Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (11): 2818-2830.doi: 10.3724/SP.J.1006.2024.31055

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Compensation mechanism of wheat yield with green manure returned to the field under reduced irrigation water in oasis irrigation areas

MAO Shou-Fa(), WEI Jin-Gui, CHAI Qiang(), FAN Zhi-Long, HU Fa-Long, YIN Wen, WANG Qi-Ming   

  1. State Key Laboratory of Aridland Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2023-10-08 Accepted:2024-05-21 Online:2024-11-12 Published:2024-07-04
  • Contact: *E-mail: chaiq@gsau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U21A20218);China Agriculture Research System of MOF and MARA(CARS-22-G-12);“Innovation Star” Program of Graduate Students in 2023 of Gansu Province(2023CXZX-681)

Abstract:

The present study investigated the mechanisms governing yield composition, photosynthetic product accumulation, and distribution characteristics of spring wheat under reduced irrigation, in response to green manure. The findings can serve as a practical and theoretical foundation for the development of a new water-saving cropping system for wheat. The study was conducted in the Hexi Oasis irrigation area of Gansu Province, China, and involved a field positioning experiment on multiple cropping of wheat with green manure since 2017. In 2021-2022, we examined population growth dynamics, photosynthetic product accumulation, transportation distribution, and yield characteristics of wheat subjected to reduced irrigation and different green manure management methods. The experiment followed a split-plot design, with three irrigation levels as the main plot: 420 mm (I3, local conventional irrigation), 370 mm (I2), and 320 mm (I1). The three green manure treatments were assigned as the split plot: planting and returning green manure to the field (WG), planting green manure but not returning it to the field (WGR), and no green manure (W). This resulted in a total of nine treatments. The results indicated that reduced irrigation water alone led to a decrease in wheat yield and harvest index. However, returning green manure to the field compensated for the negative effects of reduced irrigation on yields. Compared to I3, I1 resulted in an 11.5% reduction in grain yield, a 3.8% reduction in biological yield, and an 8.1% reduction in harvest index. Grain yield in I2 decreased by 3.4%. WG increased grain yield, biological yield, and harvest index by 10.9%, 3.7%, and 8.0% respectively, compared to W. WGR increased grain yield and harvest index by 4.8% and 3.4% respectively, compared to W. WGI2 increased grain yield and harvest index by 7.2% and 5.3% respectively, compared to WI3. There were no significant differences in grain yield, biological yield, and harvest index among WGI1, WGRI2, and WI3. In other words, returning 100% of the green manure to the field not only compensated for the negative yield impact of a 100 mm reduction in irrigation water but also overcompensated for the negative effect caused by a 50 mm reduction in irrigation water. The negative effect of returning green manure to the field on wheat yield loss under reduced irrigation conditions can be attributed to two main factors. Firstly, returning green manure enhanced crop growth rate (CGR) and net assimilation rate (NAR) during the late reproductive stage of wheat, leading to an increase in the number of spikes, grains per spike, and thousand-grain weight. Secondly, returning green manure increased dry matter accumulation and the contribution rate of wheat grain after anthesis, even with reduced irrigation water. In arid oasis irrigation areas, replanting green manure after wheat can be considered a viable measure to reduce irrigation water during the reproductive period of wheat. Green manure optimizes the accumulation and distribution of photosynthetic products in wheat, thereby compensating for yield penalty associated with reduced irrigation. Returning 100% of the green manure to the field has a high potential for water saving.

Key words: green manure incorporation, reduced irrigation, spring wheat, dry matter accumulation, yield, compensation effect

Fig. 1

Monthly precipitation and daily mean air temperature during the wheat growth period at the experiment station in 2021 and 2022"

Table 1

Irrigation scheme for different wheat green manure multiple cropping treatment"

灌溉时期
Irrigation time
灌溉定额Irrigation quota
减量100 mm灌水(I1)
Reduce irrigation by 100 mm
减量50 mm灌水(I2)
Reduce irrigation by 50 mm
常规灌水(I3)
Traditional irrigation (mm)
单作小麦
Monoculture
小麦复种箭筈豌豆
Wheat-common vetch multiple cropping
单作小麦
Monoculture
小麦复种箭筈豌豆
Wheat-common vetch multiple cropping
单作小麦
Monoculture
小麦复种箭筈豌豆
Wheat-common vetch
multiple cropping
小麦苗期
Seedling of wheat
60 60 75 75 90 90
小麦孕穗期
Booting of wheat
70 70 90 90 110 110
小麦灌浆期
Filling of wheat
60 60 75 75 90 90
箭筈豌豆苗期
Seedling of
common vetch
60 60 60
箭筈豌豆现蕾期
Buding of
common vetch
70 70 70

Table 2

Green manure biomass yield in different treatments (kg hm-2)"

年份Year WGI1 WGRI1 WGI2 WGRI2 WGI3 WGRI3
2020 7004 6785 7845 7346 8199 8054
2021 7211 6421 7893 7243 8117 7946

Table 3

Yield and yield components of wheat under different treatments"

年份
Year
处理
Treatment
籽粒产量
Grain yield
(kg hm-2)
生物产量
Biomass yield
(kg hm-2)
收获指数 Harvest
index
产量构成因素 Yield components
穗数
Spike number
(×104 hm-2)
穗粒数
Kernel number
per spike
千粒重
Thousand-kernel weight (g)
2021 WGI1 7170 c 18,641 b 0.38 bc 707.4 de 39.1 cd 38.5 cd
WGRI1 6697 e 18,183 cd 0.37 d 663.8 f 37.8 d 37.5 d
WI1 6336 f 17,919 d 0.35 e 622.3 g 35.9 e 35.2 e
WGI2 7671 b 18,928 b 0.41 a 776.8 b 40.4 b 42.7 b
WGRI2 7264 c 18,837 b 0.39 bc 749.2 c 38.9 cd 40.1 c
WI2 7004 d 18,479 bc 0.38 c 690.7 ef 38.1 d 37.6 d
WGI3 7948 a 19,529 a 0.41 a 844.9 a 42.1 a 44.7 a
WGRI3 7641 b 18,793 b 0.41 a 802.0 b 40.6 b 42.6 b
WI3 7236 c 18,539 bc 0.39 b 732.4 cd 39.6 bc 40.0 c
2022 WGI1 7060 c 18,096 c 0.39 c 704.7 e 39.5 cd 38.1 cd
WGRI1 6541 e 17,632 f 0.37 e 663.1 g 37.1 f 37.2 d
WI1 6256 f 17,517 f 0.36 f 632.7 h 35.2 g 34.6 e
WGI2 7739 a 18,276 bc 0.43 a 779.1 c 40.6 abc 42.4 b
WGRI2 7157 c 18,183 bcd 0.39 c 746.2 d 39.1 de 39.7 c
WI2 6904 d 17,929 e 0.38 d 687.6 f 38.1 ef 40.0 d
WGI3 7759 a 19,001 a 0.41 b 841.2 a 41.7 a 44.4 a
WGRI3 7560 b 18,316 b 0.42 b 799.2 b 41.1 ab 42.1 b
WI3 7146 c 18,029 de 0.40 c 739.6 d 40.3 bcd 39.6 c
显著性 Significance
灌水水平 Irrigation level (I) ** ** ** ** ** **
绿肥处理方式 Green manure (G) ** ** ** ** ** **
灌水×绿肥 I×G * ** * * * NS

Table 4

Net assimilation rate of wheat under different treatments"

年份
Year
处理
Treatment
净同化率 Net assimilation rate (g m-2 d-1)
苗期-拔节期 拔节-孕穗期 孕穗-开花期 开花-灌浆期
Seedling to jointing Jointing to booting Booting to anthesis Anthesis to filling
2021 WGI1 5.31 d 9.34 bc 7.71 d 5.31 b
WGRI1 5.18 e 9.19 d 7.35 e 4.96 e
WI1 5.18 e 9.15 d 7.14 f 4.84 f
WGI2 5.44 c 9.72 a 8.14 a 5.41 a
WGRI2 5.36 cd 9.27 bcd 7.95 b 5.33 b
WI2 5.20 e 9.23 cd 7.66 d 5.17 d
WGI3 5.72 b 9.60 a 7.88 bc 5.45 a
WGRI3 5.74 b 9.59 a 7.79 cd 5.27 bc
WI3 5.92 a 9.40 b 7.74 d 5.23 cd
2022 WGI1 4.89 c 9.24 ab 7.50 d 5.34 bc
WGRI1 4.67 f 8.94 c 7.19 e 5.12 d
WI1 4.38 g 8.64 d 7.08 e 4.63 e
WGI2 4.93 c 9.35 a 7.83 a 5.64 a
WGRI2 4.80 d 9.08 bc 7.77 a 5.28 c
WI2 4.73 e 8.94 c 7.47 d 5.19 d
WGI3 5.10 a 9.37 a 7.73 ab 5.60 a
WGRI3 5.03 b 9.34 a 7.64 bc 5.38 b
WI3 4.94 c 9.21 ab 7.55 cd 5.33 bc
显著性 Significance
灌水 Irrigation level (I) ** ** ** **
绿肥 Green manure (G) NS ** ** **
灌水×绿肥 I×G ** * ** **

Fig. 2

Dynamics of dry matter accumulation rate in wheat under different treatments I1: reduce irrigation by 100 mm (320 mm); I2: reduce irrigation by 50 mm (370 mm); I3: conventional irrigation (420 mm). WG: planting and returning green manure to field; WGR: planting but not returning green manure to field; W: no green manure."

Table 5

Dry matter transport characteristics of wheat under different treatments"

年份
Year
处理
Treatment
花前干物质量DMABA 花后干物质量DMAAA
运转量 运转率 籽粒贡献率 积累量 贡献率
TA (kg hm-2) TR (%) CG (%) AA (kg hm-2) ACG (%)
2021 WGI1 1830 bc 12.72 bc 25.51 bc 5340 b 74.49 bc
WGRI1 1910 bc 13.36 bc 28.54 bc 4787 c 71.46 bc
WI1 2828 a 18.31 a 44.64 a 3508 d 55.36 d
WGI2 1927 bc 12.16 bc 25.10 bc 5744 ab 74.90 bc
WGRI2 1671 cd 11.71 c 23.01 cd 5592 ab 76.99 ab
WI2 2183 b 15.05 b 31.17 b 4820 c 68.83 c
WGI3 2055 bc 13.12 bc 25.85 bc 5894 a 74.15 bc
WGRI3 1922 bc 12.43 bc 25.15 bc 5719 ab 74.85 bc
WI3 1285 d 8.94 d 17.77 d 5951 a 82.23 a
2022 WGI1 1897 c 13.09 c 26.57 cd 5240 c 73.43 cd
WGRI1 1877 c 13.15 c 28.38 c 4735 d 71.62 d
WI1 2830 a 18.85 a 44.80 a 3491 e 55.20 f
WGI2 1995 c 12.97 c 26.06 cd 5662 b 73.94 cd
WGRI2 1576 d 10.88 d 21.80 ef 5657 b 78.20 ab
WI2 2228 b 15.08 b 32.25 b 4680 d 67.75 e
WGI3 1828 c 11.73 cd 23.31 de 6014 a 76.69 bc
WGRI3 1838 c 11.97 cd 24.06 de 5802 ab 75.94 bc
WI3 1333 e 9.15 e 18.47 f 5885 ab 81.53 a
显著性 Significance
灌水Irrigation level (I) * * ** ** **
绿肥Green manure (G) * * * ** *
灌水×绿肥I × G * * * * *

Fig. 3

Distribution difference of dry matter in organs of wheat at maturity stage under different treatments Treatments are the same as those given in Fig. 2. Different letters in the figure indicate significant differences between different treatments within the same year (P < 0.05)."

Fig. 4

Correlation coefficient between yields and yield components, dry matter accumulation, and population growth characteristics of wheat under different treatments BY: biological yield; GY: grain yield; HI: harvest index; TA: dry matter transportation quantity before flowering; TR: dry matter transportation rate before flowering; CG: contribution of dry matter remobilization to grain pre-anthesis; AA: assimilation amount post-anthesis; ACG: contribution of dry matter accumulation to grain post-anthesis; CGR: crop growth rate; NAR: net assimilation rate; SN: spike number; KN: kernel number per spike; KW: 1000-kernel weight. ***, **, and * indicate significant correlation at the 0.001, 0.01, and 0.05 probability levels, respectively."

[1] Lu J S, Ma L H, Hu T T, Geng C M, Yan S C. Deficit drip irrigation based on crop evapotranspiration and precipitation forecast improves water-use efficiency and grain yield of summer maize. J Sci Food Agric, 2022, 102: 653-663.
[2] 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响. 作物学报, 2023, 49: 1653-1667.
doi: 10.3724/SP.J.1006.2022.21045
Feng L J, Yu Z W, Zhang Y L, Shi Y. Effects of irrigation on tiller occurrence, photo-assimilates production and distribution in different stem and tillers and spike formation in wheat. Acta Agron Sin, 2023, 49: 1653-1667 (in Chinese with English abstract).
[3] Yan S, Wu Y, Fan J, Zhang F C, Guo J J, Zheng J, Wu L F. Quantifying grain yield, protein, nutrient uptake and utilization of winter wheat under various drip fertigation regimes. Agric Water Manag, 2022, 261: 107380.
[4] 杨昭, 柴强, 王玉, 苟志文, 樊志龙, 胡发龙, 殷文. 河西绿洲灌区减量灌溉下绿肥对小麦光合源及产量的补偿效应. 植物营养与肥料学报, 2022, 28: 1003-1014.
Yang Z, Chai Q, Wang Y, Gou Z W, Fan Z L, Hu F L, Yin W. Compensation of green manure on photosynthetic source and yield loss of wheat caused by reduced irrigation in Hexi oasis irrigation area. J Plant Nutr Fert, 2022, 28: 1003-1014 (in Chinese with English abstract).
[5] 樊志龙, 胡发龙, 殷文, 范虹, 赵财, 于爱忠, 柴强. 干旱灌区春小麦水分利用特征对绿肥与麦秸协同还田的响应. 中国农业科学, 2023, 56: 838-849.
doi: 10.3864/j.issn.0578-1752.2023.05.003
Fan Z L, Hu F L, Yin W, Fan H, Zhao C, Yu A Z, Chai Q. Response of water use characteristics of spring wheat to co-incorporation of green manure and wheat straw in arid irrigation region. Sci Agric Sin, 2023, 56: 838-849 (in Chinese with English abstract).
[6] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化. 作物学报, 2023, 49: 2196-2209.
doi: 10.3724/SP.J.1006.2023.21054
Yang X H, Wang B S, Sun X L, Hou J J, Xu M J, Wang Z J, Fang Q X. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule. Acta Agron Sin, 2023, 49: 2196-2209 (in Chinese with English abstract).
[7] 赵财, 王巧梅, 郭瑶, 殷文, 樊志龙, 胡发龙, 于爱忠, 柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响. 作物学报, 2018, 44: 1694-1703.
doi: 10.3724/SP.J.1006.2018.01694
Zhao C, Wang Q M, Guo Y, Yin W, Fan Z L, Hu F L, Yu A Z, Chai Q. Effects of water-nitrogen coupling patterns on dry matter accumulation and yield of wheat under no-tillage with previous plastic mulched maize. Acta Agron Sin, 2018, 44: 1694-1703 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01694
[8] Zhang D B, Zhang C, Ren H L, Xu Q, Yao Z Y, Yuan Y Q, Yao P W, Zhao N, Li Y Y, Zhang S Q, Zhai B N, Wang Z H, Huang D L, Cao W D, Gao Y J. Trade-offs between winter wheat production and soil water consumption via leguminous green manures in the Loess Plateau of China. Field Crops Res, 2021, 272: 108278.
[9] 殷文, 冯福学, 赵财, 于爱忠, 柴强, 胡发龙, 郭瑶. 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响. 作物学报, 2016, 42: 751-757.
doi: 10.3724/SP.J.1006.2016.00751
Yin W, Feng F X, Zhao C, Yu A Z, Chai Q, Hu F L, Guo Y. Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. Acta Agron Sin, 2016, 42: 751-757 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.00751
[10] 魏廷邦, 胡发龙, 赵财, 冯福学, 于爱忠, 刘畅, 柴强. 氮肥后移对绿洲灌区玉米干物质积累和产量构成的调控效应. 中国农业科学, 2017, 50: 2916-2927.
doi: 10.3864/j.issn.0578-1752.2017.15.006
Wei T B, Hu F L, Zhao C, Feng F X, Yu A Z, Liu C, Chai Q. Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in oasis irrigation areas. Sci Agric Sin, 2017, 50: 2916-2927 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.15.006
[11] Allahverdiyev T, Huseynova I. Influence of water deficit on photosynthetic activity, dry matter partitioning and grain yield of different durum and bread wheat genotypes. Cereal Res Commun, 2017, 45: 432-441.
[12] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成. 作物学报, 2023, 49: 1919-1929.
doi: 10.3724/SP.J.1006.2023.23056
Wei J G, Guo Y, Chai Q, Yin W, Fan Z L, Hu F L. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply. Acta Agron Sin, 2023, 49: 1919-1929 (in Chinese with English abstract).
[13] Wu Y L, Guo Q F, Luo Y, Tian F X, Wang W. Differences in physiological characteristics between two wheat cultivars exposed to field water deficit conditions. Russ J Plant Physiol, 2014, 61: 451-459.
[14] Li H T, Fan Z L, Wang Q M, Wang G C, Yin W, Zhao C, Yu A Z, Cao W D, Chai Q, Hu F L. Green manure and maize intercropping with reduced chemical N enhances productivity and carbon mitigation of farmland in arid areas. Eur J Agron, 2023, 145: 126788.
[15] 苟志文, 殷文, 徐龙龙, 何小七, 王琦明, 柴强. 绿洲灌区复种豆科绿肥条件下小麦稳产的减氮潜力. 植物营养与肥料学报, 2020, 26: 2195-2203.
Gou Z W, Yin W, Xu L L, He X Q, Wang Q M, Chai Q. Potential of nitrogen reduction for maintaining wheat grain yield under multiple cropping with leguminous green manure in irrigated oasis. J Plant Nutr Fert, 2020, 26: 2195-2203 (in Chinese with English abstract).
[16] Islam M M, Urmi T A, Rana M S, Alam M S, Haque M M. Green manuring effects on crop morpho-physiological characters, rice yield and soil properties. Physiol Mol Biol Plants, 2019, 25: 303-312.
[17] 王旭敏, 雒文鹤, 刘朋召, 张琦, 王瑞, 李军. 节水减氮对夏玉米干物质和氮素积累转运及产量的调控效应. 中国农业科学, 2021, 54: 3183-3197.
doi: 10.3864/j.issn.0578-1752.2021.15.004
Wang X M, Luo W H, Liu P Z, Zhang Q, Wang R, Li J. Regulation effects of water saving and nitrogen reduction on dry matter and nitrogen accumulation, transportation and yield of summer maize. Sci Agric Sin, 2021, 54: 3183-3197 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.15.004
[18] 梁伟琴, 贾莉, 郭黎明, 李应兰, 胡亚峰, 陈小花, 马旭凤, 李静. 水氮耦合对春小麦干物质累积与植株氮素转运的影响. 作物杂志, 2022, (4): 242-248.
Liang W Q, Jia L, Guo L M, Li Y L, Hu Y F, Chen X H, Ma X F, Li J. Effects of irrigation and nitrogen application on dry matter accumulation and nitrogen transport of spring wheat. Crops, 2022, (4): 242-248 (in Chinese with English abstract).
[19] Meng W W, Yu Z W, Zhao J Y, Zhang Y L, Shi Y. Effects of supplemental irrigation based on soil moisture levels on photosynthesis, dry matter accumulation, and remobilization in winter wheat (Triticum aestivum L.) cultivars. Plant Prod Sci, 2017, 20: 215-226.
[20] Zhang B C, Li F M, Huang G B, Cheng Z Y, Zhang Y H. Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agric Water Manag, 2006, 79: 28-42.
[21] Si Z Y, Zain M, Mehmood F, Wang G S, Gao Y, Duan A W. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric Water Manag, 2020, 231: 106002.
[22] 柴健, 于爱忠, 李悦, 王玉珑, 王凤, 王鹏飞, 吕汉强, 杨学慧, 尚永盼. 绿肥还田量结合氮肥减施对绿洲灌区小麦产量和氮素吸收利用的影响. 作物学报, 2023, 49: 3131-3140.
doi: 10.3724/SP.J.1006.2023.31017
Chai J, Yu A Z, Li Y, Wang Y L, Wang F, Wang P F, Lyu H Q, Yang X H, Shang Y P. Effects of green manure incorporation combined with nitrogen fertilizer reduction on wheat yield and nitrogen utilization in oasis irrigated area. Acta Agron Sin, 2023, 49: 3131-3140 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.31017
[23] 唐锐, 韩宜秀, 易树生, 郑伟, 南小红, 罗鸿, 温晓荣, 翟丙年. 不同水氮组合对冬小麦产量及水氮利用效率的调控效应. 植物营养与肥料学报, 2023, 29: 1944-1955.
Tang R, Han Y X, Yi S S, Zheng W, Nan X H, Luo H, Wen X R, Zhai B N. Optimal water and nitrogen rate combination for winter wheat yield and water-nitrogen efficiency. J Plant Nutr Fert, 2023, 29: 1944-1955 (in Chinese with English abstract).
[24] Wittwer R A, Vander Heijsenm G A. Cover crops as a tool to reduce reliance on intensive tillage and nitrogen fertilization in conventional arable cropping systems. Field Crops Res, 2020, 249: 107736.
[25] 张雨新, 张富仓, 邹海洋, 陈东峰, 范军亮. 生育期水分调控对甘肃河西地区滴灌春小麦氮素吸收和利用的影响. 植物营养与肥料学报, 2017, 23: 597-605.
Zhang Y X, Zhang F C, Zou H Y, Chen D F, Fan J L. Effects of soil water regulation at different growing stages on nitrogen uptake and utilization of spring wheat in the Hexi region, Gansu province. J Plant Nutr Fert, 2017, 23: 597-605 (in Chinese with English abstract).
[26] 殷芳, 何小七, 樊志龙, 胡发龙, 范虹, 殷文, 柴强. 复种绿肥补偿减量施氮导致的小麦光合效能和产量损失. 植物营养与肥料学报, 2022, 28: 1990-2000.
Yin F, He X Q, Fan Z L, Hu F L, Fan H, Yin W, Chai Q. Compensation of photosynthesis indexes and yield loss of wheat caused by nitrogen reduction with multiple cropping green manures. J Plant Nutr Fert, 2022, 28: 1990-2000 (in Chinese with English abstract).
[27] 麻碧娇, 苟志文, 殷文, 于爱忠, 樊志龙, 胡发龙, 赵财, 柴强. 干旱灌区麦后复种绿肥与施氮水平对小麦光合性能与产量的影响. 中国农业科学, 2022, 55: 3501-3515.
doi: 10.3864/j.issn.0578-1752.2022.18.003
Ma B J, Gou Z W, Yin W, Yu A Z, Fan Z L, Hu F L, Zhao C, Chai Q. Effects of multiple cropping green manure after wheat harvest and nitrogen application levels on wheat photosynthetic performance and yield in arid irrigated areas. Sci Agric Sin, 2022, 55: 3501-3515 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.18.003
[28] Ma D K, Yin L N, Ju W L, Li X K, Liu X X, Deng X P, Wang S W. Meta-analysis of green manure effects on soil properties and crop yield in Northern China. Field Crops Res, 2021, 266: 108146.
[29] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响. 作物学报, 2023, 49: 2539-2551.
doi: 10.3724/SP.J.1006.2023.21062
Zhang L H, Zhang J T, Dong Z Q, Hou W B, Zhai L C, Yao Y R, Lyu L H, Zhao Y A, Jia X L. Effect of water management on yield and its components of winter wheat in different precipitation years. Acta Agron Sin, 2023, 49: 2539-2551 (in Chinese with English abstract).
[30] Kandel T P, Gowda P H, Northup B K, Rocateli A C. Impacts of tillage systems, nitrogen fertilizer rates and a legume green manure on light interception and yield of winter wheat. Cogent Food Agric, 2019, 5: 1580176.
[31] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响. 作物学报, 2023, 49: 1895-1905.
doi: 10.3724/SP.J.1006.2023.21052
Zhang Z, Shi Y, Zhang Y L, Yu Z W, Wang X Z. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf. Acta Agron Sin, 2023, 49: 1895-1905 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.21052
[32] Ma S C, Duan A W, Wang R, Guan Z M, Yang S J, Ma S T, Shao Y. Root-sourced signal and photosynthetic traits, dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation. Agric Water Manag, 2015, 148: 123-129.
[33] Yang R, Song S, Chen S, Du Z, Kong J. Adaptive evaluation of green manure rotation for a low fertility farmland system: impacts on crop yield, soil nutrients, and soil microbial community. Catena, 2022, 222: 106873.
[34] Ding Y C, Xu G H. Low magnesium with high potassium supply changes sugar partitioning and root growth pattern prior to visible magnesium deficiency in leaves of rice (Oryza sativa L.). Am J Plant Sci, 2011, 2: 601-608.
[35] González F G, Miralles D J, Slafer G A. Wheat floret survival as related to pre-anthesis spike growth. J Exp Bot, 2011, 62: 4889-4901.
doi: 10.1093/jxb/err182 pmid: 21705386
[36] Xu K, Chai Q, Hu F L, Fan Z L, Yin W. N-fertilizer postponing application improves dry matter translocation and increases system productivity of wheat/maize intercropping. Sci Rep, 2021, 11: 22825.
doi: 10.1038/s41598-021-02345-5 pmid: 34819592
[37] Liu M, Wu X L, Li C S, Li M, Xiong T, Tang Y L. Dry matter and nitrogen accumulation, partitioning, and translocation in synthetic-derived wheat cultivars under nitrogen deficiency at the post-jointing stage. Field Crops Res, 2020, 248: 107720.
[38] Yang D N, Li S E, Kang S Z, Du T S, Guo P, Mao X M, Tong L, Hao X M, Ding R S, Niu J. Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China. Agric Water Manag, 2020, 232: 106001.
[39] 王鹏飞, 于爱忠, 王玉珑, 苏向向, 李悦, 吕汉强, 柴健, 杨宏伟. 绿肥还田结合减量施氮对玉米干物质积累分配及产量的影响. 中国农业科学, 2023, 56: 1283-1294.
doi: 10.3864/j.issn.0578-1752.2023.07.007
Wang P F, Yu A Z, Wang Y L, Su X X, Li Y, Lyu H Q, Chai J, Yang H W. Effects of returning green manure to field combined with reducing nitrogen application on the dry matter accumulation, distribution and yield of maize. Sci Agric Sin, 2023, 56: 1283-1294 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.07.007
[40] Zhang H B, Han K, Gu S B, Wang D. Effects of supplemental irrigation on the accumulation, distribution and transportation of 13C-photosynthate, yield and water use efficiency of winter wheat. Agric Water Manag, 2019, 214: 1-8.
[41] Yao Z Y, Zhang D B, Yao P W, Zhao N, Li Y Y, Zhang S Q, Zhai B N, Huang D L, Ma A S, Zuo Y J, Cao W D, Gao Y J. Optimizing the synthetic nitrogen rate to balance residual nitrate and crop yield in a leguminous green-manured wheat cropping system. Sci Total Environ, 2018, 631/632: 1234-1242.
[1] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[2] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[3] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[4] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[5] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[6] ZHANG Gui-Qin, WANG Hong-Zhang, GUO Xin-Song, ZHU Fu-Jun, GAO Han, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Peng, REN Hao. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(9): 2323-2334.
[7] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[8] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[9] SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038.
[10] LIANG Jin-Yu, YIN Jia-De, HOU Hui-Zhi, XUE Yun-Gui, GUO Hong-Juan, WANG Shuo, ZHAO Qi-Zhi, ZHANG Xu-Cheng, XIE Jun-Hong. Effects of deep fertilization on ecological stoichiometric characteristics and photosynthetic carbon assimilation of flag leaves of spring wheat under drought conditions [J]. Acta Agronomica Sinica, 2024, 50(8): 2078-2090.
[11] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[12] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[13] CAO Zi-Qi, ZHAO Xiao-Qing, ZHANG Xiang-Qian, WANG Jian-Guo, LI Juan, HAN Yun-Fei, LIU Dan, GAO Yan-Hua, LU Zhan-Yuan, REN Yong-Feng. Effects of nitrogen application levels on the accumulation, distribution of nitrogen, phosphorus and potassium, and the corresponding yield of Cyperus esculentus in sandy soil [J]. Acta Agronomica Sinica, 2024, 50(7): 1805-1817.
[14] HAN Xiao-Chen, ZHANG Gui-Qin, WANG Ya-Hui, REN Hao, WANG Hong-Zhang, LIU Guo-Li, LIN Dian-Xu, WANG Zi-Qiang, ZHANG Ji-Wang, ZHAO Bin, REN Bao-Zhao, LIU Peng. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(7): 1776-1786.
[15] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!