zhao C, Chai Q. Responses of dry matter accumulation and yield in a following maize crop to spring wheat straw returning. Chin J Eco-Agric, 2020, 28: 1210-1218 (in Chinese with English abstract).
[21] 樊志龙, 胡发龙, 殷文, 范虹, 赵财, 于爱忠, 柴强. 干旱灌区小麦水分利用特征对绿肥与麦秸协同还田的响应. 中国农业科学, 2023, 56: 838-849.
doi: 10.3864/j.issn.0578-1752.2023.05.003
Fan Z L, Hu F L, Yin W, Fan H, Zhao C, Yu A Z, Chai Q. Response of water use characteristics of spring wheat to co- incorporation of green manure and wheat straw in arid irrigation region. Sci Agric Sin, 2023, 56: 838-849 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.05.003
[22] 周国朋, 曹卫东, 白金顺, 聂军, 徐昌旭, 曾闹华, 高嵩涓, 王艳秋, 志水胜好. 多年紫云英-双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响. 中国农业科学, 2016, 49: 4096-4106.
doi: 10.3864/j.issn.0578-1752.2016.21.004
Zhou G P, Cao W D, Bai J S, Nie J, Xu C X, Zeng N H, Gao S J, Wang Y Q, Shimizu K. Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years’ rotation of Chinese milk vetch and double-cropping rice. Sci Agric Sin, 2016, 49: 4096-4106 (in Chinese with English abstract).
[23] Wang Z K, Wang C Y, Tan X Q, Lou H X, Wang X L, Shao D L, Ning N, Kuai J, Wang J, Xu Z H, Wang B, Zhou G S, Jiang D H, Zhao J. Developing diversified forage cropping systems for synergistically enhancing yield, economic benefits, and soil quality in the Yangtze River Basin. Agric Ecosyst Environ, 2024, 365: 108929.
[24] Ansari M A, Choudhury B U, Layek J, Das A, Lal R, Mishra V. K. Green manuring and crop residue management: Effect on soil organic carbon stock, aggregation, and system productivity in the foothills of Eastern Himalaya (India). Soil Tillage Res, 2022, 218: 105318.
[25] 罗跃, 张久东, 周国朋, 常单娜, 高嵩涓, 包兴国, 车宗贤, 朱青, 曹卫东. 河西绿洲灌区间作绿肥及其不同利用方式对玉米产量及土壤肥力的提升效应. 植物营养与肥料学报, 2022, 28: 402-413.
Luo Y, Zhang J D, Zhou G P, Chang D N, Gao S J, Bao X G, Che Z X, Zhu Q, Cao W D. Intercropping maize with green manure crops at various utilization patterns improves maize yield and soil fertility in Hexi Oasis irrigated area. J Plant Nutr Fert, 2022, 28: 402-413 (in Chinese with English abstract).
[26] 吴多基, 姚冬辉, 范钊, 吴建富, 魏宗强. 长期绿肥和秸秆还田替代部分化肥提升红壤性水稻土酸解有机氮组分比例及供氮能力. 植物营养与肥料学报, 2022, 28: 227-236.
Wu D J, Yao D H, Fan Z, Wu J F, Wei Z Q. Long-term substitution of mineral fertilizer with green manure and straw increases hydrolysable organic nitrogen and N supply capacity in reddish paddy soils. J Plant Nutr Fert, 2022, 28: 227-236 (in Chinese with English abstract).
[27] 赵秋, 张新建, 宁晓光, 周丽平. 天津地区不同冬绿肥培肥土壤的效果. 植物营养与肥料学报, 2022, 28: 1228-1237.
Zhao Q, Zhang X J, Ning X G, Zhou L P. Effects of different winter green manure on soil fertility in Tianjin. J Plant Nutr Fert, 2022, 28: 1228-1237 (in Chinese with English abstract).
[28] 陈检锋, 梁海, 王伟, 陈华, 尹梅, 王志远, 刘俊, 陈军, 高嵩涓, 曹卫东, 付利波. 玉米-绿肥轮作体系下光叶紫花苕的氮肥替代和土壤肥力提升效应. 植物营养与肥料学报, 2021, 27: 1571-1580.
Chen J F, Liang H, Wang W, Chen H, Yin M, Wang Z Y, Liu J, Chen J, Gao S J, Cao W D, Fu L B. Effects of smooth vetch (Vicia villosa Roth var. glabrescens) incorporation on nitrogen fertilizer replacement and soil fertility improvement in a maize- green manure rotation system. J Plant Nutr Fert, 2021, 27: 1571-1580 (in Chinese with English abstract).
[29] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响. 作物学报, 2024, 50: 756-770.
doi: 10.3724/SP.J.1006.2024.32013
Wang L, Wu Y H, Qin Y H, Dan Y B, Chen H, Hao X S, Tian X H. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice. Acta Agron Sin, 2024, 50: 756-770 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.32013
[30] Zhang D B, Yao P W, Zhao N, Yu C W, Cao W D, Gao Y J. Contribution of green manure legumes to nitrogen dynamics in traditional winter wheat cropping system in the Loess Plateau of China. Eur J Agron, 2016, 72: 47-55.
[31] 尚永盼, 于爱忠, 王玉珑, 王鹏飞, 李悦, 柴健, 吕汉强, 杨学慧, 王凤. 绿洲灌区绿肥还田利用方式对玉米干物质积累、分配及产量的影响. 作物学报, 2024, 50: 686-694.
doi: 10.3724/SP.J.1006.2024.33031
Shang Y P, Yu A Z, Wang Y L, Wang P F, Li Y, Chai J, Lyu H Q, Yang X H, Wang F. Effects of green manure application methods on dry matter accumulation, distribution, and yield of maize in oasis irrigation area. Acta Agron Sin, 2024, 50: 686-694 (in Chinese with English abstract).
[32] Breza L C, Mooshammer M, Bowles T M, Jin V L, Schmer M R, Thompson B, Grandy A S. Complex crop rotations improve organic nitrogen cycling. Soil Biol Biochem, 2023, 177: 108911.
[33] Li M J, Wang T, Zhang H, Liu S, Li W H, Abou Elwafa S F, Tian H. TaNRT2.1-6B is a dual-affinity nitrate transporter contributing to nitrogen uptake in bread wheat under both nitrogen deficiency and sufficiency. Crop J, 2022, 10: 993-1005.
doi: 10.1016/j.cj.2021.11.012
[34] Yang X H, Nong B X, Chen C, Wang J R, Xia X Z, Zhang Z Q, Wei Y, Zeng Y, Feng R, Wu Y Y, Guo H, Yan H F, Liang Y T, Liang S H, Yan Y, Li D T, Deng G F. OsNPF3.1, a member of the NRT1/PTR family, increases nitrogen use efficiency and biomass production in rice. Crop J, 2023, 11: 108-118.
[1] WANG Li-Ping, LI Pan, ZHAO Lian-Hao, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, CHAI Qiang, YIN Wen. Response of senescence characteristics for maize leaves under different plastic mulching and using patterns in oasis irrigation areas of northwestern China [J]. Acta Agronomica Sinica, 2025, 51(1): 233-246.
[2] WANG Yuan, XU Jia-Yin, DONG Er-Wei, WANG Jing-Song, LIU Qiu-Xia, HUANG Xiao-Lei, JIAO Xiao-Yan. Effects of manure replacement of chemical fertilizer nitrogen on yield, nitrogen accumulation, and quality of foxtail millet  [J]. Acta Agronomica Sinica, 2025, 51(1): 149-160.
[3] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[4] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[5] YAN Fei-Long, ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, YU Zhen-Wen. Effect of nitrogen application on water consumption characteristics and grain yield of winter wheat under wide width sowing [J]. Acta Agronomica Sinica, 2024, 50(8): 2014-2024.
[6] HAN Xiao-Chen, ZHANG Gui-Qin, WANG Ya-Hui, REN Hao, WANG Hong-Zhang, LIU Guo-Li, LIN Dian-Xu, WANG Zi-Qiang, ZHANG Ji-Wang, ZHAO Bin, REN Bao-Zhao, LIU Peng. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(7): 1776-1786.
[7] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[8] ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen. Effects of different sowing space on photosynthetic characteristics after anthesis and grain yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(4): 981-990.
[9] ZOU Jia-Qi, WANG Zhong-Lin, TAN Xian-Ming, CHEN Liao-Yuan, YANG Wen-Yu, YANG Feng. Estimation of maize grain yield under drought stress based on continuous wavelet transform [J]. Acta Agronomica Sinica, 2024, 50(4): 1030-1042.
[10] WU Xia-Yu, LI Pan, WEI Jin-Gui, FAN Hong, HE Wei, FAN Zhi-Long, HU Fa-Long, CHAI Qiang, YIN Wen. Effect of reduced irrigation and combined application of organic and chemical fertilizers on photosynthetic physiology, grain yield and quality of maize in northwestern irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(4): 1065-1079.
[11] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[12] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[13] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
[14] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[15] MAO Shou-Fa, WEI Jin-Gui, CHAI Qiang, FAN Zhi-Long, HU Fa-Long, YIN Wen, WANG Qi-Ming. Compensation mechanism of wheat yield with green manure returned to the field under reduced irrigation water in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(11): 2818-2830.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .