Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (11): 2860-2869.doi: 10.3724/SP.J.1006.2024.44005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Spatial distribution of cultivation suitable area for Panax notoginseng and its response to climate change

WANG Lu1(), ZHAO Jiong-Chao1, WANG Yi-Xuan1, MI Yan-Hua2, ZHANG Ning-Yi1, ZHAO Ming-Yu1, CHU Qing-Quan1,*()   

  1. 1College of Agronomy, China Agricultural University, Beijing 100193, China
    2Institute of Agricultural Quality Standard & Testing Technique, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
  • Received:2024-01-07 Accepted:2024-06-20 Online:2024-11-12 Published:2024-07-17
  • Contact: *E-mail: cauchu@cau.edu.cn
  • Supported by:
    Major Science and Technology Projects in Yunnan Province(202202AE090029);College Students Innovation and Training Project of China Agricultural University(X2022100190356)

Abstract:

Understanding the dynamic spatiotemporal changes in suitable cultivation areas for Panax notoginseng in Yunnan province amid climate change is crucial for guiding its introduction, cultivation, and large-scale industrial development. Utilizing 131 geographical distribution data points of Panax notoginseng in Yunnan province and 15 environmental variables, we employed the MaxEnt model to analyze the primary factors influencing its distribution and to delineate the suitable cultivation areas and their variations from 1961 to 2020. Our analysis identified key factors, including mean daily temperature range (<10.0℃), the number of days with maximum temperature ≥ 33℃ (<5 days), aspect (north-facing slopes), annual accumulation temperature ≥ 10℃ (4708.0-5331.9 ℃ d), annual sunshine duration (1636.7-1963.3 h), and seasonal variation in precipitation (92%-96%). Suitable cultivation areas for Panax notoginseng were primarily concentrated in southeastern Yunnan Province, encompassing Wenshan, Honghe, Kunming, Yuxi, and Qujing, comprising approximately 4.8% of the entire province. Our findings indicate that climate change from 1961 to 2020 has led to an 18.1% expansion in suitable areas for Panax notoginseng cultivation across Yunnan province. Moreover, over the past six decades, there has been a noticeable northward expansion of the optimal boundary for Panax notoginseng, accompanied by an overall improvement in its suitability amid climate fluctuations. This study provides a theoretical framework and technical support for devising a rational industrial layoutfor Panax notoginseng in Yunnan province, thereby mitigating the potential risks posed by climate change to its production and facilitating the effective management and utilization of agricultural land resources.

Key words: Panax notoginseng, MaxEnt model, climate change, dominant factors, cultivation suitability

Fig. 1

Spatial distribution of meteorological stations and Panax notoginseng in Yunnan province This map is based on the standard map downloaded from the National Platform for Common Geospatial Information Services with the approval number GS (2024) 0650. The boundary of the base map is not modified."

Table 1

Environmental variables that affected Panax notoginseng distribution and its contribution"

分类
Type
名称
Description
贡献率
Contribution
参考文献
References
气候
Climate factor
平均气温日较差Mean of daily temperature range (℃) 41.8 [25]
最高气温≥33℃天数Number of days with maximum temperature ≥33℃ (d) 11.4 [23]
年日照时数Annual sunshine duration (h) 6.1 [24]
降水季节性差异Seasonal differences in precipitation (%) 5.8 [25]
4-6月累积降水量Accumulation precipitation from April to June (mm) 4.9 [24]
≥10℃年积温 ≥10℃ annual accumulation temperature (℃ d) 9.2 [24]
土壤
Soil factor
酸碱度pH 0.1 [30-32]
含沙量Percentage sand (%) 1.2
含黏量Percentage clay (%) 1.8
有机碳含量Percentage of organic carbon (%) 1.0
阳离子交换量Cation exchange capacity (cmol kg-1) 0.2
容重Bulk density (kg m-3) 0.3
地形
Topographic
factor
海拔Elevation (m) 5.5 [25]
坡向Aspect 10.5
坡度Slope (°) 0.2

Fig. 2

Receiver operating characteristic curve of modeling the cultivation suitability of Panax notoginseng based on Maxent"

Fig. 3

Jackknife test of environmental variables that affected Panax notoginseng distribution pH: Topsoil pH; BD: bulk density; Dem: elevation; Aspect: aspect; Slope: slope; Sand: percentage sand; Clay: percentage clay; Y_ST: annual sunshine duration; SOC: percentage of organic carbon; P_M4_6: accumulation precipitation from April to June; CEC: cation exchange capacity; ACT10: ≥10℃ annual accumulation temperature; PMCV: seasonal differences in precipitation; DTD: the Mean of daily temperature range; Day33: the number of days with maximum temperature ≥33℃."

Table 2

Thresholds of environmental factor for different suitability of Panax notoginseng"

分类
Classification
平均气温日较差
Mean of daily temperature range
(℃)
最高气温≥33℃天数
Number of days with maximum temperature ≥33℃ (d)
坡向
Aspect
(°)
≥10℃年积温
≥10℃ annual
accumulation temperature
(℃ d)
年日照时数
Annual
sunshine
duration (h)
降水季节性差异
Seasonal differences
in precipitation
(%)
最适宜 Optimum <10.0 <5.8 <3.4 4708.0-5331.9 1636.7-1963.3 92-96
适宜Suitable <10.3 5.8-6.1 <5.0 4689.1-6239.5 1433.3-2116.7 87-98
次适宜Less suitable <10.9 6.1-36.3 <10.0 4235.3-6258.4 <2156.7 <100
不适宜 Unsuitable >10.9 >36.3 >10.0 <4235.3, >6258.4 >2156.7

Fig. 4

Spatial and temporal distribution of cultivation suitable areas for Panax notoginseng from 1961 to 2020 This map is based on the standard map downloaded from the National Platform for Common Geospatial Information Services with the approval number GS (2024) 0650. The boundary of the base map is not modified. a: 1961-1970; b: 1971-1980; c: 1981-1990; d: 1991-2000; e: 2001-2010; f: 2011-2020."

Fig. 5

Response of the cultivation suitability of Panax notoginseng to climate change in Yunnan province This map is based on the standard map downloaded from the National Platform for Common Geospatial Information Services with the approval number GS (2024) 0650. The boundary of the base map is not modified. a: 1961-1990; b: 1991-2020; c: 1961-2020."

[1] 刘立红, 刘英, 王芬, 刘石磊, 胡会泽, 张文生, 辛文锋. 云南三七产业发展现状及发展建议. 中国现代中药, 2017, 19: 1331-1335.
Liu L H, Liu Y, Wang F, Liu S L, Hu H Z, Zhang W S, Xin W F. The current development situation and suggestion of Panax notoginseng in Yunnan province. Mod Chin Med, 2017, 19: 1331-1335 (in Chinese with English abstract).
[2] 梁晓莲, 刘纤纤, 李文莉, 陈勇, 黄周艳, 刘玟君. 三七总皂苷药理作用及临床应用研究进展. 湖北农业科学, 2021, 60(6): 15-19.
Liang X L, Liu Q Q, Li W L, Chen Y, Huang Z Y, Liu W J. Research progress in pharmacological effects and clinical applications of Panax notoginseng saponins. Hubei Agric Sci, 2021, 60(6): 15-19 (in Chinese with English abstract).
[3] 詹鹏, 韦美膛, 徐波, 韩蕊莲. 基于产业链的我国三七产业发展现状与对策. 北方园艺, 2021, (14): 158-164.
Zhan P, Wei M T, Xu B, Han R L. Research on the development status and countermeasures of China’s Panax notoginseng industry based on the industrial chain. North Hortic, 2021, (14): 158-164 (in Chinese with English abstract).
[4] 云南省中药材产业发展报告.云南农业, 2018, (9): 30-34.
Yunnan province Chinese herbal medicine industry development report. Yunnan Agric, 2018, (9): 30-34 (in Chinese).
[5] 王艳芳, 李戈, 唐玲, 李荣英, 杨春勇. 三七在西双版纳引种适应性试验初报. 中国农学通报, 2013, 29(25): 136-141.
Wang Y F, Li G, Tang L, Li R Y, Yang C Y. Preliminary research on introduction and cultivation adaptability of Panax notoginseng in Xishuangbanna. Chin Agric Sci Bull, 2013, 29(25): 136-141 (in Chinese with English abstract).
[6] Hannah L, Roehrdanz P R, Ikegami M, Shepard A V, Shaw M R, Tabor G, Zhi L, Marquet P A, Hijmans R J. Climate change, wine, and conservation. Proc Natl Acad Sci USA, 2013, 110: 6907-6912.
doi: 10.1073/pnas.1210127110 pmid: 23569231
[7] Hood A, Cechet B, Hossain H, Sheffield K. Options for Victorian agriculture in a “new” climate: pilot study linking climate change and land suitability modelling. Environ Model Softw, 2006, 21: 1280-1289.
[8] Zhang J Q, Su Y R, Wu J S, Liang H B. GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong province of China. Comput Electron Agric, 2015, 114: 202-211.
[9] Fielding A H, Bell J F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv, 1997, 24: 38-49.
[10] 韩湘玲. 作物生态学. 北京: 气象出版社, 1991. pp 35-50.
Han X L. Crop Ecology. Beijing: China Meteorological Press, 1991. pp 35-50 (in Chinese).
[11] Li J B, Bao Y L, Wang Z R, Yang Q, Cui X M. Research progress in diseases of Panax notoginseng. Physiol Mol Plant Pathol 2022, 121: 101878.
[12] Zhao J C, Wang C, Shi X Y, Bo X Z, Li S, Shang M F, Chen F, Chu Q Q. Modeling climatically suitable areas for soybean and their shifts across China. Agric Syst, 2021, 192: 103205.
[13] Shi X Y, Wang C, Zhao J C, Wang K C, Chen F, Chu Q Q. Increasing inconsistency between climate suitability and production of cotton (Gossypium hirsutum L.) in China. Ind Crops Prod, 2021, 171: 113959.
[14] 薄晓智, 石晓宇, 赵炯超, 林倩, 史梦霞, 商蒙非, 褚庆全. 基于MaxEnt模型的中国裸燕麦种植气候适宜性评价. 中国农业大学学报, 2021, 26(9): 1-10.
Bo X Z, Shi X Y, Zhao J C, Lin Q, Shi M X, Shang M F, Chu Q Q. Climatic suitability of naked oat (Avena nuda L.) planting in China based on MaxEnt model. J China Agric Univ, 2021, 26(9): 1-10 (in Chinese with English abstract).
[15] Elith J, Graham C H, P. Anderson R P, Dudik M, Ferrier S, Guisan A, Hijmans R J, Huettmann F, Leathwick J R, Lehmann A, Li J, Lohmann L G, Loiselle B A, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J M, Peterson A T, Philips S J, Richardson K, Scachetti-Pereira R, Schapire R E, Soberon J, Williams S, Wisz M S, Zimmermann N E. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006, 29: 129-151.
[16] Yan H Y, He J, Zhao Y F, Zhang L, Zhu C P, Wu D. Gentiana macrophylla response to climate change and vulnerability evaluation in China. Glob Ecol Conserv, 2020, 22: e00948.
[17] Yan H Y, He J, Xu X C, Yao X Y, Wang G Y, Tang L G, Feng L, Zou L M, Gu X L, Qu Y F, Qu L F. Prediction of potentially suitable distributions of Codonopsis pilosula in China based on an optimized MaxEnt model. Front Ecol Evol, 2021, 9: 773396.
[18] Cao Z, Zhang L, Zhang X X, Guo Z J. Predicting the potential distribution of Hylomecon japonica in China under current and future climate change based on Maxent model. Sustainability, 2021, 13: 11253.
[19] 石子为, 康利平, 彭华胜, 杨少华, 张丽霞, 景志贤, 陈敏, 刘大会. 我国滇重楼种植的气候适宜性研究. 中国中药杂志, 2017, 42: 3435-3442.
Shi Z W, Kang L P, Peng H S, Yang S H, Zhang L X, Jing Z X, Chen M, Liu D H. Climate suitability for potential Pairs polyphylla var. yunnanensis cultivation in China. China J Chin Mater Med, 2017, 42: 3435-3442 (in Chinese with English abstract).
[20] Ye P C, Zhang G F, Zhao X, Chen H, Si Q, Wu J Y. Potential geographical distribution and environmental explanations of rare and endangered plant species through combined modeling: a case study of Northwest Yunnan, China. Ecol Evol, 2021, 11: 13052-13067.
doi: 10.1002/ece3.7999 pmid: 34646452
[21] 张雪可, 张虹, 章鹏飞, 秦委, 刘守金, 彭代银, 李雷. 湖北黄精潜在分布区预测及生态适宜性研究. 中国农业科技导报, 2021, 23(8): 185-192.
Zhang X K, Zhang H, Zhang P F, Qin W, Liu S J, Peng D Y, Li L. Prediction of the potential distributions and ecological suitability of Polygonatum zanlanscianense Pamp. J Agric Sci Technol, 2021, 23(8): 185-192 (in Chinese with English abstract).
[22] Warren D L, Glor R E, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 2010, 33: 607-611.
[23] 金航, 崔秀明, 朱艳, 陈中坚, 张金渝. 气象条件对三七药材道地性的影响. 西南农业学报, 2005, 18: 825-828.
Jin H, Cui X M, Zhu Y, Chen Z J, Zhang J Y. Effects of meteorological conditions on the quality of Radix notoginseng. Southwest China J Agric Sci 2005, 18: 825-828 (in Chinese with English abstract).
[24] 董诚明, 谷巍. 药用植物栽培学(第3版). 上海: 上海科学技术出版社, 2020. pp 142-145.
Dong C M, Gu W. Cultivation of Medicinal Plants, 3rd edn. Shanghai: Shanghai Scientific & Technical Publishers, 2020. pp 142-145 (in Chinese).
[25] 张琴, 曾凡琳, 张东方, 谢彩香, 陈士林. 基于最大熵模型的三七生态适宜区及生态特征. 药学学报, 2016, 51: 1629-1637.
pmid: 29932619
Zhang Q, Zeng F L, Zhang D F, Xie C X, Chen S L. Ecology suitability regions and ecological characteristics of Panax notoginseng (Burk.) F. H. Chen based on maximum entropy model. Acta Pharm Sin, 2016, 51: 1629-1637 (in Chinese with English abstract).
pmid: 29932619
[26] Zhan P, Wang F Y, Xia P G, Zhao G H, Wei M T, Wei F G, Han R L. Assessment of suitable cultivation region for Panax notoginseng under different climatic conditions using MaxEnt model and high-performance liquid chromatography in China. Ind Crops Prod, 2022, 176: 114416.
[27] 孟祥霄, 黄林芳, 董林林, 李西文, 魏富刚, 陈中坚, 吴杰, 孙成忠, 余育启, 陈士林. 三七全球产地生态适宜性及品质生态学研究. 药学学报, 2016, 51: 1483-1493.
Meng X X, Huang L F, Dong L L, Li X W, Wei F G, Chen Z J, Wu J, Sun C Z, Yu Y Q, Chen S L. Analysis of global ecology of Panax notoginseng in suitability and quality. Acta Pharm Sin, 2016, 51: 1483-1493 (in Chinese with English abstract).
[28] Angstrom A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quart Royal Meteorol Soc, 1924, 50: 121-126.
[29] Evans J M, Fletcher R J Jr, Alavalapati J A. Using species distribution models to identify suitable areas for biofuel feedstock production. GCB Bioenergy, 2010, 2: 63-78.
[30] 金正强, 代春艳, 崔秀明, 高明菊, 杨晓艳, 王承潇, 曲媛, 杨野. 不同产地三七地下部营养成分分析. 昆明理工大学学报(自然科学版), 2020, 45(6): 111-118.
Jin Z Q, Dai C Y, Cui X M, Gao M J, Yang X Y, Wang C X, Qu Y, Yang Y. An analysis of nutrient content in the underground part of Panax notoginseng from different producing areas. J Kunming Univ Sci Technol (Nat Sci Edn), 2020, 45(6): 111-118 (in Chinese with English abstract).
[31] 丁颖, 何忠俊, 陈中坚, 余育启, 刘义, 梁社往, 胡德波. 生态因子对三七稳定碳同位素比率的影响. 云南农业大学学报(自然科学), 2014, 29: 370-379.
Ding Y, He Z J, Chen Z J, Yu Y Q, Liu Y, Liang S W, Hu D B. The effect of ecological factors on the ratio of stable carbon isotope in Panax notoginseng. J Yunnan Agric Univ (Nat Sci Edn), 2014, 29: 370-379 (in Chinese with English abstract).
[32] 崔秀明, 徐珞珊, 王强, 陈中坚. 云南三七道地产区地质背景及土壤理化状况分析. 中国中药杂志, 2005, 30: 332-335.
Cui X M, Xu L S, Wang Q, Chen Z J. Analysis on the geologic background and physicochemical properties of soil for the cultivation of Panax notoginseng in Yunnan province. China J Chin Mater Med, 2005, 30: 332-335 (in Chinese with English abstract).
[33] Phillips S J, Dudík M. Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. Ecography, 2008, 31: 161-175.
[34] Swets J A. Measuring the accuracy of diagnostic systems. Science, 1988, 240: 1285-1293.
doi: 10.1126/science.3287615 pmid: 3287615
[35] Wang C, Shi X Y, Liu J G, Zhao J C, Bo X Z, Chen F, Chu Q Q. Interdecadal variation of potato climate suitability in China. Agric Ecosyst Environ, 2021, 310: 107293.
[36] 陈胜. 云南省60年气候变化特征分析. 科技与创新, 2020, (1): 67-69.
Chen S. Analysis on characteristics of climate change in Yunnan province in the past 60 years. Sci Technol Innov, 2020, (1): 67-69 (in Chinese).
[1] HAO Jia-Le, ZHAO Jiong-Chao, ZHAO Ming-Yu, WANG Yi-Xuan, LU Jie, SHI Xiao-Yu, GAO Zhen-Zhen, CHU Qing-Quan. Assessment of the cultivation suitability and suitable regions of Gastrodia elata under climate change in China [J]. Acta Agronomica Sinica, 2024, 50(4): 1004-1014.
[2] CHENG Hua-Qiang, HOU Qing-Qing, ZHU Min, YANG Xuan. Effects of climate change and crop rotation system on forage oats yield in northern Shanxi province [J]. Acta Agronomica Sinica, 2024, 50(10): 2599-2613.
[3] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[4] LIU Er-Hua, ZHOU Guang-Sheng, WU Bing-Yi, SONG Yan-Ling, HE Qi-Jin, LYU Xiao-Min, ZHOU Meng-Zi. Response of reproductive growth period length to climate warming and technological progress in the middle and lower reaches of the Yangtze River during 1981-2010 in single-cropping rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1305-1315.
[5] YAN Sheng-Ji, DENG Ai-Xing, SHANG Zi-Yin, TANG Zhi-Wei, CHEN Chang-Qing, ZHANG Jun, ZHANG Wei-Jian. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production [J]. Acta Agronomica Sinica, 2022, 48(4): 930-941.
[6] Yan-Sheng LI, Jian JIN, Xiao-Bing LIU. Physiological response of crop to elevated atmospheric carbon dioxide concentration: a review [J]. Acta Agronomica Sinica, 2020, 46(12): 1819-1830.
[7] ZHANG Li,CHEN Fu,LEI Yong-Deng. Spatial and temporal patterns of drought risk for winter wheat grown in Hebei province in past 60 years [J]. Acta Agronomica Sinica, 2019, 45(9): 1407-1415.
[8] WANG Meng-Meng,YANG Shen-Bin,JIANG Xiao-Dong,WANG Ying-Ping,CHEN De,HUANG Wei,YU Geng-Kang,SHI Chun-Lin. Analysis and Simulation of Impact of Light and Temperature on Rice Tillering [J]. Acta Agron Sin, 2016, 42(01): 82-92.
[9] AI Zhi-Yong,GUO Xia-Yu,LIU Wen-Xiang,MA Guo-Hui,QING Xian-Guo. Changes of Safe Production Dates of Double-season Rice in Middle Reach of the Yangtze River [J]. Acta Agron Sin, 2014, 40(07): 1320-1329.
[10] JIANG Min,JIN Zhi-Qing,SHI Chun-Lin,LIN Wen-Xiong. Response of Rice Production Based on Self-Adaption to Climate Change in Fujian Province [J]. Acta Agron Sin, 2012, 38(12): 2246-2257.
[11] LI Ke-Nan,YANG Xiao-Guang,LIU Yuan,XUN Xin,LIU Zhi-Juan,WANG Jing,Lü Shuo,WANG En-Li. Distribution Characteristics of Winter Wheat Yield and Its Influenced Factors in North China [J]. Acta Agron Sin, 2012, 38(08): 1483-1493.
[12] YANG Shen-Bin, SHEN Shuang-He, ZHAO Xiao-Yan, ZHAO Yan-Xia, XU Jin-Long, WANG Zhu-Yu, LIU Juan, ZHANG Wei-Wei. The Impacts of Climate Changes on Rice Production in the Middle and Lower Reaches of the Yangtze River [J]. Acta Agron Sin, 2010, 36(09): 1519-1528.
[13] ZHU Da-Wei;JIN Zhi-Qing. Impacts of Changes in Both Climate and Its Variability on Food Produc-tion in Northeast China [J]. Acta Agron Sin, 2008, 34(09): 1588-1597.
[14] JU Hui;XIONG Wei;XU Yin-Long;LIN Er-Da. Impacts of Climate Change on Wheat Yield in China [J]. Acta Agron Sin, 2005, 31(10): 1340-1343.
[15] Jin Zhi-qing; Fang Juan; Ge Dao-kuo; Zheng Xi-lian; Chen Hua. Prospect to the Impacts of Climate Change on Winter Wheat Production in China [J]. Acta Agron Sin, 1994, 20(02): 186-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!