Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (4): 930-941.doi: 10.3724/SP.J.1006.2022.12073


Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production

YAN Sheng-Ji1(), DENG Ai-Xing1, SHANG Zi-Yin1, TANG Zhi-Wei1, CHEN Chang-Qing3, ZHANG Jun1,2,*(), ZHANG Wei-Jian1,2,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Chinese Academy of Agricultural Sciences, Center for Carbon neutrality in Agriculture and Rural Region, Beijing 100081, China
    3Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2021-10-14 Accepted:2021-11-15 Online:2022-04-12 Published:2021-11-20
  • Contact: ZHANG Jun,ZHANG Wei-Jian E-mail:15690307667@163.com;zhangjun@caas.cn;zhangweijian@caas.cn
  • Supported by:
    China Agriculture Research System(Green Manure, CARS-22);Key Projects of Consultation and Evaluation of the Academic Department of the Chinese Academy of Sciences(2021-SM01-B-008);Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(Y2021YJ02);Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-XTCX2016008)


Crop production not only ensures national food security, but also is the main source of agricultural carbon emissions and an important pool of carbon sequestration. To clarify the characteristics of carbon emissions from crop production and discuss the approaches to reach the peak and neutrality in major agricultural areas can provide important scientific basis to the decision making of green and high-quality agricultural development and “dual-carbon” goal. Based on the national statistical data, this study compared and analyzed the characteristics of carbon emissions in crop planting regions in China, and presented the recommendations for carbon sequestration and greenhouse gas emission mitigation. The carbon emissions of crop production accounted for 45.5% of the national agricultural total carbon emissions in 2018, and the emissions of farmland methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) of diesel consumption accounted for 22.9%, 14.7%, and 7.9% of the total carbon emissions of agricultural production, respectively. In terms of the regional emissions, both the total carbon emission of crop production and the carbon emission per sowing area are higher in South than North China, with the highest emissions in East and central China and the greatest potential for emission mitigation. In the carbon emission from crop production, CH4 emission from rice fields accounts for the main part (50.3%) and is the focus of emission reduction. The annual carbon emission of crop production in China peaked in 2015, and then dropped down. It was mainly attributed to the decrease trend of rice sown area, agricultural nitrogen application rate, and diesel oil consumption. If the existing agricultural imports are not significantly affected, the carbon emissions in crop production have basically reached the peak. However, it is very difficult to achieve carbon neutrality in crop production if only by soil carbon sequestration of farmland, and it is necessary to consider both farmland emission reduction and carbon sequestration. On the premise of high and stable grain yield, the carbon neutrality of modern crop production should prioritize CH4 and N2O reduction, and fully exploit the integrated carbon sequestration potential of farmland ecosystems, such as straw utilization, combination of the use and protection of farmland, and construction of farmland forest network.

Key words: crop production, food security, climate change, carbon peak, carbon neutrality, carbon sequestration and mitigation

Table 1

Methane emission factors of different rice planting regions (kg hm-2)"

单季稻 Single cropping rice 双季早稻 Double cropping early rice 双季晚稻 Double cropping late rice
Recommended value
Recommended value
Recommended value
North China
234 134.4 341.9
East China
215.5 158.2 255.9 211.4 153.1 259.0 224.0 143.4 261.3
Central & South China
236.7 170.2 320.1 241.0 169.5 387.2 273.2 185.3 357.9
Southwest China
156.2 75.0 246.5 156.2 73.7 276.6 171.7 75.1 265.1
Northeast China
168.0 112.6 230.3
Northwest China
231.2 175.9 319.5

Table 2

Nitrous oxide emission factors of different crop planting regions (kg N2O-N kg-1 N input)"

Province (municipality and autonomous region)
N2O emission factor
内蒙古, 新疆, 甘肃, 青海, 西藏, 陕西, 山西, 宁夏
Inner Mongolia, Xinjiang, Gansu, Qinghai, Tibet, Shaanxi, Shanxi, Ningxia
0.0056 0.0015-0.0085
黑龙江, 吉林, 辽宁
Heilongjiang, Jilin, Liaoning
0.0114 0.0021-0.0258
北京, 天津, 河北, 河南, 山东
Beijing, Tianjin, Hebei, Henan, Shandong
0.0057 0.0014-0.0081
浙江, 上海, 江苏, 安徽, 江西, 湖南, 湖北, 四川, 重庆
Zhejiang, Shanghai, Jiangsu, Anhui, Jiangxi, Hunan, Hubei, Sichuan, Chongqing
0.0109 0.0026-0.0220
广东, 广西, 海南, 福建
Guangdong, Guangxi, Hainan, Fujian
0.0178 0.0046-0.0228
云南, 贵州
Yunnan, Guizhou
0.0106 0.0025-0.0218

Fig. 1

Regional characteristics of total carbon emissions of China’s crop production The above maps are from the National Geographic Information Resource Directory Service System (https://www.webmap.cn/). a: the total carbon emission of crop production (unit: 10,000 t CO2-eq); b: the carbon emission per crop sowing area (unit: t CO2-eq hm-2)."

Fig. 2

Contributions of methane emission in paddy field, nitrous oxide emission in farmland, and carbon dioxide emission from diesel oil to total carbon emissions of crop production"

Table 3

Contributions of carbon emissions in crop production to total agricultural carbon emission in different regions (%)"

Province (municipality and autonomous region)
Carbon emission
in crop production
CH4 emission
in paddy field
N2O emission
in farmland
CO2 emission of
diesel oil
North China
北京Beijing 19.6 0.1 12.3 7.2
天津Tianjin 31.0 15.2 11.8 4.0
河北Hebei 39.4 1.8 14.1 23.5
山西Shanxi 23.5 0.1 13.3 10.2
内蒙古Inner Mongolia 14.7 2.4 6.4 5.9
Northeast China
辽宁Liaoning 43.2 12.4 20.4 10.4
吉林Jilin 50.4 17.5 23.6 9.3
黑龙江Heilongjiang 62.1 39.8 12.0 10.3
East China
上海Shanghai 72.3 35.6 13.4 23.3
江苏Jiangsu 80.5 42.9 26.7 10.9
浙江Zhejiang 85.5 27.3 15.5 42.7
安徽Anhui 77.6 48.3 21.9 7.4
福建Fujian 74.7 27.3 29.0 18.4
江西Jiangxi 69.3 59.7 6.9 2.7
山东Shandong 29.9 2.0 14.5 13.4
Central China
河南Henan 36.3 9.9 18.6 7.8
湖北Hubei 63.0 40.3 17.6 5.1
湖南Hunan 61.3 48.9 9.9 2.5
South China
广东Guangdong 72.3 38.5 25.6 8.2
广西Guangxi 58.6 33.0 21.3 4.3
海南Hainan 60.4 26.1 24.9 9.4
Southwest China
重庆Chongqing 49.2 23.2 20.6 5.4
四川Sichuan 30.2 15.6 11.8 2.8
贵州Guizhou 24.1 12.7 9.9 1.5
云南Yunnan 24.5 9.0 13.6 1.9
西藏Tibet 0.8 0.0 0.3 0.5
Northwest China
陕西Shaanxi 46.7 4.9 21.1 20.7
甘肃Gansu 12.0 0.1 5.3 6.6
青海Qinghai 1.7 0 0.6 1.1
宁夏Ningxia 26.7 8.0 8.1 10.6
新疆Xinjiang 21.9 1.7 10.4 9.8
全国China 45.5 22.9 14.7 7.9

Fig. 3

Regional differences in the compositions of carbon emissions of crop production in China The above maps are from the National Geographic Information Resource Directory Service System (https://www.webmap.cn/). a: CH4 emission in paddy field (unit: 10,000 t CO2-eq); b: N2O emission in farmland (unit: 10,000 t CO2-eq); c: CO2 emission from agricultural diesel oil (unit: 10,000 t CO2-eq)."

Fig. 4

Trends of total crop and rice sowing areas (a), nitrogen fertilizer application and diesel oil consumption (b), and provincial carbon emissions (c, d) Data in Figs. 4-a and 4-b are from the State Statistical Bureau (2020) and the above maps are from the National Geographic Information Resource Directory Service System (https://www.webmap.cn/). The nitrogen fertilizer consumption means the nitrogen consumption. c: the change of carbon emission in crop production from 2001 to 2015 (unit: 10,000 t CO2-eq per year); d: the change of carbon emission in crop production from 2015 to 2018 (unit: 10,000 t CO2-eq per year)."

[1] Rogelj J, Shindell D, Jiang K, Fifita S, Forster P, Ginzburg V, Handa C, Kheshgi H, Kobayashi S, Kriegler E, Mundaca L, Séférian R, Vilariño M V, Calvin K, de Oliveira de Portugal Pereira J C, Edelenbosch O, Emmerling J, Fuss S, Gasser T, Gillett N, He C, Hertwich E, Höglund-Isaksson L, Huppmann D, Luderer G, Markandya A, McCollum D L, Meinshausen M, Millar R, Popp A, Purohit P, Riahi K, Ribes A, Saunders H, Schädel C, Smith C, Smith P, Trutnevyte E, Xu Y, Zhou W, Zickfeld K. Mitigation pathways compatible with 1.5℃ in the context of sustainable development. In: Global warming of 1.5℃. Intergovernmental Panel on Climate Change, 2018. pp 93-174.
[2] 翟盘茂, 周大地, 杜祥琬, 丁一汇. 碳达峰、碳中和100问. 北京: 人民日报出版社, 2021.
Zhai P M, Zhou D D, Du X W, Ding Y H. 100 Questions About Carbon Peaks, Carbon Neutralization. Beijing: People’s Daily Press, 2021 (in Chinese).
[3] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社. 2020.
State Statistical Bureau. China Statistical Yearbook. Beijing: China Statistics Press, 2020 (in Chinese).
[4] 翟虎渠. 关于中国粮食安全战略的思考. 农业经济问题, 2011,32(9):4-7.
Zhai H Q. Reflection on China’s food security strategy. Issues Agric Econ, 2011,32(9):4-7 (in Chinese with English abstract).
[5] 国务院办公厅. 关于印发中国食物与营养发展纲要(2014-2020年)的通知. [2014-01-28]. http://www.gov.cn/xxgk/pub/govpublic/mrlm/201402/t20140208_66624.html.
State Council of the People’s Republic of China. Notice on the Printing and Issuance of China Food and Nutrition Development Outline (2014-2020). [2014-01-28]. http://www.gov.cn/xxgk/pub/govpublic/mrlm/201402/t20140208_66624.html.
[6] Lugato E, Leip A, Jones A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat Clim Change, 2018,8:219-223.
[7] 生态环境部应对气候变化司. 中华人民共和国气候变化第三次国家信息通报 [2020-07-01]. http://qhs.mee.gov.cn/kzwsqtpf/201907/P020190701762678052438.pdf.
Department of Climate Change, Ministry of Ecology and Environment. The Third National Communication on Climate Change of the People’s Republic of China [2020-07-01]. http://qhs.mee.gov.cn/kzwsqtpf/201907/P020190701762678052438.pdf.
[8] Devakumar A S, Pardis R, Manjunath V. Carbon footprint of crop cultivation process under semiarid conditions. Agric Res, 2018,7:167-175.
[9] Linquist B, van Groenigen K J, Adviento-Borbe M A, Pittelkow C, van Kessel C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Change Biol, 2012,18:194-209.
[10] Department for Business, Energy & Industrial Strategy of UK. Net Zero Strategy: Build Back Greener. [2021-10-19]. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1028157/net-zero-strategy.pdf.
[11] 陈阜, 吴晓春, 王全辉, 张卫建, 尹小刚. 气候智慧型农业的理论与模式. 北京: 中国农业出版社, 2020.
Chen F, Wu X C, Wang Q H, Zhang W J, Yin X G. The Theory and Mode of Climate-Smart Agriculture. Beijing: China Agriculture Press, 2020 (in Chinese).
[12] 张卫建, 严圣吉, 张俊, 江瑜, 邓艾兴. 国家粮食安全与农业双碳目标的双赢策略. 中国农业科学, 2021,54:3892-3902.
Zhang W J, Yan S J, Zhang J, Jiang Y, Deng A X. Win-win strategy for national food security and agricultural double-carbon goals. Sci Agric Sin, 2021,54:3892-3902 (in Chinese with English abstract).
[13] Amelung W, Bossio D, de Vries W, Kogel-Knabner I, Lehmann J, Amundson R, Bol R, Collins C, Lal R, Leifeld J, Minasny B, Pan G, Paustian K, Rumpel C, Sanderman J, van Groenigen J W, Mooney S, van Wesemael B, Wander M, Chabbi A. Towards a global-scale soil climate mitigation strategy. Nat Commun, 2020,11:5427.
[14] Knapp S, van der Heijden M G A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat Commun, 2018,9:3623.
[15] 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算. 中国人口·资源与环境, 2012,22(7):21-27.
Min J S, Hu H. Calculation of greenhouse gases emission from agricultural production in china. China Pop Resour Environ, 2012,22(7):21-27 (in Chinese with English abstract).
[16] 邓明君, 邓俊杰, 刘佳宇. 中国粮食作物化肥施用的碳排放时空演变与减排潜力. 资源科学, 2016,38:534-544.
Deng M J, Deng J J, Liu J Y. On the space-time evolution of carbon emissions and reduction potential in Chinese grain crop fertilizer application. Res Sci, 2016,38:534-544 (in Chinese with English abstract).
[17] 柴如山. 我国农田化学氮肥减量与替代的温室气体减排潜力估算. 浙江大学博士学位论文,浙江杭州, 2015.
Chai R S. Estimation of Greenhouse Gases Mitigation Potential under Reduction and Substitution of Synthetic Nitrogen Fertilizer in the Cropland of China. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang,China, 2015 (in Chinese with English abstract).
[18] 李阳, 陈敏鹏. 中国农业源甲烷和氧化亚氮排放的影响因素. 环境科学学报, 2021,41:710-717.
Li Y, Chen M P. Influencing factors of methane and nitrous oxide emissions from agricultural sources in China. Acta Sci Circumst, 2021,41:710-717 (in Chinese with English abstract).
[19] 唐洪松, 马惠兰, 苏洋, 辛冲冲, 汪晶晶. 新疆不同土地利用类型的碳排放与碳吸收. 干旱区研究, 2016,33:486-492.
Tang H S, Ma H L, Su Y, Xin C C, Wang J J. Carbon emissions and carbon absorptions of different land use types in Xinjiang. Arid Zone Res, 2016,33:486-492 (in Chinese with English abstract).
[20] 陈晓芳. 安徽省不同作物化肥施用能耗和碳排放分析. 安徽理工大学硕士学位论文,安徽淮南, 2019.
Chen X F. Energy Consumption and CO2 Emission Analysis from Fertilizer Application on Different Crops in Anhui Province. MS Thesis of Anhui University of Science & Technology, Huainan, Anhui,China, 2019 (in Chinese with English abstract).
[21] 杜杰, 王林林, 谢军红, 彭正凯, 李玲玲. 耕作措施对黄土高原地区农田土壤碳排放影响的Meta分析. 甘肃农业大学学报, 2020,55(3):45-53.
Du J, Wang L L, Xie J H, Peng Z K, Li L L. Effects of different tillage practice on carbon emissions from farmland on the Loess Plateau of China: a meta-analysis. J Gansu Agric Univ, 2020,55(3):45-53 (in Chinese with English abstract).
[22] 国家发展和改革委员会应对气候变化司. 省级温室气体清单编制指南(试行), 2011. http://www.cbcsd.org.cn/sjk/nengyuan/standard/home/20140113/download/shengjiwenshiqiti.pdf.
Department of Climate Change, National Development & Reform Commission of China. Provincial Guidelines for Greenhouse Gas List (Trial). 2011. http://www.cbcsd.org.cn/sjk/nengyuan/standard/home/20140113/download/shengjiwenshiqiti.pdf.(in Chinese).
[23] IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. 2006.
[24] 胡向东, 王济民. 中国畜禽温室气体排放量估算. 农业工程学报, 2010,26(10):247-252.
Hu X D, Wang J M. Estimation of livestock greenhouse gases discharge in China. Trans Chin Soc Agric Eng, 2010,26(10):247-252 (in Chinese with English abstract).
[25] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014,20:783-795.
Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China. Plant Nutr Fert Sci, 2014,20:783-795 (in Chinese with English abstract).
[26] 孟远夺, 许发辉, 杨帆, 徐洋, 龚鑫鑫. 我国种植业化肥施用现状与节肥潜力分析. 磷肥与复肥, 2015,30(9):1-4.
Meng Y D, Xu F H, Yang F, Xu Y, Gong X X. Situation of fertilizer application and fertilizer saving potential in crop farming in China. Phos & Comp Fert, 2015,30(9):1-4 (in Chinese with English abstract).
[27] Canadell J G, Schulze E D. Global potential of biospheric carbon management for climate mitigation. Nat Commun, 2014,5:5282.
[28] 徐玉秀. 中国主要作物农田N2O和CH4排放系数及影响因子分析. 沈阳农业大学硕士学位论文,辽宁沈阳, 2016.
Xu Y X. Analyses on Emission Factors and Effect Factors of N2O and CH4 from Main Cropland Soils in China. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning,China, 2016 (in Chinese with English abstract).
[29] Goucher L, Bruce R, Cameron D D, Koh S C L, Horton P. The environmental impact of fertilizer embodied in a wheat-to-bread supply chain. Nat Plants, 2017,3:17012.
[30] Zhang Y, Jiang Y, Tai A P K, Feng J, Li Z, Zhu X, Chen J, Zhang J, Song Z, Deng A, Lal R, Zhang W. Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China. Environ Res Lett, 2019,14:114020.
[31] 张卫建, 张艺, 邓艾兴, 张俊. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析. 中国稻米, 2021,27(4):53-57.
Zhang W J, Zhang Y, Deng A X, Zhang J. Integrated impacts and trend analysis of rice cultivar renewal and planting technology improvement on carbon emission in China. China Rice, 2021,27(4):53-57 (in Chinese with English abstract).
[32] Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q, Zhang Q, Guo S, Ren J, Li S, Ye Y, Wang Z, Huang J, Tang Q, Sun Y, Peng X, Zhang J, He M, Zhu Y, Xue J, Wang G, Wu L, An N, Wu L, Ma L, Zhang W, Zhang F. Producing more grain with lower environmental costs. Nature, 2014,514:486-489.
[33] Tian H, Yang J, Xu R, Lu C, Canadell J G, Davidson E A, Jackson R B, Arneth A, Chang J, Ciais P, Gerber S, Ito A, Joos F, Lienert S, Messina P, Olin S, Pan S, Peng C, Saikawa E, Thompson R L, Vuichard N, Winiwarter W, Zaehle S, Zhang B. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty. Glob Change Biol, 2019,25:640-659.
[34] 李玥, 巨晓棠. 农田氧化亚氮减排的关键是合理施氮. 农业环境科学学报, 2020,39:842-851.
Li Y, Ju X T. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission. J Agro-Environ Sci, 2020,39:842-851 (in Chinese with English abstract).
[35] Chen H, Zheng C, Chen F, Qiao Y, Du S, Cao C, Zhang W. Less N2O emission from newly high-yielding cultivars of winter wheat. Agric Ecosyst Environ, 2021,320:107557.
[36] Afreh D, Zhang J, Guan D, Liu K, Song Z, Zheng C, Deng A, Feng X, Zhang X, Wu Y, Huang Q, Zhang W. Long-term fertilization on nitrogen use efficiency and greenhouse gas emissions in a double maize cropping system in subtropical China. Soil Tillage Res, 2018,180:259-267.
[37] Deng A, Chen C, Feng J, Chen J, Zhang W. Cropping system innovation for coping with climatic warming in China. Crop J, 2017,5:136-150.
[38] Jiang Y, Qian H, Huang S, Zhang X, Wang L, Zhang L, Shen M, Xiao X, Chen F, Zhang H, Lu C, Li C, Zhang J, Deng A, van Groenigen K J, Zhang W. Acclimation of methane emissions from rice paddy fields to straw addition. Sci Adv, 2019, 5: eaau9038.
[39] 朱相成, 张振平, 张俊, 邓艾兴, 张卫建. 增密减氮对东北水稻产量、氮肥利用效率及温室效应的影响. 应用生态学报, 2016,27:453-461.
Zhu X C, Zhang Z P, Zhang J, Deng A X, Zhang W J. Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in northeast China. Chin J Appl Ecol, 2016,27:453-461 (in Chinese with English abstract).
[40] Zhu X, Zhang J, Zhang Z, Deng A, Zhang W. Dense planting with less basal nitrogen fertilization might benefit rice cropping for high yield with less environmental impacts. Eur J Agron, 2016,75:50-59.
[41] Abdulkareem R. 绿肥还田对双季稻系统温室气体排放及其相关土壤微生物的影响. 中国农业科学院博士学位论文,北京, 2020.
Abdulkareem R. Effects of Green Manure on Greenhouse Gas Emissions and Relevant Soil Microbial Community in Double Rice Cropping System. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,China, 2020 (in Chinese with English abstract).
[42] Kan Z R, Liu W X, Liu W S, Lal R, Dang Y P, Zhao X, Zhang H L. Mechanisms of soil organic carbon stability and its response to no-till: a global synthesis and perspective. Glob Change Biol, 2021, doi: 10.1111/gcb.1596.
[43] Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger P, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Waterfield T, Yelekçi O, Yu R, Zhou B eds. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021.
[1] Yan-Sheng LI, Jian JIN, Xiao-Bing LIU. Physiological response of crop to elevated atmospheric carbon dioxide concentration: a review [J]. Acta Agronomica Sinica, 2020, 46(12): 1819-1830.
[2] ZHANG Li,CHEN Fu,LEI Yong-Deng. Spatial and temporal patterns of drought risk for winter wheat grown in Hebei province in past 60 years [J]. Acta Agronomica Sinica, 2019, 45(9): 1407-1415.
[3] ZHAO Ming,ZHOU Bao-Yuan,MA Wei,LI Cong-Feng,DING Zai-Song,SUN Xue-Fang. Theoretical and technical models of quantitative regulation in food crop production system [J]. Acta Agronomica Sinica, 2019, 45(4): 485-498.
[4] Ying-Bin ZOU,Min HUANG. Opportunities and Challenges for Crop Production in China during the Transition Period [J]. Acta Agronomica Sinica, 2018, 44(6): 791-795.
[5] WANG Meng-Meng,YANG Shen-Bin,JIANG Xiao-Dong,WANG Ying-Ping,CHEN De,HUANG Wei,YU Geng-Kang,SHI Chun-Lin. Analysis and Simulation of Impact of Light and Temperature on Rice Tillering [J]. Acta Agron Sin, 2016, 42(01): 82-92.
[6] AI Zhi-Yong,GUO Xia-Yu,LIU Wen-Xiang,MA Guo-Hui,QING Xian-Guo. Changes of Safe Production Dates of Double-season Rice in Middle Reach of the Yangtze River [J]. Acta Agron Sin, 2014, 40(07): 1320-1329.
[7] LI Zhi-Jie,ZHANG Zhen-Ping,ZHANG Yi,DENG Ai-Xing,SONG Zhen-Wei,ZHENG Cheng-Yan,ZHANG Wei-Jian. Responses of Plant Productivity and Nitrogen Use Efficiency to Nitrogen Fertilization Rate among Rice Varieties Released from Different Years in Liaoning Province [J]. Acta Agron Sin, 2013, 39(09): 1679-1686.
[8] JIANG Min,JIN Zhi-Qing,SHI Chun-Lin,LIN Wen-Xiong. Response of Rice Production Based on Self-Adaption to Climate Change in Fujian Province [J]. Acta Agron Sin, 2012, 38(12): 2246-2257.
[9] QIAN Chun-Rong,YU Yang,GONG Xiu-Jie,JIANG Yu-Bo,ZHAO Yang,HAO Yu-Bo,LI Liang,ZHANG Wei-Jian. Response of Nitrogen Use Efficiency to Plant Density and Nitrogen Application Rate for Maize Hybrids from Different Eras in Heilongjiang Province [J]. Acta Agron Sin, 2012, 38(11): 2069-2077.
[10] QIAN Chun-Rong1,3,YU Yang3,GONG Xiu-Jie,JIANG Yu-Bo,ZHAO Yang,WANG Jun-He,YANG Zhong-Liang,ZHANG Wei-Jian. Response of Grain Yield to Plant Density and Nitrogen Application Rate for Maize Hybrids Released from Different Eras in Heilongjiang Province [J]. Acta Agron Sin, 2012, 38(10): 1864-1874.
[11] LI Ke-Nan,YANG Xiao-Guang,LIU Yuan,XUN Xin,LIU Zhi-Juan,WANG Jing,Lü Shuo,WANG En-Li. Distribution Characteristics of Winter Wheat Yield and Its Influenced Factors in North China [J]. Acta Agron Sin, 2012, 38(08): 1483-1493.
[12] YANG Shen-Bin, SHEN Shuang-He, ZHAO Xiao-Yan, ZHAO Yan-Xia, XU Jin-Long, WANG Zhu-Yu, LIU Juan, ZHANG Wei-Wei. The Impacts of Climate Changes on Rice Production in the Middle and Lower Reaches of the Yangtze River [J]. Acta Agron Sin, 2010, 36(09): 1519-1528.
[13] ZHU Da-Wei;JIN Zhi-Qing. Impacts of Changes in Both Climate and Its Variability on Food Produc-tion in Northeast China [J]. Acta Agron Sin, 2008, 34(09): 1588-1597.
[14] JU Hui;XIONG Wei;XU Yin-Long;LIN Er-Da. Impacts of Climate Change on Wheat Yield in China [J]. Acta Agron Sin, 2005, 31(10): 1340-1343.
[15] Jin Zhi-qing; Fang Juan; Ge Dao-kuo; Zheng Xi-lian; Chen Hua. Prospect to the Impacts of Climate Change on Winter Wheat Production in China [J]. Acta Agron Sin, 1994, 20(02): 186-197.
Full text



No Suggested Reading articles found!