Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (11): 2831-2447.doi: 10.3724/SP.J.1006.2024.41012

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of seeding rates on lodging resistance and yield of oat under reduced strip drip irrigation

YANG Zhi-Xue1,2(), LIU Jing-Hui1,2,*(), MI Jun-Zhen1,2,*(), SUN Jing1,2, ZHAO Bao-Ping1,2, REN Chang-Zhong3, TIAN Lu4, ZHENG Cheng-Zhong5   

  1. 1School of Agriculture, Inner Mongolia Agricultural University, Hohhot 010000, Inner Mongolia, China
    2Inner Mongolia University Oat Engineering Research Center / Inner Mongolia Autonomous Region Oat Engineering Laboratory / Inner Mongolia Agricultural University Multi-grain Industry Collaborative Innovation Center, Hohhot 010000, Inner Mongolia, China
    3Baicheng City Agricultural Science Research Institute of Jilin Province, Baicheng 137000, Jilin, China
    4Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010000, Inner Mongolia, China
    5Ulanqab City Institute of Agriculture and Forestry Science, Ulanqab 012000, Inner Mongolia, China
  • Received:2024-02-21 Accepted:2024-06-20 Online:2024-11-12 Published:2024-07-15
  • Contact: *E-mail: cauljh @163.com; E-mail: imaumjz@aliyun.com
  • Supported by:
    Oat Whole industry Chain Science and Technology Innovation Team Project(BR22-12-05);Inner Mongolia Major Project(2021ZD0002);Inner Mongolia Autonomous Region Oat Quinoa Industry Technology Innovation and PromotionSystem, the China Agriculture Research System of MOF and MARA(Oat Buckwheat, CARS-07);Inner Mongolia ‘Grassland Talents’ Oat Germplasm Resource Utilization Innovative Talent Team and Inner Mongolia Autonomous Region Supported by Capacity Building Project of Oat Engineering Laboratory(BR221023)

Abstract:

This study aimed to determine the effects of seeding rate under reduced strip irrigation on the lodging resistance and yield of oat. Five seeding rates—90 kg hm-2, 120 kg hm-2, 150 kg hm-2, 180 kg hm-2, and 210 kg hm-2 were tested on the lodging-resistant variety ‘Bayou 1’ and the easily lodging variety ‘Yanke 2’ from 2022 to 2023. We investigated the effects on physicochemical properties, lodging resistance, yield, and constituent factors of the oat stem base. The results showed that the plant height and center of gravity height of oat initially increased and then decreased with an increasing seeding rate. For ‘Bayou 1’, the highest plant height and center of gravity height were observed under the 150 kg hm-2 treatment, increasing by 2.63%-13.36% and 1.49%-12.30% compared to other treatments, respectively. For ‘Yanke 2’, the highest values were under the 120 kg hm-2 treatment, with increases of 2.52%-15.20% and 4.67%-21.21%, respectively. The second internode length of both oat varieties increased with seeding rate, while the course, dry weight, fullness, and bending resistance of the second internode decreased. Compared with other treatments, the 90 kg hm-2 treatment showed increases of 1.76%-32.81% in coarse, 9.08%-125.89% in dry weight, 26.88%-292.64% in fullness, and 6.48%-129.70% in bending resistance. With higher seeding rates, the contents of cellulose, soluble sugar, C/N ratio, potassium, and silicon in the oat stem base decreased, while nitrogen content increased. Under the 90 kg hm-2 treatment, these chemical components increased by 5.81%-74.10%, 1.62%-24.34%, 4.78%-55.41%, 1.90%-107.78%, and 2.00%-17.37%, respectively, whereas nitrogen content decreased by 2.95%-22.66%. Lodging rates and grades varied by year and variety. Lodging occurred in ‘Bayou 1’ and ‘Yanke 2’ under seeding rates of 180-210 kg hm-2 and 150-210 kg hm-2, respectively, with both varieties experiencing increased lodging in 2023 as seeding rates rose. The number of grains per ear and 1000-grain weight decreased with higher seeding rates, but grain yield initially increased and then decreased. The highest grain yields for ‘Bayou 1’ and ‘Yanke 2’ were achieved at 150 kg hm-2 and 120 kg hm-2, respectively. Correlation analysis indicated that the morphological characteristics and chemical composition of the stem base significantly affected its folding resistance, subsequently influencing lodging rate and grade. These factors can be key indices for evaluating oat lodging resistance. Considering lodging resistance and grain yield, the optimal seeding rates for ‘Bayou 1’ and ‘Yanke 2’ were 150 kg hm-2 and 120 kg hm-2, respectively.

Key words: stem base morphology, the content of chemical components in stem base, bending resistance, lodging rate, yield

Fig. 1

Precipitation and average temperature during oat growth period"

Table 1

Soil basic nutrients in the experimental field"

年份
Year
pH 有机质
Organic
matter
(g kg-1)
全氮
Total
nitrogen
(g kg-1)
全磷
Total
phosphorus
(mg kg-1)
全钾
Total
potassium
(g kg-1)
碱解氮
Alkali hydrolyzed
nitrogen
(mg kg-1)
速效磷
Available
phosphorus
(mg kg-1)
速效钾
Available
potassium
(mg kg-1)
2022 8.01 27.60 2.02 535.67 18.70 121.33 5.13 241.67
2023 7.96 28.35 2.98 528.56 16.88 134.25 6.06 237.23

Fig. 2

Schematic diagram of oat planting mode under reduced strip drip irrigation"

Table 2

Effects of different seeding rate on plant height and ear height of oat"

年份 Year 品种 Variety 播量 Seeding rate 株高Plant height (cm) 重心高度 Height of center of gravity (cm)
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
2022 BY1 S1 104.36±0.46 ef 104.05±0.56 d 102.74±2.87 f 53.51±3.91 de 54.85±0.72 de 53.07±1.86 cd
S2 105.51±1.95 de 108.90±0.80 c 107.92±1.02 e 58.04±1.40 abc 58.51±0.99 b 56.62±1.25 bc
S3 110.79±3.29 c 112.59±0.77 b 112.29±2.36 d 59.53±0.93 ab 59.90±0.70 b 59.27±1.23 b
S4 106.62±0.29 de 107.70±0.61 c 106.96±1.24 e 56.69±0.53 bc 57.55±1.25 bc 56.87±2.25 bc
S5 95.82±1.30 g 103.85±2.00 d 103.63±0.20 f 52.44±0.70 e 52.68±2.58 e 53.82±1.66 cd
YK2 S1 115.08±2.44 b 115.32±2.31 b 115.23±0.89 c 53.30±0.42 de 58.50±1.74 b 56.54±0.34 bc
S2 118.46±1.58 a 121.97±1.80 a 121.89±0.55 a 60.26±0.63 a 62.68±1.40 a 68.02±3.55 a
S3 110.72±2.80 c 121.20±1.23 a 119.52±1.88 ab 56.09±0.46 cd 58.29±1.16 b 58.08±3.03 b
S4 108.41±1.72 cd 120.44±2.09 a 117.23±0.21 bc 53.29±1.06 de 55.40±0.92 cd 53.56±3.11 cd
S5 101.84±0.89 f 114.52±1.81 b 115.49±1.84 c 55.26±2.34 cde 54.84±0.31 de 52.41±1.14 d
2023 BY1 S1 105.82±3.58 d 109.93±2.36 cd 106.31±3.89 d 46.17±0.87 bc 48.85±1.32 ef 47.62±1.62 f
S2 110.26±2.92 abc 112.05±0.69 abc 110.01±3.16 bc 47.70±1.56 bc 52.02±0.76 bcd 50.19±0.96 e
S3 113.98±2.29 a 114.13±2.02 ab 115.94±0.76 a 49.09±0.53 ab 54.45±2.02 a 55.89±1.50 ab
S4 107.61±0.90 cd 107.62±1.63 de 101.09±3.12 e 49.08±1.19 ab 50.25±0.81 de 51.27±1.03 de
S5 104.58±2.47 d 104.51±3.57 e 97.94±2.42 e 45.98±1.35 c 48.04±1.12 f 46.47±0.58 f
YK2 S1 108.43±2.08 bcd 111.13±0.82 bc 111.71±3.91 ab 47.60±1.26 bc 52.00±0.29 bcd 52.64±1.33 cd
S2 112.78±0.52 a 115.05±0.39 a 116.33±1.50 a 50.33±1.37 a 53.94±1.62 ab 57.57±1.30 a
S3 112.25±1.96 ab 112.42±0.60 abc 113.14±1.10 ab 49.05±0.41 ab 52.98±1.09 abc 55.50±0.39 b
S4 105.34±2.47 d 105.85±2.47 e 108.71±1.94 bc 47.86±1.47 bc 51.18±0.54 cd 54.02±0.02 bc
S5 104.15±1.93 d 104.30±1.24 e 105.90±1.80 d 47.72±1.14 bc 47.84±1.18 f 51.11±0.87 de
方差分析ANOVA
V ** ** ** NS * **
S ** ** ** ** ** **
V×S ** NS ** ** ** **

Table 3

Effects of seeding rate on internode length and thickness of different oat stem bases"

年份Year 品种Variety 播量 Seeding rate 第二节间长 Second internode length (cm) 第二节间粗 Second internode diameter (mm)
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
2022 BY1 S1 8.98±0.31 e 8.45±0.65 e 9.82±0.67 g 4.36±0.11 a 4.60±0.03 a 4.81±0.07 a
S2 9.07±0.72 e 11.34±1.22 d 10.84±0.35 fg 4.23±0.12 ab 4.47±0.12 ab 4.67±0.10 a
S3 10.71±1.05 d 12.42±0.94 d 12.29±0.17 de 4.13±0.14 b 4.24±0.14 cd 4.38±0.11 b
S4 14.18±0.52 ab 15.73±0.67 abc 14.69±0.45 bc 3.88±0.05 c 3.90±0.09 e 4.08±0.14 cd
S5 15.12±0.25 a 16.45±0.79 a 15.51±0.60 ab 3.68±0.04 d 3.68±0.14 f 3.78±0.12 e
YK2 S1 10.63±0.51 d 11.94±0.34 d 11.83±0.29 ef 4.25±0.04 ab 4.42±0.09 abc 4.39±0.18 b
S2 12.19±0.47 c 14.50±0.82 c 13.00±0.95 de 4.20±0.04 ab 4.38±0.08 bc 4.35±0.11 b
S3 12.44±0.32 c 14.99±0.10 bc 13.41±0.40 cd 4.10±0.01 b 4.10±0.06 d 4.21±0.18 bc
S4 13.80±0.47 b 16.06±0.20 ab 14.90±1.12 ab 3.82±0.08 cd 3.91±0.13 e 3.90±0.06 de
S5 15.04±1.37 a 16.86±1.06 a 16.13±1.50 a 3.73±0.18 cd 3.69±0.13 f 3.69±0.13 e
2023 BY1 S1 5.80±0.61 e 6.71±0.99 e 6.20±0.17 g 4.33±0.17 a 4.34±0.02 a 4.14±0.24 a
S2 7.00±0.74 e 8.13±0.97 de 9.02±0.62 de 4.31±0.11 a 3.95±0.07 b 3.92±0.14 ab
S3 8.54±0.35 cd 10.92±0.82 bc 10.30±0.69 cd 4.29±0.07 a 3.61±0.11 cd 3.77±0.15 bc
S4 9.69±0.63 bc 12.91±0.88 a 12.12±0.98 b 3.91±0.07 c 3.39±0.25 de 3.46±0.20 d
S5 10.15±0.24 b 13.30±0.84 a 13.21±1.13 b 3.78±0.12 cd 3.20±0.09 ef 2.99±0.12 ef
YK2 S1 6.50±0.55 e 7.00±0.95 de 7.22±0.07 fg 4.26±0.12 a 4.04±0.02 b 4.04±0.08 ab
S2 8.28±1.38 d 8.78±1.54 d 8.62±1.03 ef 4.15±0.07 ab 3.94±0.12 b 3.88±0.13 abc
S3 8.61±0.46 cd 10.57±0.60 c 11.64±0.64 bc 3.99±0.13 bc 3.68±0.14 c 3.62±0.26 cd
S4 10.74±0.60 ab 12.46±1.56 ab 12.76±1.64 b 3.79±0.12 cd 3.38±0.22 de 3.17±0.09 e
S5 11.83±0.52 a 14.11±0.60 a 15.78±0.50 a 3.64±0.22 d 3.03±0.07 f 2.82±0.05 f
方差分析ANOVA
V ** ** ** ** * **
S ** ** ** ** ** **
V×S * * NS NS NS NS

Table 4

Effects of seeding rate on internode dry weight and fullness of different oat stem bases"

年份
Year
品种
Variety
播量
Seeding rate
第二节间干重 Second internode dry weight (g) 第二节间充实度 Second internode fullness (mg cm-1)
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
2022 BY1 S1 0.37±0.20 a 0.29±0.02 a 0.27±0.02 ab 25.56±3.47 a 31.01±2.36 a 27.18±2.13 a
S2 0.27±0.02 ab 0.24±0.03 abc 0.27±0.05 ab 20.42±0.35 bc 21.22±4.09 bc 24.65±3.73 a
S3 0.23±0.03 b 0.22±0.01 cde 0.22±0.01 bc 16.27±2.51 cde 17.86±1.29 cd 17.99±0.46 b
S4 0.21±0.01 b 0.18±0.01 de 0.20±0.03 c 11.87±1.15 ef 11.44±0.53 f 13.46±1.62 c
S5 0.20±0.02 b 0.12±0.02 fg 0.13±0.03 e 10.78±1.20 f 7.27±1.07 gh 8.26±2.14 d
YK2 S1 0.28±0.05 ab 0.28±0.04 ab 0.30±0.04 a 23.22±4.90 ab 23.11±3.32 b 25.12±2.95 a
S2 0.26±0.02 ab 0.23±0.07 bcd 0.20±0.01 c 17.82±2.20 cd 15.75±3.75 de 15.16±0.86 bc
S3 0.23±0.05 b 0.19±0.02 cde 0.19±0.02 cd 15.57±2.92 de 12.38±1.32 ef 13.83±1.16 c
S4 0.22±0.01 b 0.17±0.00 ef 0.14±0.03 de 13.50±0.53 def 10.59±0.08 fg 9.51±2.53 d
S5 0.19±0.03 b 0.10±0.02 g 0.11±0.02 e 11.01±1.49 f 6.18±0.87 h 6.63±0.94 d
2023 BY1 S1 0.15±0.06 a 0.20±0.01 a 0.19±0.01 a 24.94±2.08 a 30.86±5.80 a 31.28±0.70 a
S2 0.13±0.01 a 0.19±0.01 ab 0.18±0.01 ab 22.85±2.59 a 22.93±1.49 bc 23.00±3.89 c
S3 0.12±0.02 a 0.17±0.01 bc 0.17±0.00 b 15.31±1.10 bc 15.82±0.94 de 16.28±1.10 d
S4 0.11±0.04 a 0.16±0.01 c 0.15±0.03 c 11.98±1.63 cde 12.16±0.70 ef 11.87±0.98 e
S5 0.10±0.01 a 0.13±0.01 d 0.13±0.01 cd 10.12±1.11 de 9.86±0.45 f 9.87±1.50 e
YK2 S1 0.12±0.02 a 0.18±0.02 ab 0.19±0.01 a 16.84±3.96 b 26.46±3.17 b 26.93±1.09 b
S2 0.11±0.03 a 0.17±0.02 bc 0.19±0.02 ab 13.64±3.87 bcd 19.35±0.91 cd 21.62±3.66 c
S3 0.11±0.03 a 0.16±0.01 c 0.18±0.01 ab 13.45±2.79 bcd 14.99±0.63 e 15.46±1.41 d
S4 0.11±0.02 a 0.15±0.02 cd 0.14±0.01 c 10.49±1.66 de 11.96±1.97 ef 10.92±0.35 e
S5 0.10±0.01 a 0.13±0.01 d 0.11±0.01 d 8.15±1.05 e 9.22±0.70 f 7.12±0.38 f
方差分析ANOVA
V NS * ** * ** **
S * ** ** ** ** **
V×S NS NS NS NS ** NS

Table 5

Analysis of variance of variety, seeding rate, and interaction effect on stem bending resistance"

变异来源 Source of variation 抽穗期 Heading stage 灌浆期 Filling stage 成熟期 Maturity stage
V NS ** **
S ** ** **
V×S NS NS **

Fig. 3

Influence of different seeding rate on stem bending resistance of oat Different lowercase letters indicate significant differences at the 0.05 probability level. Abbreviations and treatments are the same as those given in Table 2."

Table 6

Analysis of variance of variety, seeding rate, and interaction effect on cellulose content"

变异来源 Source of variation 抽穗期Heading stage 灌浆期 Filling stage 成熟期 Maturity stage
V NS ** **
S ** ** **
V×S NS NS NS

Fig. 4

Effect of different seeding rate on cellulose content in the second internode of oat stem base Different lowercase letters indicate significant differences at the 0.05 probability level. Abbreviations and treatments are the same as those given in Table 2."

Table 7

Effects of different seeding rate on soluble sugar content and nitrogen content of oats (%)"

年份Year 品种Variety 播量Seeding rate 可溶性糖含量Soluble sugar content 氮含量 Nitrogen content
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
2022 BY1 S1 7.16±0.29 a 6.21±0.09 a 6.73±0.27 a 0.69±0.02 c 0.67±0.01 e 0.67±0.01 d
S2 6.47±0.13 b 6.07±0.10 b 6.21±0.14 b 0.74±0.06 bc 0.67±0.01 e 0.68±0.02 cd
S3 5.92±0.15 cde 6.03±0.04 bc 5.65±0.09 c 0.76±0.03 bc 0.72±0.01 d 0.69±0.02 cd
S4 5.69±0.17 de 5.81±0.19 efg 5.60±0.05 c 0.77±0.05 bc 0.75±0.02 c 0.70±0.02 bcd
S5 5.63±0.31 de 5.70±0.06 fg 5.47±0.05 c 0.78±0.06 bc 0.79±0.03 b 0.71±0.00 bc
YK2 S1 5.94±0.04 cd 5.98±0.08 bcd 6.08±0.18 b 0.76±0.04 bc 0.66±0.02 e 0.67±0.01 d
S2 5.92±0.09 cde 5.92±0.05 bcde 6.06±0.12 b 0.79±0.02 b 0.71±0.01 d 0.69±0.02 cd
S3 6.10±0.23 c 5.88±0.04 cde 5.64±0.04 c 0.80±0.03 b 0.75±0.01 c 0.71±0.03 bc
S4 5.79±0.07 cde 5.84±0.03 def 5.56±0.02 c 0.82±0.04 b 0.79±0.01 b 0.73±0.03 ab
S5 5.60±0.06 e 5.66±0.05 g 5.46±0.22 c 0.93±0.12 a 0.83±0.01 a 0.76±0.02 a
2023 BY1 S1 6.41±0.04 a 6.53±0.05 a 6.30±0.06 a 0.75±0.04 h 0.80±0.00 f 0.82±0.02 bcd
S2 6.06±0.02 b 6.22±0.08 b 6.23±0.02 a 0.91±0.06 g 0.87±0.06 e 0.85±0.06 abcd
S3 5.79±0.06 e 5.92±0.01 c 6.00±0.03 b 0.96±0.07 fg 0.91±0.03 de 0.90±0.02 abc
S4 5.57±0.05 f 5.67±0.05 e 5.63±0.02 d 1.00±0.03 def 0.95±0.04 cd 0.91±0.05 ab
S5 5.27±0.07 g 5.48±0.06 f 5.41±0.03 e 1.03±0.02 cde 0.98±0.06 bc 0.92±0.04 ab
YK2 S1 6.03±0.03 bc 5.91±0.01 c 6.04±0.14 b 0.97±0.04 efg 0.88±0.01 e 0.77±0.01 d
S2 5.97±0.06 cd 5.81±0.02 d 5.86±0.06 c 1.05±0.03 cd 1.00±0.05 abc 0.80±0.06 cd
S3 5.90±0.03 d 5.73±0.03 e 5.67±0.08 d 1.08±0.02 bc 1.03±0.01 ab 0.85±0.01 abcd
S4 5.62±0.02 f 5.36±0.04 g 5.38±0.03 e 1.12±0.01 b 1.03±0.02 ab 0.90±0.14 abc
S5 5.31±0.02 g 5.17±0.02 h 5.16±0.03 f 1.18±0.04 a 1.05±0.03 a 0.95±0.02 a
方差分析ANOVA
V ** ** ** ** ** NS
S ** ** ** ** ** **
V×S ** ** ** NS NS NS

Table 8

Analysis of variance of variety, seeding rate and interaction effect on C/N"

变异来源 Source of variation 抽穗期Heading stage 灌浆期 Filling stage 成熟期 Maturity stage
V ** ** **
S ** ** **
V×S ** NS NS

Fig. 5

Effects of different seeding rate on C/N in the second internode of oat stem base Different lowercase letters indicate significant differences at the 0.05 probability level. Abbreviations and treatments are the same as those given in Table 2."

Table 9

Effects of different seeding rate on potassium and silicon content in oat stem base (%)"

年份Year 品种Variety 播量Seeding rate K含量K content Si含量Si content
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
2022 BY1 S1 3.97±0.21 a 3.87±0.21 a 3.03±0.32 a 3.70±0.09 a 3.90±0.02 a 3.81±0.05 a
S2 3.83±0.49 ab 3.50±0.10 bc 2.97±0.21 ab 3.61±0.04 b 3.48±0.05 b 3.69±0.03 b
S3 3.33±0.15 bcde 3.40±0.00 bc 2.63±0.06 bcd 3.60±0.03 b 3.42±0.02 bc 3.68±0.02 b
S4 2.93±0.32 e 3.27±0.06 c 2.37±0.25 de 3.33±0.03 cd 3.22±0.03 e 3.57±0.05 c
S5 2.80±0.17 e 2.33±0.12 e 2.07±0.12 ef 3.28±0.02 de 3.09±0.05 g 3.21±0.02 f
YK2 S1 3.70±0.30 abc 3.60±0.26 ab 2.90±0.30 abc 3.38±0.03 c 3.35±0.03 cd 3.55±0.03 c
S2 3.57±0.06 abcd 3.23±0.25 cd 2.57±0.21 cd 3.33±0.01 cd 3.32±0.07 d 3.47±0.01 d
S3 3.17±0.32 cde 2.97±0.15 d 2.30±0.10 def 3.23±0.02 e 3.15±0.01 f 3.35±0.03 e
S4 3.10±0.46 de 2.50±0.10 e 1.97±0.06 f 3.12±0.03 f 3.08±0.04 g 3.18±0.04 f
S5 2.83±0.06 e 1.77±0.15 f 1.57±0.12 g 3.01±0.05 g 3.00±0.02 h 2.97±0.05 g
2023 BY1 S1 3.18±0.23 a 2.70±0.14 a 2.42±0.05 a 3.71±0.13 a 3.92±0.04 a 3.97±0.04 a
S2 3.17±0.17 a 2.56±0.06 abc 2.07±0.19 bc 3.41±0.06 bc 3.83±0.05 b 3.84±0.12 b
S3 2.64±0.10 bcd 2.51±0.03 bc 1.83±0.08 de 3.54±0.03 ab 3.76±0.06 b 3.76±0.05 bc
S4 2.46±0.04 de 2.51±0.06 bcd 1.73±0.10 ef 3.29±0.03 cd 3.63±0.03 cd 3.73±0.03 cd
S5 2.32±0.07 e 2.36±0.11 d 1.29±0.22 g 3.23±0.09 de 3.61±0.02 cd 3.66±0.02 d
YK2 S1 3.11±0.05 a 2.63±0.04 ab 2.22±0.13 ab 3.55±0.05 ab 3.79±0.07 b 3.77±0.06 bc
S2 2.85±0.26 b 2.41±0.11 cd 1.96±0.04 cd 3.42±0.07 bc 3.68±0.04 c 3.69±0.03 cd
S3 2.75±0.10 bc 2.06±0.03 e 1.63±0.07 ef 3.31±0.01 cd 3.56±0.04 d 3.64±0.07 d
S4 2.56±0.12 cde 1.93±0.07 ef 1.54±0.10 f 3.15±0.03 de 3.48±0.03 e 3.46±0.04 e
S5 2.39±0.13 de 1.79±0.12 f 0.96±0.08 h 3.09±0.23 e 3.45±0.01 e 3.38±0.06 e
方差分析ANOVA
V NS ** ** ** ** **
S ** ** ** ** ** **
V×S NS ** NS NS ** **

Table 10

Effects of different seeding rate on the actual lodging situation and lodging classification of oat field"

年份
Year
品种
Variety
播种量
Seeding rate
倒伏时期
Stage of lodging
倒伏面积
Lodging area (%)
倒伏分级
Lodging grade
2022 BY1 S1 0±0 f 0
S2 0±0 f 0
S3 0±0 f 0
S4 成熟期Maturity stage 13.29±13.29 e 1
S5 成熟期Maturity stage 23.75±23.75 d 2
YK2 S1 0±0 f 0
S2 0±0 f 0
S3 灌浆期Filling stage 27.29±27.29 c 2
S4 灌浆期Filling stage 53.36±53.36 b 3
S5 灌浆期Filling stage 82.31±82.31 a 3
2023 BY1 S1 灌浆期Filling stage 13.33±2.89 e 1
S2 灌浆期Filling stage 25.00±5.00 d 2
S3 灌浆期Filling stage 33.33±2.89 d 2
S4 灌浆期Filling stage 51.67±7.64 c 3
S5 灌浆期Filling stage 68.33±2.89 b 3
YK2 S1 灌浆期Filling stage 23.33±2.89 d 2
S2 灌浆期Filling stage 30.00±10.00 d 2
2023 YK2 S3 抽穗期Heading stage 60.00±10.00 bc 3
S4 抽穗期Heading stage 88.33±2.89 a 3
S5 抽穗期Heading stage 95.00±0.00 a 3
方差分析ANOVA
V **
S **
V×S **

Table 11

Effects of different seeding rate on oat yield and its constituent factors"

年份
Year
品种
Variety
播量
Seeding rate
收获穗数
Spike
(×104 hm-2)
穗粒数
Kernel number
per spike
千粒重
Thousand-grain weight (g)
籽粒产量
Grain yield
(kg hm-2)
2022 BY1 S1 481.33±32.02 de 84.11±1.92 ab 23.01±0.23 a 4100.02±173.21 bcd
S2 530.67±21.20 bcd 77.22±11.65 bc 20.57±0.15 b 4266.69±57.74 b
S3 546.00±22.72 bc 69.33±3.67 cd 20.30±0.42 b 4500.02±100.00 a
S4 651.67±11.93 a 60.11±10.12 de 19.33±0.57 c 4166.69±152.75 bc
S5 679.67±31.79 a 49.34±7.64 e 18.47±0.42 d 4033.35±57.74 cde
YK2 S1 412.67±8.08 f 94.78±7.67 a 22.43±0.37 a 3953.85±68.62 de
S2 483.33±28.59 de 79.78±3.87 bc 20.88±0.37 b 4143.02±60.44 bc
S3 453.67±41.96 ef 76.34±4.51 bc 20.71±0.47 b 4035.85±23.42 cde
S4 513.67±47.82 cd 67.00±9.68 cd 19.47±0.30 c 3886.29±22.01 e
S5 570.67±20.03 b 57.22±2.80 de 17.96±0.32 d 3703.89±123.33 f
2023 BY1 S1 434.67±27.06 c 80.22±5.09 b 23.73±0.95 a 4148.79±92.50 cd
S2 489.33±80.65 bc 69.67±3.00 c 22.79±0.99 a 4219.89±101.61 bc
S3 533.67±13.58 ab 64.67±6.84 c 22.16±1.87 ab 4387.92±39.51 a
S4 542.67±3.79 ab 52.56±5.50 d 20.14±0.43 cd 4043.75±72.81 d
S5 592.67±39.17 a 47.56±1.17 d 19.16±0.87 de 3867.82±122.71 e
YK2 S1 484.00±12.12 bc 90.00±3.33 a 21.11±0.54 bc 4133.85±68.62 cd
2023 YK2 S2 546.67±30.62 ab 86.34±5.13 ab 20.21±1.18 cd 4363.02±60.44 ab
S3 511.33±11.15 b 67.56±3.36 c 19.84±0.36 cd 4025.85±23.42 bc
S4 537.00±22.61 ab 47.78±4.17 d 18.65±0.22 de 3816.29±22.01 d
S5 592.67±16.86 a 45.00±8.74 d 17.71±0.36 e 3653.89±123.33 e
方差分析ANOVA
V ** ** ** **
S ** ** ** **
V×S * NS NS *

Table 12

Correlation analysis of physicochemical characteristics of oat stalk with bending resistance, lodging rate and yield under different seeding rate"

指标
Item
抗折力
Stem bending resistance
倒伏率
Lodging rate
籽粒产量
Grain yield
株高Plant height 0.22 -0.23 0.22
重心高度Height of center of gravity -0.06 -0.51** 0.29*
基部第二节间长The second internode length -0.76** 0.32* -0.51**
基部第二节间粗The second internode stem diameter 0.54** -0.82** 0.43**
基部第二节间干重The second internode dry weight 0.77** -0.66** 0.40**
基部第二节间充实度The second internode fullness 0.27* -0.72** 0.40**
纤维素含量 Cellulose content 0.50** -0.51** 0.40**
可溶性糖Soluble sugar content 0.62** -0.72** 0.43**
氮含量N content -0.13 0.74** -0.14
碳氮比 C/N 0.32* -0.82** 0.25
钾含量K content 0.24 -0.71** 0.30*
硅含量Si content 0.75** -0.40** 0.56**
抗折力Stem bending resistance -0.48** 0.57**
倒伏率 Lodging rate -0.48** -0.58**
[1] 任长忠, 闫金婷, 董锐, 胡新中. 燕麦营养成分、功能特性及其产品的研究进展. 食品工业科技, 2022, 43: 438-446.
Ren C Z, Yan J T, Dong R, Hu X Z. Research progress on oat nutrients, functional properties and related products. Sci Technol Food Ind, 2022, 43: 438-446 (in Chinese with English abstract).
[2] Stewart D, McDougall G. Oat agriculture, cultivation and breeding targets: implications for human nutrition and health. British J Nutr, 2014, 112: S50-S57.
[3] 高阳, 赵力兴, 朱铁霞, 王琳, 高凯. 施氮量对科尔沁沙地燕麦生物量及物质分配规律的影响. 草地学报, 2018, 26: 1168-1172.
doi: 10.11733/j.issn.1007-0435.2018.05.019
Gao Y, Zhao L X, Zhu T X, Wang L, Gao K. Effects of nitrogen application rate on Avena sativa biomass and substance distribution in Horqin sandy land. Acta Agrest Sin, 2018, 26: 1168-1172 (in Chinese with English abstract).
[4] 周罕觅, 孙旗立, 牛晓丽, 陈佳庚, 马林爽, 苏裕民, 李纪琛. 滴灌节水减氮对苹果幼树生长与光合特征的影响. 灌溉排水学报, 2023, 42: 49-57.
Zhou H M, Sun Q L, Niu X L, Chen J G, Ma L S, Su Y M, Li J C. Effect of saving-water drip irrigation and nitrogen reduction on growth and photosynthetic characteristics of young apple tree. J Irrig Drain, 2023, 42: 49-57 (in Chinese with English abstract).
[5] 南铭, 赵桂琴, 李晶, 柴继宽, 刘彦明. 不同燕麦品种茎秆形态特征与抗倒伏性的关系. 草地学报, 2018, 26: 1382-1391.
doi: 10.11733/j.issn.1007-0435.2018.06.014
Nan M, Zhao G Q, Li J, Chai J K, Liu Y M. Research of lodging-resistance and the stem morphological characteristics of different Avena stiva L. varieties. Acta Agrest Sin, 2018, 26: 1382-1391 (in Chinese with English abstract).
[6] 南铭, 王兴荣, 李晶, 刘彦明, 张成君, 柴继宽, 赵桂琴. 燕麦抗倒伏性状的基因型差异. 草业学报, 2023, 32: 106-118.
doi: 10.11686/cyxb2023010
[39] Hu W, Liang G L, Liu K Q, Liu W H, Li W. Study on lodging resistance and its influencing factors of 9 oat varieties in Qinghai-Tibet Plateau. Acta Agrest Sin, 2023, 31: 1788-1797 (in Chinese with English abstract).
[40] 景婷婷, 旦增塔庆, 任淑娉, 王登平, 张新全, 杨盛婷, 陈仕勇, 黄琳凯. 播期和播量对成都平原“英迪米特”燕麦饲草产量及相关性状的影响. 草业科学, 2019, 36: 2594-2600.
Jing T T, Tenzintarchen, Ren S P, Wang D P, Zhang X Q, Yang S T, Chen S Y, Huang L K. Effects of the planting date and planting rate on the yield and related characters of ‘Intimidator’ oats on the Chengdu Plain. Pratac Sci, 2019, 36: 2594-2600 (in Chinese with English abstract).
[41] 许俊伟, 孟天瑶, 荆培培, 张洪程, 李超, 戴其根, 魏海燕, 郭保卫. 机插密度对不同类型水稻抗倒伏能力及产量的影响. 作物学报, 2015, 41: 1767-1776.
doi: 10.3724/SP.J.1006.2015.01767
Xu J W, Meng T Y, Jing P P, Zhang H C, Li C, Dai Q G, Wei H Y, Guo B W. Effect of mechanical-transplanting density on lodging resistance and yield in different types of rice. Acta Agron Sin, 2015, 41: 1767-1776 (in Chinese with English abstract).
[42] Matsuyama H, Ookawa T. The effects of seeding rate on yield, lodging resistance and culm strength in wheat. Plant Prod Sci, 2020, 23: 322-332.
doi: 10.1080/1343943X.2019.1702469
[6] Nan M, Wang X R, Li J, Liu Y M, Zhang C J, Chai J K, Zhao G Q. Differences in traits related to lodging resistance among oat genotypes. Acta Pratac Sin, 2023, 32: 106-118 (in Chinese with English abstract).
[7] 南铭, 柴继宽, 景芳, 张丽娟, 闵庚梅, 刘亚锋, 刘彦明, 李晶, 赵桂琴. 燕麦抗倒伏性研究进展. 草地学报, 2023, 31: 2582-2589.
doi: 10.11733/j.issn.1007-0435.2023.09.002
Nan M, Chai J K, Jing F, Zhang L J, Min G M, Liu Y F, Liu Y M, Li J, Zhao G Q. Research advances on lodging resistance of oat (Avena stiva L.). Acta Agrest Sin, 2023, 31: 2582-2589 (in Chinese with English abstract).
[8] 张靓, 梁小玉, 胡远彬, 季杨, 易军, 汪辉. 燕麦抗倒伏性研究进展. 麦类作物学报, 2024, 44: 74-81.
Zhang J, Liang X Y, Hu Y B, Ji Y, Yi J, Wang H. Research progress on lodging resistance in oat. J Triticeae Crops, 2024, 44: 74-81 (in Chinese with English abstract).
[9] Khan S, Anwar S, Kuai J, Ullah S, Fahad S, Zhou G S. Optimization of nitrogen rate and planting density for improving yield, nitrogen use efficiency, and lodging resistance in oilseed rape. Frunt Plant Sci, 2017, 8: 532.
[10] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成. 作物学报, 2023, 49: 1919-1929.
doi: 10.3724/SP.J.1006.2023.23056
Wei J G, Guo Y, Chai Q, Yin W, Fan Z L, Hu F L. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply. Acta Agron Sin, 2023, 49: 1919-1929 (in Chinese with English abstract).
[11] 覃凤, 汪小飞, 吴臻, 胡一波, 王小琴, 张家伟, 蔡铁. 集雨种植模式下种植密度与行距配置对小麦茎秆糖积累及倒伏性能的影响. 中国农业科学, 2024, 57: 65-79.
doi: 10.3864/j.issn.0578-1752.2024.01.006
Qin F, Wang X F, Wu Z, Hu Y B, Wang X Q, Zhang J W, Cai T. Effects of planting density and row spacing configuration on sugar accumulation and lodging performance of wheat stem under rainfall harvesting planting mode. Sci Agric Sin, 2024, 57: 65-79 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.01.006
[12] Wang Y Y, Jin M, Luo Y L, Chang Y L, Zhu J K, Li Y, Wang Z L. Effects of irrigation on stem lignin and breaking strength of winter wheat with different planting densities. Field Crops Res, 2022, 282: 108518.
[13] 李金才, 尹钧, 魏凤珍. 播种密度对冬小麦茎秆形态特征和抗倒指数的影响. 作物学报, 2005, 31: 662-666.
Li J C, Yin J, Wei F Z. Effects of planting density on characters of culm and culm lodging resistant index in winter wheat. Acta Agron Sin, 2005, 31: 662-666 (in Chinese with English abstract).
[14] 景芳, 南铭, 刘彦明, 陈富, 边芳, 任生兰, 张成君. 品种和种植密度对燕麦饲草产量、品质和病害的影响. 草地学报, 2023, 31: 3174-3184.
doi: 10.11733/j.issn.1007-0435.2023.10.030
Jing F, Nan M, Liu Y M, Chen F, Bian F, Ren S L, Zhang C J. Effects of variety and planting density on yield, quality and disease of forage oat. Acta Agrest Sin, 2023, 31: 3174-3184 (in Chinese with English abstract).
[15] 田露, 刘景辉, 米俊珍, 赵宝平, 李英浩, 张胜, 王凤梧, 焦伟红, 高卿, 郑成忠, 张子臻. 缩行带状种植和保水剂对滴灌燕麦籽粒和饲草品质的影响. 中国农业大学学报, 2023, 28(1): 79-88.
Tian L, Liu J H, Mi J Z, Zhao B P, Li Y H, Zhang S, Wang F W, Jiao W H, Gao Q, Zheng C Z, Zhang Z Z. Effects of strip cropping with reducing row spacing and super absorbent polymer on the grain and forage quality of oat under drip irrigation. J China Agric Univ, 2023, 28(1): 79-88 (in Chinese with English abstract).
[16] 田露, 刘景辉, 米俊珍, 赵宝平, 李英浩, 张胜, 王凤梧, 焦伟红, 高卿. 缩行配施保水剂对滴灌燕麦群体特征和产量的影响. 麦类作物学报, 2023, 43: 332-342.
Tian L, Liu J H, Mi J Z, Zhao B P, Li Y H, Zhang S, Wang F W, Jiao W H, Gao Q. Effect of combination of row spacing reduction and super absorbent polymercan on population characteristics and yield of oat under drip irrigation. J Triticeae Crops, 2023, 43: 332-342 (in Chinese with English abstract).
[17] Tian L, Liu J H, Zhang S, Zhao B P, Mi J Z, Li Y H, Wang F W. Effects of strip cropping with reducing row spacing and super absorbent polymer on yield and water productivity of oat (Avena sativa L.) under drip irrigation in Inner Mongolia, China. Sci Rep, 2022, 12: 11441.
doi: 10.1038/s41598-022-15418-w pmid: 35794199
[18] 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强. 甘薯耐低钾基因型苗期筛选及综合评价. 作物学报, 2023, 49: 926-937.
doi: 10.3724/SP.J.1006.2023.24080
Liu M, Fan W J, Zhao P, Jin R, Zhang Q Q, Zhu X Y, Wang J, Li Q. Genotypes screening and comprehensive evaluation of sweet- potato tolerant to low potassium stress at seeding stage. Acta Agron Sin, 2023, 49: 926-937 (in Chinese with English abstract).
[19] 邓穗生, 洪彩香. 靛酚蓝比色法测定植物全氮含量方法的改进. 热带农业科学, 2013, 33: 5-7.
Deng S S, Hong C X. Improvement of phenol method for determining total nitrogen in plant. Chin J Trop Agric, 2013, 33: 5-7 (in Chinese with English abstract).
[20] 贾雨薇, 杨瑞林, 张洋, 房娟娟, 陈惠. 一种优化的测定水稻硅含量的方法. 植物学报, 2016, 51: 679-683.
doi: 10.11983/CBB15181
Jia Y W, Yang R L, Zhang Y, Fang J J, Chen H. An optimized method to determine silicon content in rice. Chin Bull Bot, 2016, 51: 679-683 (in Chinese with English abstract).
[21] 薛文芳, 高玉红, 胡亚朋, 崔政军, 王一帆, 剡斌, 晁长艳. 增密扩行对宽幅匀播胡麻抗倒伏能力及籽粒产量的影响. 核农学报, 2024, 38: 149-159.
doi: 10.11869/j.issn.1000-8551.2024.01.0149
Xue W F, Gao Y H, Hu Y P, Cui Z J, Wang Y F, Yan B, Chao C Y. Effect of increasing density and row spacing on lodging resistance and grain yield of oil flax under wide-width uniformed sowing status. J Nucl Agric Sci, 2024, 38: 149-159 (in Chinese with English abstract).
[22] 纪明雪, 张智勇, 齐冰洁, 何竹青, 周子健, 王永聪, 杨超, 隋白婧. 燕麦种质资源抗倒伏及生物学性状的差异评价. 麦类作物学报, 2023, 43: 453-462.
Ji M X, Zhang Z Y, Qi B J, He Z Q, Zhou Z J, Wang Y C, Yang C, Sui B J. Evaluation of lodging resistance and difference of biological characters of oat germplasm resources. J Triticeae Crops, 2023, 43: 453-462 (in Chinese with English abstract).
[23] Irshad A, Maksat B, Khushnuma I. Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density. J Integr Agric, 2023, 22: 417-433.
[24] 南铭, 赵桂琴, 李晶, 柴继宽, 刘彦明. 半干旱区燕麦品种茎秆理化特性及其与抗倒性的关系研究. 草地学报, 2019, 27: 1284-1290.
doi: 10.11733/j.issn.1007-0435.2019.05.022
Nan M, Zhao G Q, Li J, Chai J K, Liu Y M. Research on relationship with physicochemical properties of lodging resistance of different oat varieties in the semi-arid area. Acta Agrest Sin, 2019, 27: 1284-1290 (in Chinese with English abstract).
[25] 梁国玲, 刘文辉, 秦燕, 魏小星, 刘凯强, 杨晶. 不同燕麦资源生物量构成和茎秆特征与倒伏间的相关性研究. 草地学报, 2019, 27: 1339-1346.
doi: 10.11733/j.issn.1007-0435.2019.05.028
Liang G L, Liu W H, Qin Y, Wei X X, Liu K Q, Yang J. Study of correlation between biomass composition, stem traits and lodging in different oats resources. Acta Agrest Sin, 2019, 27: 1339-1346 (in Chinese with English abstract).
[26] 曾凡成, 王建元, 曾赟. 不同播量对鄂麦580产量性状及抗逆性的影响. 湖北农业科学, 2021, 60 (增刊2): 75-76.
Zeng F C, Wang J Y, Zeng Y. Effects of different sowing rates on Emai 580 yield traits and stress resistance. Hubei Agric Sci, 2021, 60 (S2): 75-76 (in Chinese with English abstract).
[27] 张永平, 潘佳楠, 郭占斌, 吴强, 白羽. 不同种植密度对藜麦群体抗倒伏性能及产量的影响. 华北农学报, 2021, 36(4): 108-115.
doi: 10.7668/hbnxb.20191823
Zhang Y P, Pan J N, Guo Z B, Wu Q, Bai Y. The effect of different planting densities on lodging-resistant properties and yield of quinoa. Acta Agric Boreali-Sin, 2021, 36(4): 108-115 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20191823
[28] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响. 作物学报, 2021, 47: 738-751.
doi: 10.3724/SP.J.1006.2021.03044
Zheng Y X, Chen D, Wei P C, Lu P, Yang J Y, Luo S K, Ye K M, Song B. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province. Acta Agron Sin, 2021, 47: 738-751 (in Chinese with English abstract).
[29] 牛海燕, 刘元元, 孔令强, 吕鹏, 刘树震, 冯波. 适当晚播结合增加播量对小麦产量和抗倒性的影响. 山东农业科学, 2021, 53(9): 19-26.
Niu H Y, Liu Y Y, Kong L Q, Lyu P, Liu S Z, Feng B. Effects of suitable late sowing combined with increasing sowing rate on yield and lodging resistance of wheat. Shandong Agric Sci, 2021, 53(9): 19-26 (in Chinese with English abstract).
[30] 赵小红, 白羿雄, 王凯, 姚有华, 姚晓华, 吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响. 作物学报, 2020, 46: 586-595.
doi: 10.3724/SP.J.1006.2020.91038
Zhao X H, Bai Y X, Wang K, Yao Y H, Yao X H, Wu K L. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties. Acta Agron Sin, 2020, 46: 586-595 (in Chinese with English abstract).
[31] Kaack K, Schwarz K U, Brander P E. Variation in morphology, an atomy and chemistry of stems of Miscanthus genotypes differing in mechanical properties. Ind Crops Prod, 2003, 17:131-142.
[32] 袁圆, 汪波, 周广生, 刘芳, 黄俊生, 蒯婕. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54: 1613-1626.
doi: 10.3864/j.issn.0578-1752.2021.08.004
Yuan Y, Wang B, Zhou G S, Liu F, Huang J S, Kuai J. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed. Sci Agric Sin, 2021, 54: 1613-1626 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.08.004
[33] 冯学颖, 米俊珍, 刘景辉, 赵宝平, 王英, 田露, 陈晓晶, 王欣欣. 宽幅条播和种植密度对燕麦抗倒伏性及产量的影响. 麦类作物学报, 2021, 41: 914-920.
Feng X Y, Mi J Z, Liu J H, Zhao B P, Wang Y, Tian L, Chen X J, Wang X X. Effect of wide range drilling and planting density on lodging resistance and yield of oat. J Triticeae Crops, 2021, 41: 914-920 (in Chinese with English abstract).
[34] 康勇建, 赵宝平, 武俊英, 邹俊杰, 刘景辉. 追氮时期对饲用燕麦茎秆理化特性和抗倒性的影响. 草地学报, 2020, 28: 1775-1783.
doi: 10.11733/j.issn.1007-0435.2020.06.034
Kang Y J, Zhao B P, Wu J Y, Zou J J, Liu J H. Effects of different nitrogen topdressing stage on the stalk physical and chemical characteristics and lodging resistance of forage oats. Acta Agrest Sin, 2020, 28: 1775-1783 (in Chinese with English abstract).
[35] Lyubimova A V, Moiseeva M N, Eremin D I. Genetic resistance of cultivated oat and the influence of the mineral nutrition level on stem lodging in Western Siberia. Biol Web Conf, 2022, 51: 04005.
[36] 黄海, 常莹, 吴春胜, 胡文河, 谷岩. 群体密度对玉米茎秆可溶性碳水化合物和矿质元素含量的影响. 西北农林科技大学学报(自然科学版), 2014, 42(2): 53-60.
Huang H, Chang Y, Wu C S, Hu W H, Gu Y. Effects of population density on carbohydrate and mineral element contents in stalk of maize. J Northwest A&F (Nat Sci Edn), 2014, 42(2): 53-60 (in Chinese with English abstract).
[37] 王成雨, 代兴龙, 石玉华, 王振林, 陈晓光, 贺明荣. 氮肥水平和种植密度对冬小麦茎秆抗倒性能的影响. 作物学报, 2012, 38: 121-128.
doi: 10.3724/SP.J.1006.2012.00121
Wang C Y, Dai X L, Shi Y H, Wang Z L, Chen X G, He M R. Effects of nitrogen application rate and plant density on lodging resistance in winter wheat. Acta Agron Sin, 2012, 38: 121-128 (in Chinese with English abstract).
[38] 张晋, 郭翠花, 高志强. 不同密度对小麦花后旗叶和籽粒中可溶性糖含量的影响. 山西农业科学, 2011, 39: 1266-1268.
Zhang J, Guo C H, Gao Z Q. Effects of different densities on the wheat soluble sugar in the flag leaf and grain. J Shanxi Agric Sci, 2011, 39: 1266-1268 (in Chinese with English abstract).
[39] 胡伟, 梁国玲, 刘凯强, 刘文辉, 李文. 青藏高原9个燕麦品种抗倒伏能力及其影响因素研究. 草地学报, 2023, 31: 1788-1797.
doi: 10.11733/j.issn.1007-0435.2023.06.022
[1] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[2] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[3] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[4] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[5] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[6] ZHANG Gui-Qin, WANG Hong-Zhang, GUO Xin-Song, ZHU Fu-Jun, GAO Han, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Peng, REN Hao. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(9): 2323-2334.
[7] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[8] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[9] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[10] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[11] CAO Zi-Qi, ZHAO Xiao-Qing, ZHANG Xiang-Qian, WANG Jian-Guo, LI Juan, HAN Yun-Fei, LIU Dan, GAO Yan-Hua, LU Zhan-Yuan, REN Yong-Feng. Effects of nitrogen application levels on the accumulation, distribution of nitrogen, phosphorus and potassium, and the corresponding yield of Cyperus esculentus in sandy soil [J]. Acta Agronomica Sinica, 2024, 50(7): 1805-1817.
[12] HAN Xiao-Chen, ZHANG Gui-Qin, WANG Ya-Hui, REN Hao, WANG Hong-Zhang, LIU Guo-Li, LIN Dian-Xu, WANG Zi-Qiang, ZHANG Ji-Wang, ZHAO Bin, REN Bao-Zhao, LIU Peng. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(7): 1776-1786.
[13] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[14] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[15] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!