Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (11): 2848-2859.doi: 10.3724/SP.J.1006.2024.43003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen fertilizer reduction on water use characteristics of silage maize leguminous forage intercropping system

SANG Hui-Zhe(), WANG Chao, FAN Zhi-Long, YIN Wen, FAN Hong, HE Wei, HU Fa-Long(), CHAI Qiang()   

  1. Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-01-11 Accepted:2024-06-20 Online:2024-11-12 Published:2024-07-10
  • Contact: *E-mail: hufl@gsau.edu.cn; E-mail: chaiq@gsau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD1900200);National Natural Science Foundation of China(U21A20218);“Double First-Class” Key Scientific Research Project of Education Department in Gansu Province(GSSYLXM-02)

Abstract:

Aiming at the problems of high nitrogen fertilizer input and low water use efficiency of silage maize in the Hexi oasis irrigation region, the study explored the effects of intercropping leguminous forage on silage maize yield and water consumption characteristics under nitrogen reduction conditions, so as to provide practical basis and theoretical support for the technology of highly efficient use of water of silage maize. The experiment was carried out at Wuwei Oasis Agricultural Experimental Station during 2022-2023, with three cropping patterns (M: silage maize monoculture; MH: silage maize-fodder soybean intercropping; ML: silage maize-laba bean intercropping) and four N application rates (N3: 360 kg hm-2; N2: 306 kg hm-2; N1: 252 kg hm-2; N0: 0 kg hm-2). The results showed that the dry matter accumulation of silage maize and legume forage was significantly higher in N1 treatment compared with N3 under both mixing modes, by 10.0% and 20.5% under the MH mode, and by 16.5% and 28.8% under the ML mode, respectively. The difference between forage yield of the N1 treatment and that of the N3 under the MH mode was not significant, but it increased by 22.4% under the ML mode compared with that of the N3 mode, and forage yield of the ML mode increased by 12.3% under the N1 level compared with that of the ML mode. N1 level was 12.3% higher than that of MH mode. The introduction of legume forage could reduce the soil evaporation of intercropping system, and the soil evaporation of MH and ML modes was 23.5% and 30.0% lower than that of M mode with the same level of nitrogen application at N1 level, but the differences in the soil evaporation of the two modes between different nitrogen application treatments were not significant. Silage maize intercropped with lablab bean combined with a 30% reduction in N fertilizer reduced the evapotranspiration ratio by 23.0% compared with the same N application level of the M model. Intercropping legume forage improved water use efficiency, and water use efficiency of MH and ML modes increased by 43.3%, 29.5%, 17.9% and 51.9%, 30.2%, 21.2% at N1, N2, and N3 levels, respectively, compared with M mode. Among them, the MLN1 treatment showed the greatest improvement, with a 52.4% increase in water use efficiency over the MN3 treatment. Therefore, silage maize intercropped with leguminous forage combined with nitrogen application rate at 252 kg hm-2 can reduce evaporation, improve forage yield and water productivity, which was suitable planting pattern and nitrogen application rate for silage maize production in oasis irrigation areas.

Key words: intercropping, nitrogen application, water use efficiency, silage maize, leguminous forage

Fig. 1

Average temperature and precipitation of Wuwei experimental station"

Fig. 2

Dynamics of dry matter accumulation of silage maize during the whole growth period M, MH, ML represent silage maize monoculture, silage maize fodder soybean intercropping, and silage maize lablab bean intercropping, respectively; N3, N2, N1, N0 represent the traditional N application (360 kg hm-2), 15% reduction of traditional N application (306 kg hm-2), 30% reduction of traditional N application (252 kg hm-2), and no N application (0 kg hm-2). C denotes the planting pattern, N denotes the nitrogen application level, and C×N denotes the interaction between the planting pattern and the nitrogen application level. *: P < 0.05; **: P < 0.01."

Fig. 3

Dynamics of dry matter accumulation of leguminous crops the whole growth period H and L represent fodder soybean and lablab bean, respectively. Treatments are the same as those given in Fig. 2. C denotes the planting pattern, N denotes the nitrogen application level, and C×N denotes the interaction between the planting pattern and the nitrogen application level. *: P < 0.05; **: P < 0.01."

Fig. 4

Forage yield with different cropping systems and various N application rates Treatments are the same as those given in Fig. 2. Different letters denote significant differences between treatments at the 0.05 probability level. C denotes the cropping pattern effect, N denotes the N application rate effect, and C×N denotes the interaction effect between cropping pattern and the N application rate. * denotes P < 0.05 and ** denotes P < 0.01."

Fig. 5

Total soil evaporation with different cropping patterns and various N application rates Treatments are the same as those given in Fig. 2. Different letters denote significant differences between treatments at the 0.05 probability level. C denotes the cropping pattern effect, N denotes the N application rate effect, and C×N denotes the interaction effect between cropping pattern and the N application rate. * denotes P < 0.05 and ** denotes P < 0.01."

Table 1

Soil water storage and water consumption during the whole growth period under different cropping patterns and various N application rates"

处理
Treatment
播种前贮水量
SWS before sowing (mm)
收获后贮水量
SWS after harvesting (mm)
全生育期耗水量
ET for entire growth period (mm)
2022 2023 2022 2023 2022 2023
种植模式 Cropping pattern
M 378.5 a 365.3 a 351.5 a 395.3 b 542.0 a 422.6 a
MH 379.3 a 367.5 a 350.3 a 390.1 b 544.2 a 430.0 a
ML 384.3 a 385.9 a 346.3 a 415.8 a 553.3 a 422.7 a
施氮水平 N application rate
N3 387.5 a 379.1 a 336.8 a 395.3 a 565.7 a 436.4 a
N2 375.9 a 371.2 a 346.9 a 406.4 a 544.0 a 417.4 a
N1 378.4 a 370.3 a 342.2 a 394.6 a 551.2 a 428.3 a
N0 381.0 a 371.1 a 361.6 a 405.5 a 534.4 a 418.2 a
显著性(P-value)
种植模式Cropping pattern (C) NS NS NS NS NS NS
施氮水平N application rate (N) NS NS NS NS NS NS
种植模式×施氮水平 C×N NS NS NS NS NS NS

Fig. 6

Evaporation to evapotranspiration ratio with different cropping patterns and various N application rates Treatments are the same as those given in Fig. 2. Different letters denotes significant differences between treatments at the 0.05 probability level. C denotes the cropping pattern effect, N denote the N application rate effect, and C×N denotes the interaction effect between cropping pattern and the N application rate. * denotes P < 0.05 and ** denotes P < 0.01."

Fig. 7

Crop water use efficiency with different cropping patterns and various N application rates Treatments are the same as those given in Fig. 2. Different letters denote significant differences between treatments at the 0.05 probability level. C denotes the cropping pattern effect, N denotes the N application rate effect, and C×N denotes the interaction effect between cropping pattern and the N application rate. * denotes P < 0.05 and ** denotes P < 0.01."

[1] Huang J, Pray C, Rozelle S. Enhancing the crops to feed the poor. Nature, 2002, 418: 678-684.
[2] Cao J J, Xu J X, Zhao Y F. Research on agricultural water resource shortage under the background of rapid industrialization and urbanization—for the example of Shandong province. Adv Mater Res, 2012, 518-523: 4935-4940.
[3] 王浩, 汪林, 杨贵羽, 贾玲, 姚懿真, 张瑀桐. 我国农业水资源形势与高效利用战略举措. 中国工程科学, 2018, 20(5): 9-15.
doi: 10.15302/J-SSCAE-2018.05.002
Wang H, Wang L, Yang G Y, Jia L, Yao Y Z, Zhang Y T. Agricultural water resource in China and strategic measures for its efficient utilization. Strat Stud CAE, 2018, 20(5): 9-15 (in Chinese with English abstract).
[4] 张德闪, 李洪波, 申建波. 集约化互作体系植物根系高效获取土壤养分的策略与机制. 植物营养与肥料学报, 2017, 23: 1547-1555.
Zhang D S, Li H B, Shen J B. Strategies for root’s foraging and acquiring soil nutrient in high efficiency under intensive cropping systems. J Plant Nutr Fert, 2017, 23: 1547-1555 (in Chinese with English abstract).
[5] 滕园园, 赵财, 柴强, 胡发龙, 冯福学. 氮肥后移对玉米间作豌豆耗水特性的调控效应. 作物学报, 2016, 42: 446-455.
doi: 10.3724/SP.J.1006.2016.00446
Teng Y Y, Zhao C, Chai Q, Hu F L, Feng F X. Effects of postponing nitrogen topdressing on water use characteristics of maize-pea intercropping system. Acta Agron Sin, 2016, 42: 446-455 (in Chinese with English abstract).
[6] 谢开云, 赵云, 李向林, 何峰, 万里强, 王丹, 韩冬梅. 豆-禾混播草地种间关系研究进展. 草业学报, 2013, 22: 284-296.
doi: 10.11686/cyxb20130337
Xie K Y, Zhao Y, Li X L, He F, Wan L Q, Wang D, Han D M. Relationships between grasses and legumes in mixed grassland: a review. Acta Pratac Sin, 2013, 22: 284-296 (in Chinese with English abstract).
[7] 杨滨娟, 李新梅, 胡启良, 刘宁, 黄国勤. 长江中游不同复种轮作模式的资源利用率及综合效益比较. 中国生态农业学报(中英文), 2022, 30: 1501-1510.
Yang B J, Li X M, Hu Q L, Liu N, Huang G Q. Comparison of resource utilization efficiency and comprehensive benefits among different multiple cropping rotation patterns in the middle reaches of Yangtze River. Chin J Eco-Agric, 2022, 30: 1501-1510 (in Chinese with English abstract).
[8] 受娜, 高玮, 沈禹颖, 杨宪龙. 不同施氮量对青贮玉米产量及水分利用效率的影响. 草业科学, 2021, 38: 1351-1361.
Shou N, Gao W, Shen Y Y, Yang X L. Effects of different nitrogen application rates on yield and water use efficiency of silage maize. Pratac Sci, 2021, 38: 1351-1361 (in Chinese with English abstract).
[9] 毛培胜, 欧成明, 贾志程, 洪流, 马馼. 我国牧草与草坪草种子生产技术的研究进展. 中国草地学报, 2023, 45(1): 1-11.
Mao P S, Ou C M, Jia Z C, Hong L, Ma W. Research progress for seed production technology of herbage and turfgrass in China. Chin J Grassland, 2023, 45(1): 1-11 (in Chinese with English abstract).
[10] 王斌, 董秀, 李满有, 杨雨琦, 兰剑. 不同播量拉巴豆与青贮玉米混播对草地生产性能及牧草品质的影响. 草地学报, 2021, 29: 828-834.
doi: 10.11733/j.issn.1007-0435.2021.04.025
Wang B, Dong X, Li M Y, Yang Y Q, Lan J. Effects of mixed planting of Dolichos lablab with different sowing rates and silage corn on grassland productivity and forage quality. Acta Agrest Sin, 2021, 29: 828-834 (in Chinese with English abstract).
[11] 李文娆, 李永竞, 冯士珍. 不同施氮量和分施比例对棉花幼苗生长和水分利用效率的影响及其根源ABA调控效应. 生态学报, 2017, 37: 6712-6723.
Li W R, Li Y J, Feng S Z. Regulation of root-sourced ABA to growth and water use efficiency of cotton seedlings and their response to different nitrogen levels and distribution ratios. Acta Ecol Sin, 2017, 37: 6712-6723 (in Chinese with English abstract).
[12] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36: 1226-1233.
doi: 10.3724/SP.J.1006.2010.01226
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010, 36: 1226-1233 (in Chinese with English abstract).
[13] 刘景辉, 曾昭海, 焦立新, 胡跃高, 王莹, 李海. 不同青贮玉米品种与紫花苜蓿的间作效应. 作物学报, 2006, 32: 125-130.
Liu J H, Zeng Z H, Jiao L X, Hu Y G, Wang Y, Li H. Intercropping of different silage maize cultivars and alfalfa. Acta Agron Sin, 2006, 32: 125-130 (in Chinese with English abstract).
[14] 高飞, 高洪雷, 王丽霁, 李红影, 焉石, 崔国文. 不同成熟期青贮玉米混播对产量和品质的影响. 草地学报, 2009, 17: 490-494.
doi: 10.11733/j.issn.1007-0435.2009.04.015
Gao F, Gao H L, Wang L J, Li H Y, Yan S, Cui G W. Effects of mixed planting silage corn with different maturation period on yield and feed value. Acta Agrest Sin, 2009, 17: 490-494 (in Chinese with English abstract).
[15] 宋日, 牟瑛, 王玉兰, 吴春胜, 郭继勋. 玉米、大豆间作对两种作物根系形态特征的影响. 东北师大学报(自然科学版), 2002, 34(3): 83-86.
Song R, Mu Y, Wang Y L, Wu C S, Guo J X. Effect of intercropping of maize and soybean on the morphological character of roots. J Northeast Nor Univ (Nat Sci Edn), 2002, 34(3): 83-86 (in Chinese with English abstract).
[16] 柯梅, 朱昊, 梁维维, 李学森, 任玉平. 苏丹草农艺性状与产量、品质间的灰色关联度分析. 草业科学, 2016, 33: 949-955.
Ke M, Zhu H, Liang W W, Li X S, Ren Y P. Grey correlation analysis of main agronomic characters and its yield and quality traits in Sorghum sudanense. Pratac Sci, 2016, 33: 949-955 (in Chinese with English abstract).
[17] 马超然, 何树斌, 白雪纯, 王涛, 张君红, 冯魁亮, 夏宇康. 套种紫花苜蓿对玉米根际土壤碳、氮、磷及真菌群落的影响. 草业科学, 2020, 37: 20-29.
Ma C R, He S B, Bai X C, Wang T, Zhang J H, Feng K L, Xia Y K. Effects of alfalfa intercropping on soil carbon, nitrogen, and phosphorus and the fungal community in the rhizosphere of soils in silage maize. Pratac Sci, 2020, 37: 20-29 (in Chinese with English abstract).
[18] 赵雅姣, 刘晓静, 童长春, 吴勇. 紫花苜蓿/玉米间作对紫花苜蓿结瘤固氮特性的影响. 草业学报, 2020, 29(1): 95-105.
doi: 10.11686/cyxb2019383
Zhao Y J, Liu X J, Tong C C, Wu Y. Factors influencing nodulation and N fixation ability of alfalfa in a simulated alfalfa/maize intercropping system. Acta Pratac Sin, 2020, 29(1): 95-105 (in Chinese with English abstract).
[19] 董志晓, 何润濠, 况鉴洋, 聂聪, 杨建, 苟文龙, 马啸. 成都平原青贮玉米间作拉巴豆对混合饲草产量及品质的影响. 草业科学, 2021, 38: 1587-1595.
Dong Z X, He R H, Kuang J Y, Nie C, Yang J, Gou W L, Ma X. Effects of intercropping Dolichos lablab with silage maize on the yield and quality of mixed forage in the Chengdu Plain, China. Pratac Sci, 2021, 38: 1587-1595 (in Chinese with English abstract).
[20] 史文娟, 董召荣, 汪本忠, 戴明伙, 连亚楠, 方玉, 姚佐文. 施氮对江淮地区饲用玉米产量形成的调控研究. 中国生态农业学报, 2010, 18: 674-676.
Shi W J, Dong Z R, Wang B Z, Dai M H, Lian Y N, Fang Y, Yao Z W. Regulating effect of nitrogen application on yield formation of forage maize in the Jianghuai area. Chin J Eco-Agric, 2010, 18: 674-676 (in Chinese with English abstract).
[21] 杜斌, 郭兴臻, 王延良, 王思涛. 施氮量对玉米干物质重、产量和经济效益的影响. 农业科技通讯, 2015, (10): 47-49.
Du B, Guo X Z, Wang Y L, Wang S T. Effect of nitrogen application on dry matter weight, yield and economic efficiency of maize. Bull Agric Sci Technol, 2015, (10): 47-49 (in Chinese).
[22] 李双双, 李晶, 陈龙涛, 付驰, 顾万荣, 魏湜. 施氮量对春小麦根系生长及产量的影响. 麦类作物学报, 2013, 33: 141-145.
Li S S, Li J, Chen L T, Fu C, Gu W R, Wei S. Effects of nitrogen application rate on root growth and yield formation of spring wheat. J Triticeae Crops, 2013, 33: 141-145 (in Chinese with English abstract).
[23] Jia Q M, Yang L Y, An H Y, Dong S, Chang S, Zhang C, Liu Y J, Hou F J. Nitrogen fertilization and planting models regulate maize productivity, nitrate and root distributions in semi-arid regions. Soil Tillage Res, 2020, 200: 104636.
[24] 肖焱波, 李隆, 张福锁. 豆科//禾本科间作系统中氮营养研究进展. 中国农业科技导报, 2003, 5(6): 44-49.
Xiao Y B, Li L, Zhang F S. An outlook of the complementary nitrogen nutrition in the legume-gram inaceae system. J Agric Sci Technol, 2003, 5(6): 44-49 (in Chinese with English abstract).
[25] 王晓维, 杨文亭, 缪建群, 徐健程, 万进荣, 聂亚平, 黄国勤. 玉米-大豆间作和施氮对玉米产量及农艺性状的影响. 生态学报, 2014, 34: 5275-5282.
Wang X W, Yang W T, Miao J Q, Xu J C, Wan J R, Nie Y P, Huang G Q. Effects of maize-soybean intercropping and nitrogen fertilizer on yield and agronomic traits of maize. Acta Ecol Sin, 2014, 34: 5275-5282 (in Chinese with English abstract).
[26] Chu G X, Shen Q R, Cao J L. Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in an intercropping system and its effect on soil N fertility. Plant Soil, 2004, 263: 17-27.
[27] Yin W, Feng F X, Zhao C, Yu A Z, Hu F L, Chai Q, Gan Y T, Guo Y. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments. Int J Biometeorol, 2016, 60: 1423-1437.
doi: 10.1007/s00484-016-1134-y pmid: 26813883
[28] 彭正凯, 李玲玲, 谢军红, 邓超超, Essel E, 王进斌, 颉健辉, 沈吉成, 康彩睿. 不同耕作措施对旱地作物生育期农田耗水结构和水分利用效率的影响. 水土保持学报, 2018(5), 32: 214-221.
Peng Z K, Li L L, Xie J H, Deng C C, Essel E, Wang J B, Xie J H, Shen J C, Kang C R. Effects of different tillage practices on water consumption structure and water use efficiency during crop growth period in arid farmland. J Soil Water Conserv, 2018, 32: 214-221 (in Chinese with English abstract).
[29] 曹永刚, 徐龙龙, 柴强, 胡发龙, 殷文, 樊志龙, 王琦明, 赵财. 水氮减量条件下地膜玉米免耕轮作小麦的水分利用特征. 中国农业科学, 2023, 56: 2660-2672.
doi: 10.3864/j.issn.0578-1752.2023.14.003
Cao Y G, Xu L L, Chai Q, Hu F L, Yin W, Fan Z L, Wang Q M, Zhao C. Water use characteristics of wheat rotated after no tillage plastic film mulching maize with reduced water and nitrogen. Sci Agric Sin, 2023, 56: 2660-2672 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.14.003
[30] 柴强, 于爱忠, 陈桂平, 黄鹏. 单作与间作的棵间蒸发量差异及其主要影响因子. 中国生态农业学报, 2011, 19: 1307-1312.
Chai Q, Yu A Z, Chen G P, Huang P. Soil evaporation under sole cropping and intercropping systems and the main driving factors. Chin J Eco-Agric, 2011, 19: 1307-1312 (in Chinese with English abstract).
[31] 艾鹏睿, 马英杰, 马亮. 干旱区滴灌枣棉间作模式下枣树棵间蒸发的变化规律. 生态学报, 2018, 38: 4761-4769.
Ai P R, Ma Y J, Ma L. Study on evaporation variation of jujube trees under drip irrigation of jujube and cotton intercropping in an arid area. Acta Ecol Sin, 2018, 38: 4761-4769 (in Chinese with English abstract).
[32] 赵洋, 赵怀勇, 张红菊, 柴强. 荒漠绿洲区间作和密植对作物产量和水分利用效率的影响. 中国沙漠, 2016, 36: 681-687.
doi: 10.7522/j.issn.1000-694X.2016.00035
Zhao Y, Zhao H Y, Zhang H J, Chai Q. Crop yield and WUE under intercropping and high-planting density system in desert oasis region. J Desert Res, 2016, 36: 681-687 (in Chinese with English abstract).
doi: 10.7522/j.issn.1000-694X.2016.00035
[33] 胡发龙, 柴强, 殷文. 少耕秸秆覆盖对小麦间作玉米棵间蒸发的影响研究. 农业现代化研究, 2013, 34: 754-757.
Hu F L, Chai Q, Yin W. Effect of stubble mulching and reduced tillage on soil evaporation in wheat-maize intercropping. Res Agric Modern, 2013, 34: 754-757 (in Chinese with English abstract).
[34] 俞霞, 肖世豪, 李淑娟, 杨文亭, 黄国勤. 禾本科-豆科间作模式中作物产量和氮素利用的研究进展. 生态学杂志, 2021, 40: 2601-2609.
Yu X, Xiao S H, Li S J, Yang W T, Huang G Q. Review on crop yield and nitrogen utilization in cereal-legume intercropping system. Chin J Ecol, 2021, 40: 2601-2609 (in Chinese with English abstract).
doi: DOI: 10.13292/j.1000-4890.202108.027
[35] 张凤云, 吴普特, 赵西宁, 成雪峰. 间套作提高农田水分利用效率的节水机理. 应用生态学报, 2012, 23: 1400-1406.
Zhang F Y, Wu P T, Zhao X N, Cheng X F. Water-saving mechanisms of intercropping system in improving cropland water use efficiency. Chin J Appl Ecol, 2012, 23: 1400-1406 (in Chinese with English abstract).
[36] Guo R, Qian R, Yang L, Khaliq A, Han F, Hussain S, Zhang P, Cai T, Jia Z K, Chen X L, Ren X L. Interactive effects of maize straw-derived biochar and N fertilization on soil bulk density and porosity, maize productivity and nitrogen use efficiency in arid areas. J Soil Sci Plant Nutr, 2022, 22: 4566-4586.
[37] 石超, 邢毅, 冯军, 周泉, 王龙昌, 武海燕, 冉泰霖, 向信华. 减氮增密对西南丘陵区旱地直播油菜根系发育及水分利用的影响. 干旱地区农业研究, 2021, 39(1): 9-17.
Shi C, Xing Y, Feng J, Zhou Q, Wang L C, Wu H Y, Ran T L, Xiang X H. Effects of dense planting with less nitrogen fertilizer on root system development and water use efficiency of direct-sowed rapeseed in hilly dryland area in southwest of China. Agric Res Arid Areas, 2021, 39(1): 9-17 (in Chinese with English abstract).
[38] Duan Y H, Xu M G, Gao S D, Yang X Y, Huang S M, Liu H B, Wang B R. Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications. Field Crops Res, 2014, 157: 47-56.
[39] 王宁, 刘玉春, 姜长松, 赵晗, 王遥, 赵光耀. 不同灌水方式和施肥量对青贮玉米生长和产量的影响. 中国农村水利水电, 2020, (5): 4-9.
Wang N, Liu Y C, Jiang C S, Zhao H, Wang Y, Zhao G Y. Effects of different irrigation methods and fertilization amount on growth and yield of silage corn. China Rural Water Hydrop, 2020, (5): 4-9 (in Chinese with English abstract).
[40] 魏正业, 张海星, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 种植方式与施氮对西北旱区饲草作物产量、品质和水分利用的影响. 作物学报, 2022, 48: 2638-2653.
doi: 10.3724/SP.J.1006.2022.13053
Wei Z Y, Zhang H X, Shi W, Chang S H, Zhang C, Jia Q M, Hou F J. Effects of planting methods and nitrogen application on forage crop yield, quality and water use in arid area of northwest China. Acta Agron Sin, 2022, 48: 2638-2653 (in Chinese with English abstract).
[41] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 秸秆还田配施氮肥对土壤性质及玉米水氮利用效率的影响. 作物学报, 2023, 49: 2820-2832.
Li R, Mian Y M, Hou X Q, Li P F, Wang X N. Effects of straw returning with nitrogen application on soil properties, water and nitrogen use efficiency of maize. Acta Agron Sin, 2023, 49: 2820-2832 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.23065
[1] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[2] YAN Fei-Long, ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, YU Zhen-Wen. Effect of nitrogen application on water consumption characteristics and grain yield of winter wheat under wide width sowing [J]. Acta Agronomica Sinica, 2024, 50(8): 2014-2024.
[3] TANG Qing-Yun, YANG Jing-Jing, ZHAO Lei, SONG Zhi-Wen, WANG Guo-Dong, LI Yu-Xiang. Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots [J]. Acta Agronomica Sinica, 2024, 50(6): 1540-1553.
[4] LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao-Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311.
[5] WANG Yong-Liang, XU Zi-Hang, LI Shen, LIANG Zhe-Ming, BAI Ju, YANG Zhi-Ping. Effects of different mulching measures on moisture and temperature of soil and yield and water use efficiency of spring maize [J]. Acta Agronomica Sinica, 2024, 50(5): 1312-1324.
[6] LIU Cheng-Min, MEN Ya-Qi, QIN Du-Lin, YAN Xiao-Yu, ZHANG Le, MENG Hao, SU Xun-Ya, SUN Xue-Zhen, SONG Xian-Liang, MAO Li-Li. Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field [J]. Acta Agronomica Sinica, 2024, 50(4): 1043-1052.
[7] WU Yu, LIU Lei, CUI Ke-Hui, QI Xiao-Li, HUANG Jian-Liang, PENG Shao-Bing. Changes of root characteristics of super hybrid rice variety contributing to high nitrogen accumulation under low nitrogen application at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(2): 414-424.
[8] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[9] WANG Cheng, MA Yang-Ming, WANG Chun-Yu, LI Zhi-Xin, LUO Jiang-Sheng, PENG Zheng-Lan, LIU Rui-Hong-Ji, HUANG Xing-Hai, CAO Yun, PENG Zheng-Bo, MA Jun. Effects of cropping practices and nitrogen application on nutrient uptake characteristics and root vigor of hybrid indica rice [J]. Acta Agronomica Sinica, 2024, 50(12): 3069-3082.
[10] KANG Xiu-Li, MA Ai-Ping, JING Hua, ZHAO Yu-Kun, CUI Huan-Hu, XI Ji-Long, HUANG Xue-Fang. Effects of micro-sprinkling limited irrigation on winter wheat yield, water and nitrogen use efficiency [J]. Acta Agronomica Sinica, 2024, 50(12): 3107-3117.
[11] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[12] YUAN Xiao-Ting, WANG Tian, LUO Kai, LIU Shan-Shan, PENG Xin-Yue, YANG Li-Da, PU Tian, WANG Xiao-Chun, YANG Wen-Yu, YONG Tai-Wen. Effects of bandwidth and plant spacing on biomass accumulation and allocation and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 161-171.
[13] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[14] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[15] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!