Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Spatial distribution of cultivation suitable area for Panax notoginseng and its response to climate change

WANG Lu1,ZHAO Jiong-Chao1,WANG Yi-Xuan1,MI Yan-Hua2,ZHANG Ning-Yi1,ZHAO Ming-Yu1,CHU Qing-Quan1,*   

  1. 1 College of agronomy, China Agricultural University, Beijing 100193, China; 2 Institute of Agricultural Quality Standard & Testing technique, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
  • Received:2024-01-07 Revised:2024-06-20 Accepted:2024-06-20 Published:2024-07-17
  • Supported by:
    This study was supported by the Major Science and Technology Projects in Yunnan Province (202202AE090029) and the College Students Innovation and Training Project of China Agricultural University (X2022100190356).

Abstract:

Understanding the dynamic spatiotemporal changes in suitable cultivation areas for Panax notoginseng in Yunnan province amid climate change is crucial for guiding its introduction, cultivation, and large-scale industrial development. Utilizing 131 geographical distribution data points of Panax notoginseng in Yunnan province and 15 environmental variables, we employed the MaxEnt model to analyze the primary factors influencing its distribution and to delineate the suitable cultivation areas and their variations from 1961 to 2020. Our analysis identified key factors, including mean daily temperature range (<10.0℃), the number of days with maximum temperature ≥ 33℃ (<5 days), aspect (north-facing slopes), annual accumulation temperature ≥ 10℃ (4708.0–5331.9 ℃ d), annual sunshine duration (1636.7–1963.3 h), and seasonal variation in precipitation (92%–96%). Suitable cultivation areas for Panax notoginseng were primarily concentrated in southeastern Yunnan Province, encompassing Wenshan, Honghe, Kunming, Yuxi, and Qujing, comprising approximately 4.8% of the entire province. Our findings indicate that climate change from 1961 to 2020 has led to an 18.1% expansion in suitable areas for Panax notoginseng cultivation across Yunnan province. Moreover, over the past six decades, there has been a noticeable northward expansion of the optimal boundary for Panax notoginseng, accompanied by an overall improvement in its suitability amid climate fluctuations. This study provides a theoretical framework and technical support for devising a rational industrial layout for Panax notoginseng in Yunnan Province, thereby mitigating the potential risks posed by climate change to its production and facilitating the effective management and utilization of agricultural land resources.

Key words: 1 College of agronomy, China Agricultural University, Beijing 100193, China, 2 Institute of Agricultural Quality Standard &, Testing technique, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China

[1] 刘立红, 刘英, 王芬, 刘石磊, 胡会泽, 张文生, 辛文锋. 云南三七产业发展现状及发展建议. 中国现代中药, 2017, 19: 1331–1335.

Liu L H, Liu Y, Wang F, Liu S L, Hu H Z, Zhang W S, Xin W F. The current development situation and suggestion of Panax notoginseng in Yunnan province. Mod Chin Med, 2017, 19: 1331–1335 (in Chinese with English abstract).

[2] 梁晓莲, 刘纤纤, 李文莉, 陈勇, 黄周艳, 刘玟君. 三七总皂苷药理作用及临床应用研究进展. 湖北农业科学, 2021, 60(6): 15–19.

Liang X L, Liu X X, Li W L, Chen Y, Huang Z Y, Liu W J. Research progress in pharmacological effects and clinical applications of Panax notoginseng saponins. Hubei Agric Sci, 2021, 60(6): 15–19 (in Chinese with English abstract).

[3] 詹鹏, 韦美膛, 徐波, 韩蕊莲. 基于产业链的我国三七产业发展现状与对策. 北方园艺, 2021, (14): 158–164.

Zhan P, Wei M T, Xu B, Han R L. Research on the development status and countermeasures of China’s Panax notoginseng industry based on the industrial chain. North Hortic, 2021, (14): 158–164 (in Chinese with English abstract).

[4] 云南省中药材产业发展报告. 云南农业, 2018, (9): 30–34.

Yunnan province Chinese herbal medicine industry development report. Yunnan Agric, 2018, (9): 30–34 (in Chinese).

[5] 王艳芳, 李戈, 唐玲, 李荣英, 杨春勇. 三七在西双版纳引种适应性试验初报. 中国农学通报, 2013, 29(25): 136–141.

Wang Y F, Li G, Tang L, Li R Y, Yang C Y. Preliminary research on introduction and cultivation adaptability of Panax notoginseng in Xishuangbanna. Chin Agric Sci Bull, 2013, 29(25): 136–141 (in Chinese with English abstract).

[6] Hannah L, Roehrdanz P R, Ikegami M, Shepard A V, Shaw M R, Tabor G, Zhi L, Marquet P A, Hijmans R J. Climate change, wine, and conservation. Proc Natl Acad Sci USA, 2013, 110: 6907–6912.

[7] Hood A, Cechet B, Hossain H, Sheffield K. Options for Victorian agriculture in a “new” climate: Pilot study linking climate change and land suitability modelling. Environ Modell Soft, 2006, 21: 1280–1289.

[8] Zhang J Q, Su Y R, Wu J S, Liang H B. GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong province of China. Comput Electron Agric, 2015, 114: 202–211.

[9] Fielding A H, Bell J F. Review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv, 1997, 24: 38–49.

[10] 韩湘玲. 作物生态学. 北京: 气象出版社, 1991. pp 35–50.

Han X L. Crop Ecology. Beijing: China Meteorological Press, 1991. pp 35–50 (in Chinese).

[11] Li J B, Bao Y L, Wang Z R, Yang Q, Cui X M. Research progress in diseases of Panax notoginseng. Physiol Mol Plant Pathol, 2022, 121: 101878.

[12] Zhao J C, Wang C, Shi X Y, Bo X Z, Li S, Shang M F, Chen F, Chu Q Q. Modeling climatically suitable areas for soybean and their shifts across China. Agric Syst, 2021, 192: 103205.

[13] Shi X Y, Wang C, Zhao J C, Wang K C, Chen F, Chu Q Q. Increasing inconsistency between climate suitability and production of cotton (Gossypium hirsutum L.) in China. Ind Crop Prod, 2021, 171: 113959.

[14] 薄晓智, 石晓宇, 赵炯超, 林倩, 史梦霞, 商蒙非, 褚庆全. 基于MaxEnt模型的中国裸燕麦种植气候适宜性评价. 中国农业大学学报, 2021, 26(9): 1–10.

Bo X Z, Shi X Y, Zhao J C, Lin Q, Shi M X, Shang M F, Chu Q Q. Climatic suitability of naked oat (Avena nuda L.) planting in China based on MaxEnt model. J China Agric Univ, 2021, 26(9): 1–10 (in Chinese with English abstract).

[15] Elith J, Graham C H, P. Anderson R P, Dudik M, Ferrier S, Guisan A, Hijmans R J, Huettmann F, Leathwick J R, Lehmann A, Li J, Lohmann L G, Loiselle B A, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J M, Peterson A T, Philips S J, Richardson K, Scachetti-Pereira R, Schapire R E, Soberon J, Williams S, Wisz M S, Zimmermann N E. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006, 29: 129–151.

[16] Yan H Y, He J, Zhao Y F, Zhang L, Zhu C P, Wu D. Gentiana macrophylla response to climate change and vulnerability evaluation in China. Glob Ecol Conserv, 2020, 22: e00948.

[17] Yan H Y, He J, Xu X C, Yao X Y, Wang G Y, Tang L G, Feng L, Zou L M, Gu X L, Qu Y F, Qu L F. Prediction of potentially suitable distributions of Codonopsis pilosula in China based on an optimized MaxEnt model. Front Ecol Evol, 2021, 9: 17–21.

[18] Cao Z, Zhang L, Zhang X X, Guo Z J. Predicting the potential distribution of Hylomecon japonica in China under current and future climate change based on Maxent model. Sustainability, 2021, 13: 11253.

[19] 石子为, 康利平, 彭华胜, 杨少华, 张丽霞, 景志贤, 陈敏, 刘大会. 我国滇重楼种植的气候适宜性研究. 中国中药杂志, 2017, 42: 3435–3442.

Shi Z W, Kang L P, Peng H S, Yang S H, Zhang L X, Jing Z X, Chen M, Liu D H. Climate suitability for potential Pairs polyphylla var. yunnanensis cultivation in China. Chin J Trad Chin Med, 2017, 42: 3435–3442 (in Chinese with English abstract).

[20] Ye P C, Zhang G F, Zhao X, Chen H, Si Q, Wu J Y. Potential geographical distribution and environmental explanations of rare and endangered plant species through combined modeling: a case study of Northwest Yunnan, China. Ecol Evol, 2021, 11: 13052–13067.

[21] 张雪可, 张虹, 章鹏飞, 秦委, 刘守金, 彭代银, 李雷. 湖北黄精潜在分布区预测及生态适宜性研究. 中国农业科技导报, 2021, 23(8): 185–192.

Zhang X K, Zhang H, Zhang P F, Qin W, Liu S J, Peng D Y, Li L. Prediction of the potential distributions and ecological suitability of Polygonatum zanlanscianense Pamp. J Agric Sci Technol, 2021, 23(8): 185–192 (in Chinese with English abstract).

[22] Warren D L, Glor R E, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 2010, 33: 607–611.

[23] 金航, 崔秀明, 朱艳, 陈中坚, 张金渝. 气象条件对三七药材道地性的影响. 西南农业学报, 2005, 18: 825–828.

Jin H, Cui X M, Zhu Y, Chen Z J, Zhang J Y. Effects of meteorological conditions on the qualitity of Radix notoginseng. Southwest China J Agric Sci, 2005, 18: 825–828 (in Chinese with English abstract).

[24] 董诚明, 谷巍. 药用植物栽培学第3. 上海: 上海科学技术出版社, 2020. pp 142–145.

Dong C M, Gu W. Cultivation of Medicinal Plants, 3rd. Shanghai: Shanghai Scientific & Technical Publishers, 2020. pp 142–145 (in Chinese).

[25] 张琴, 曾凡琳, 张东方, 谢彩香, 陈士林. 基于最大熵模型的三七生态适宜区及生态特征. 药学学报, 2016, 51: 1629–1637.

Zhang Q, Zeng F L, Zhang D F, Xie C X, Chen S L. Ecology suitability regions and ecological characteristics of Panax notoginseng (Burk.) F. H. Chen based on maximum entropy model. Acta Pharm Sin, 2016, 51: 1629–1637 (in Chinese with English abstract).

[26] Zhan P, Wang F Y, Xia P G, Zhao G H, Wei M T, Han R L. Assessment of suitable cultivation region for Panax notoginseng under different climatic conditions using MaxEnt model and high-performance liquid chromatography in China. Ind Crop Prod, 2022, 176: 114416.

[27] 孟祥霄, 黄林芳, 董林林, 李西文, 魏富刚, 陈中坚, 吴杰, 孙成忠, 余育奇, 陈士林. 三七全球产地生态适宜性及品质生态学研究. 药学学报, 2016, 51: 1483–1493.

Meng X X, Huang L F, Dong L L, Li X W, Wei F G, Chen Z J, Wu J, Sun C Z, Yu Y Q, Chen S L. Analysis of global ecology of Panax notoginseng in suitability and quality. Acta Pharm Sin, 2016, 51: 1483–1493(in Chinese with English abstract).

[28]  Angstrom A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quart Royal Meteorol Soc, 1924, 50: 121–126.

[29] Evans J M, Fletcher R J, Alavalapati J A. Using species distribution models to identify suitable areas for biofuel feedstock production. GCB Bioenergy, 2010, 2: 63–78.

[30] 金正强, 代春艳, 崔秀明, 高明菊, 杨晓艳, 王承潇, 曲媛, 杨野. 不同产地三七地下部营养成分分析. 昆明理工大学学报(自然科学版), 2020, 45(6): 111–118.

Jin Z Q, Dai C Y, Cui X M, Gao M J, Yang X Y, Wang C X, Qu Y, Yang Y. An analysis of nutrient content in the underground part of Panax notoginseng from different producing areas. J Kunming Univ Sci Technol (Nat Sci Edn), 2020, 45(6): 111–118 (in Chinese with English abstract).

[31] 丁颖, 何忠俊, 陈中坚, 余育奇, 刘义, 梁社往, 胡德波. 生态因子对三七稳定碳同位素比率的影响. 云南农业大学学报(自然科学), 2014, 29: 370–379.

Ding Y, He Z J, Chen Z J, Yu Y Q, Liu Y, Liang S W, Hu D B. The effect of ecological factors on the ratio of stable carbon isotope in Panax Notoginseng. J Yunnan Agric Univ (Nat Sci Edn), 2014, 29: 370–379 (in Chinese with English abstract).

[32] 崔秀明, 徐珞珊, 王强, 陈中坚. 云南三七道地产区地质背景及土壤理化状况分析. 中国中药杂志, 2005, 30: 332–335.

Cui X M, Xu L S, Wang Q, Chen Z J. Analysis on the geologic background and physicochemical properties of soil for the cultivation of Panax notoginseng in Yunnan province. Chin J Trad Chin Med, 2005, 30: 332–335 (in Chinese with English abstract).

[33] Phillips S J, Dudík M. Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. Ecography, 2008, 31: 161–175.

[34] Swets J A. Measuring the accuracy of diagnostic systems. Science, 1988, 240: 1285–1293.

[35] Wang C, Shi X Y, Liu J G, Zhao J C, Bo X Z, Chen F, Chu Q Q. Interdecadal variation of potato climate suitability in China. Agric Ecosyst Environ, 2021, 310: 107293.

[36] 陈胜. 云南省60年气候变化特征分析. 科技与创新, 2020, (1): 67–69.

Chen S. Analysis on characteristics of climate change in Yunnan province in the past 60 years. Sci Technol Innov, 2020, (1): 67–69 (in Chinese with English abstract).

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!