Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (4): 920-929.doi: 10.3724/SP.J.1006.2022.14065

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials

ZHANG Xia(), YU Zhuo, JIN Xing-Hong, YU Xiao-Xia*(), LI Jing-Wei, LI Jia-Qi   

  1. Agronomy College, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2021-04-18 Accepted:2021-07-12 Online:2022-04-12 Published:2021-08-06
  • Contact: YU Xiao-Xia E-mail:1309165565@qq.com;yuxiaoxia1985@sina.com
  • Supported by:
    Inner Mongolia Major Science and Technology Project(ZDZX2018019);Animal and Plant Breeding Project for Transformation of Scientific Achievements in Inner Mongolia Agricultural University(YZGC2017006);Project of Inner Mongolia Potato Seed Industry and Technology Innovation Centre

Abstract:

Compared with commonly cultivated potato, colored potato is rich in nutrition, especially in anthocyanins, which is the focus of breeding research in recent years. To date, the number of potato SSR primers developed is limited, especially those related to colored potato. In this study, SSR loci were analyzed using MISA software based on the whole genome. The results were as follows: a total of 218,997 SSR loci were obtained from potato genome with an average of 3.39 kb. Mononucleotide was the main repeat type, accounting for 62.05% of the total SSR, followed by dinucleotide and trinucleotide, accounting for 22.39% and 13.11%, respectively. The repeats of the six nucleotide types ranged from 5 to 746, mainly from 5 to 10, accounting for 60.9% of the total SSRs. A total of 215 motif types were obtained in all detected SSRs. The dominant motifs of the other five nucleotide repeat types were mainly A/T-containing motifs, except for hexanucleotide repeat type. The length of SSR motifs ranged from 12 bp to 20 bp, accounting for 43.19% of all SSRs. A total of 100 SSR primers were designed by Primer 5 software, among which 48 primers were preliminarily screened using parents’ genomic DNA of the colored potato, with an effective amplification rate of 48%. Then, six F2 individuals were randomly selected for PCR amplification, and 26 primers with clear and stable bands and high polymorphism were finely screened, with the average polymorphism rate of 72.52%. In summary, the number and types of SSR loci in potato genome was abundant and diverse, and the polymorphism was moderate. The developed primers were highly polymorphic, which can be used in the development of SSR markers, genetic diversity analysis, and SSR fingerprint of colored potato, providing a scientific basis for further mining genes related to anthocyanin content.

Key words: potato genome, colored potato, SSR, primer development

Table 1

Tuber phenotypic characteristics and anthocyanin contents of individual plants and parents"

材料
Material
表皮光滑度
Epidermal smoothness
薯形
Tuber shape
皮色
Skin color
肉色
Tuber flesh color
花青素含量
Anthocyanidin (mg kg-1)
单株个体1 Individual 1 光滑 Smooth 长椭圆 Long oval 红色 Red 红中嵌白 White in red 33.84
单株个体2 Individual 2 光滑 Smooth 长圆 Long circle 紫色 Purple 紫黑色 Purple black 182.39
单株个体3 Individual 3 细纹 Fine grain 长圆 Long circle 红色 Red 浅红色 Light red 65.96
单株个体4 Individual 4 光滑 Smooth 椭圆 Oval 紫色 Purple 紫色 Purple 122.68
单株个体5 Individual 5 光滑 Smooth 长椭圆 Long oval 紫黑色 Purple black 紫中嵌白 White in purple 79.09
单株个体6 Individual 6 细纹 Fine grain 椭圆 Oval 红色 Red 黄中嵌红 Red in yellow 5.38
♂黑美人 Heimeiren 光滑 Smooth 长椭圆 Long oval 紫色 Purple 紫色 Purple 114.23
♀Red-P1 细纹 Fine grain 椭圆 Oval 红色 Red 浅红色 Light red 63.32

Fig. 1

Electrophoresis detection for genome DNA purity of six F2 individuals and their parents M: DNA marker DL2000; P1: male Heimeiren; P2: female Red-P1; 1-6: six F2 individuals."

Table 2

Results of a genome-wide SSR locus search in potato"

项目 Item 数量 Number
检测序列的总碱基数
Total size of examined sequences (bp)
741,585,035
检测到SSR数目
Total number of identified SSRs
218,997
复合型SSR位点
Number of SSRs present in compound formation
30,404
复合SSR位点间最大间隔碱基数
Maximum number of bases interrupting 2 SSRs in a compound microsatellite (bp)
100

Table 3

Repeat type, repeat number, and proportion of SSR in potato"

重复类型
Repeat type
重复次数Repeat number 合计
Total
比例
Proportion (%)
5 6 7 8 9 10 >10
单核苷酸 Mononucleotide 67,672 68,208 135,880 62.05
二核苷酸 Dinucleotide 13,755 7439 5404 4083 3201 15,147 49,029 22.39
三核苷酸 Trinucleotide 14,007 6164 3087 1671 1057 737 1997 28,720 13.11
四核苷酸 Tetranucleotide 1312 346 140 41 35 27 55 1956 0.89
五核苷酸 Pentanucleotide 450 99 39 14 9 10 9 630 0.29
六核苷酸 Hexanucleotide 1283 584 341 169 115 73 217 2782 1.27
总计 Total 17,052 20,948 11,046 7299 5299 71,720 85,633 218,997
比例 Proportion (%) 7.79 9.57 5.04 3.33 2.42 32.75 39.10 100.00

Table 4

Types and proportions of SSR repeating units in potato genome"

重复类型
Repeat type
基元类型数量
Number of motif types
主要重复基元
Main repeat motif
出现数量
Occurrence number
占本重复基元百分比
Percentage of predominant motifs (%)
单核苷酸
Mononucleotide
2 A/T
C/G
124,164
11,716
91.38
8.62
二核苷酸
Dinucleotide
4 AT/AT
AG/CT
AC/GT
CG/CG
39,770
5655
3574
30
81.12
11.53
7.29
0.06
三核苷
Trinucleotide
10 AAT/ATT
AAG/CTT
AAC/GTT
AGG/CCT
其他 Others
12,302
8857
3751
1514
2296
42.83
30.84
13.06
5.27
8.00
四核苷酸
Tetranucleotide
30 AAAT/ATTT
AGAT/ATCT
ACAT/ATGT
AATT/AATT
其他 Others
899
258
152
132
515
45.96
13.19
7.77
6.75
26.33
五核苷酸
Pentanucleotide
49 AATAT/ATATT
AAAAT/ATTTT
AACTC/AGTTG
AATAC/ATTGT
其他 Others
206
91
81
49
203
32.70
14.44
12.86
7.78
32.22
六核苷酸
Hexanucleotide
120 AGGCCC/CCTGGG
AACTTG/AAGTTC
AGGCCT/AGGCCT
AAGAGG/CCTCTT
其他 Others
760
552
408
264
798
27.32
19.84
14.67
9.49
28.68

Fig. 2

Distribution of SSR length in potato genome"

Table 5

Sequences of developed SSR primers for coloured potato"

引物名称
Primer name
序列
Primer sequence (5'-3')
重复基元
Repeat motif
退火温度
Tm (℃)
多态性比率
Percentage of polymorphic loci (%)
Z-1 F: CGACGCCAAAGTTAGCCA
R: GTCCCCAGAAGCCAAGAG
(GTT)7 57 50.00
Z-2 F: TTTCTGTGCTTCTTGCTCCTC
R: GTATCGCCCTCAGCCTTG
(TTC)6 57 100.00
Z-3 F: GAAGCGAGAAAAGCAGCAC
R: CCAGGGCAAAGGAAAACA
(TTC)6 57 66.67
Z-4 F: CTCCGTTTCCCAAGCCCTAA
R: GTCACCGTCCTCGTCATCG
(CCA)5 58 42.86
Z-5 F: GGAAATGGTCTGAAATGC
R: TGGTGGTGGACTACTTGG
(ACA)8 51 77.78
Z-6 F: CTCCCACCACTCCCTTAT
R: TCGTCATCACCATCTTCG
(TGA)5 54 85.71
Z-7 F: CACATTTGCCCACTCCTG
R: CATCCCCTCTTCCACCTC
(GAT)8 55 71.43
Z-8 F: AGCGTGAAATGAATGGAC
R: CAAATACGAGGCGAAACT
(AT)10 51 100.00
Z-9 F: CCTTGAATCCGAGCAGAAAT
R: TGGCACTCCACAGGGAATAG
(CAG)5 58 66.67
Z-10 F: TGCTGCTCCCTATTCTAT
R: AAATGACTGCCAATCTGA
(CTG)7 48 85.71
Z-11 F: TCGTGGAGAAGAATGAGA
R: TGACCAGGGTAAATGACTA
(ATT)5 48 66.67
引物名称
Primer name
序列
Primer sequence (5'-3')
重复基元
Repeat motif
退火温度
Tm (℃)
多态性比率
Percentage of polymorphic loci (%)
Z-12 F: AAGAGTTGGAAGAGCGTGAG
R: GGTAGGGTAAGGTCTATGTGC
(ACA)5 54 83.33
Z-13 F: TCAATGGAGACGACGACT
R: AGAGGATGGATTCCGATG
(CTC)5 52 71.43
Z-14 F: ACGCATCGCCTAAATCACTG
R: TCATTCGCATTCCCAAACTC
(GGC)5 54 71.43
Z-15 F: TATGTGGCGAAGTGAGTG
R: AAATGACGGGAGAAGGAC
(TA)9 51 77.78
Z-16 F: ATGATTCCGTTGCTGTCT
R: ATTGCTGATTCCTGTTCC
(TC)15 50 66.67
Z-17 F: ACATTTTGGTTGTGACTTGG
R: ATGGGTTTTGAGATTTGAGG
(CTT)6 54 81.82
Z-18 F: CCGTGGCTCTGAGATTTA
R: CGTGGGACTACACTGGATA
(AGT)5 51 93.33
Z-19 F: TCCAGCACTTAGACCAACC
R: CTCCGCATCTCGTCATAC
(ATG)6 52 57.14
Z-20 F: GGGTCTTCCCGAACAAAC
R: TACTTCCAAAACCGCCTC
(TGT)6 54 100.00
Z-21 F: TTCTAACTCCGCCCCTAC
R: CAAGACTTTTCCACCACC
(TC)16 52 64.29
Z-22 F: CGAAGAGGTAGTGATAAGGC
R: GTCAGCAAGGTTCAGGGA
(TTG)5 53 50.00
Z-23 F: CTTAGTGCTGGCGATGAT
R: TGGGCTTGCTCTTTGTCT
(AGA)6 53 57.14
Z-24 F: TTGTGGGATTTCACTGGG
R: TGGAAGACGGGAATGGTA
(TGT)5 54 77.78
Z-25 F: TGGGAAGAAACGAAGAAACA
R: GTTACATGAGTCAGGCTAGG
(CTC)5 55 70.00
Z-26 F: TAATTGTGACTCCTCCTCCT
R: CAGGCTAGGTCGTTTTGATA
(TA)9 54 50.00

Fig. 3

Amplification of partial SSR primers in parents and six F2 individuals M: 100 bp DNA marker; P1: male Heimeiren; P2: female Red-P1; 1-6: six F2 individuals. The red arrow is the marker of partial polymorphic bands."

[1] Zhang H, Xu F, Wu Y, Hu H H, Dai X F. Progress of potato staple food research and industry development in China. J Integr Agric, 2017, 16:2924-2932.
doi: 10.1016/S2095-3119(17)61736-2
[2] 吴承金, 殷红清, 李大春, 程群. 发展马铃薯产业的优势浅析. 现代农业科学, 2009, 16:282-283.
Wu C J, Yin H Q, Li D C, Cheng Q. Advantage of the development of potato industry. Modern Agric Sci, 2009, 16:282-283 (in Chinese with English abstract).
[3] Reddivari L, Vanamala J, Chintharlapalli S, Safe S H, Miller J C. Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways. Carcinogenesis, 2007, 28, 2227-2235.
pmid: 17522067
[4] Han K H, Shimada K I, Sekikawa M, Fukushima M. Anthocyanin-rich red potato flakes affect serum lipid peroxidation and hepatic SOD mRNA level in rats. Biosci Biotechnol Biochem, 2007, 71:1356-1359.
doi: 10.1271/bbb.70060
[5] Wang Y J, Zheng Y L, Lu J, Chen G Q, Wang X H, Feng J, Ruan J, Sun X, Li C X, Sun Q J. Purple sweet potato color suppresses lipopolysaccharide-induced acute inflammatory response in mouse brain. Neurochem Int, 2010, 56:424-430.
doi: 10.1016/j.neuint.2009.11.016
[6] Staub J, Serquen F, Gupta M. Genetic markers, map construction, and their application in plant breeding. Hortscience, 1996, 31:729-741.
doi: 10.21273/HORTSCI.31.5.729
[7] Sharma V, Nandineni M R. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems. Mol Phylog Evol, 2014, 73:10-17.
doi: 10.1016/j.ympev.2014.01.003
[8] Ismail N A, Rafii M Y, Mahmud T M M, Hanafi M M, Miah G. Molecular markers: a potential resource for ginger genetic diversity studies. Mol Biol Rep, 2016, 43:1347-1358.
pmid: 27585572
[9] Sıdıka Z, Salih K, Yıldız D, Murat G. Development and characterization of SSR markers from pistachio (Pistacia vera L.) and their transferability to eight Pistacia species. Sci Hortic, 2015, 189:94-103.
doi: 10.1016/j.scienta.2015.04.006
[10] Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: features and applications. Trends Biotechnol, 2005, 23:48-55.
pmid: 15629858
[11] 石景. 基于SSR标记的彩色马铃薯亲缘关系分析及指纹图谱构建. 华中农业大学硕士学位论文,湖北武汉, 2011.
Shi J. Phylogenetic Relationship Analysis and Fingerprinting of Pigmented Potato with SSR Markers. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei,China, 2011 (in Chinese with English abstract).
[12] 李先平, 王冬冬, 陈秀华, 朱延明, 陈勤. SSR分子标记分析彩色马铃薯品种间的遗传关系. 东北农业大学学报, 2012, 43(7):61-69.
Li X P, Wang D D, Chen X H, Zhu Y M, Chen Q. Genetic diversity research of color potato cultivars by SSR molecular markers. J Northeast Agric Univ, 2012, 43(7):61-69 (in Chinese with English abstract).
[13] 崔阔澍, 陈龙, 于肖夏, 鞠天华, 于卓, 肖特, 聂利珍, 姜超. 四倍体彩色马铃薯分子遗传连锁图谱构建研究. 东北师大学报(自然科学版), 2015, 47(4):116-122.
Cui K S, Chen L, Yu X X, Ju T H, Yu Z, Xiao T, Nie L Z, Jiang C. Construction of SSR genetic linkage map for tetraploid colored potato. J Northeast Nor Univ (Nat Sci Edn), 2015, 47(4):116-122 (in Chinese with English abstract).
[14] Milbourne D, Meyer R C, Collins A J, Ramsay L D, Gebhardt C, Waugh R. Isolation, characterization and mapping of simple sequence repeat loci in potato. Mol Gene Genet, 1998, 259:233-245.
[15] Ashkenazi V, Chani E, Lavi U, Levy D, Hille J, Veilleux R E. Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses. Genome, 2001, 44:50-62.
pmid: 11269356
[16] Feingold S, Lloyd J, Norero N, Bonierbale M, Lorenzen J. Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theor Appl Genet, 2005, 111:456-466.
pmid: 15942755
[17] 袁娟. 基于马铃薯全基因组序列SSR标记的开发及验证. 四川农业大学硕士学位论文,四川成都, 2013.
Yuan J. Genme-wide Development and Identification of SSRs in Potato. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan,China, 2013 (in Chinese with English abstract).
[18] 肖桂林, 徐竹清, 曹红菊, 李竟才, 夏军辉, 宋波涛. 基于全基因组序列的马铃薯SSR标记开发与连锁图谱加密. 园艺学报, 2018, 45:1551-1562.
Xiao G L, Xu Z Q, Cao H J, Li J C, Xia J H, Song B T. Development of SSR markers based on potato genome sequence and construction of a higher-density linkage map. Hortic Plant J, 2018, 45:1551-1562 (in Chinese with English abstract).
[19] Lee J, Durst R W, Wrolstad R E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J AOAC Int, 2005, 88:1269-1278.
doi: 10.1093/jaoac/88.5.1269
[20] Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet, 2002, 30:194-200.
pmid: 11799393
[21] 姚嘉瑜, 张立武, 赵捷, 徐益, 祁建民, 张列梅. 黄麻全基因组SSR鉴定与特征分析. 作物学报, 2019, 45:10-17.
Yao J Y, Zhang L W, Zhao J, Xu Y, Qi J M, Zhang L M. Evaluation and characteristic analysis of SSRs from the whole genome of jute (Corchorus capsularis). Acta Agron Sin, 2019, 45:10-17 (in Chinese with English abstract).
[22] 原志敏. 玉米全基因组SSRs分子标记开发与特征分析. 四川农业大学硕士学位论文,四川成都, 2013.
Yuan Z M. Development and Characterization of SSR Markers Providing Genome-wide Coverage and High Resolution in Maize. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan,China, 2013 (in Chinese with English abstract).
[23] Huo N, Lazo G, Vogel J, You F M, Ma Y, Hayden D M, Coleman-Derr D, Hill A, Dvorak J, Anderson O D, Luo M C, Gu Y Q. The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences. Funct Integr Genom, 2008, 8:135-147.
doi: 10.1007/s10142-007-0062-7
[24] Bai T D, Xu L A, Xu M, Wang Z R. Characterization of masson pine (Pinus massoniana Lamb.) microsatellite DNA by 454 genome shotgun sequencing. Tree Genet Genom, 2014, 10:429-437.
doi: 10.1007/s11295-013-0684-y
[25] 詹海仙, 王颖莉, 杜晨晖, 张丹, 李睿, 杨梦茹, 张朔生. 基于甘草全基因组序列的SSR分子标记开发. 分子植物育种, 2020, 18:6093-6100.
Zhan H X, Wang Y L, Du C H, Zhang D, Li R, Yang M R, Zhang S S. SSR molecular markers development based on whole genome sequences in Glycyrrhiza uralensis Fisch. Mol Plant Breed, 2020, 18:6093-6100 (in Chinese with English abstract).
[26] 王玉龙, 黄冰艳, 王思雨, 杜培, 齐飞艳, 房元瑾, 孙子淇, 郑峥, 董文召, 张新友. 四倍体野生种花生A. monticola全基因组SSR的开发与特征分析. 中国农业科学, 2019, 52:2567-2585.
Wang Y L, Huang B Y, Wang S Y, Du P, Qi F Y, Fang Y J, Sun Z Q, Zheng Z, Dong W Z, Zhang X Y. Development and characterization of whole genome SSR in tetraploid wild peanut (Arachis monticola). Sci Agric Sin, 2019, 52:2567-2585 (in Chinese with English abstract).
[27] 马名川, 刘龙龙, 刘璋, 周建萍, 南成虎, 张丽君. 苦荞全基因组SSR位点特征分析与分子标记开发. 作物杂志, 2021, (1):38-46.
Ma M C, Liu L L, Liu Z, Zhou J P, Nan C H, Zhang L J. Analysis of SSR loci in whole genome and development of molecular markers in tartary buckwheat. Crops, 2021, (1):38-46 (in Chinese with English abstract).
[28] 童治军, 肖炳光. 3种烟草基因组SSR位点信息分析和标记开发. 西北植物学报, 2014, 34:1549-1558.
Tong Z J, Xiao B G. Survey of SSR loci information in three tobacco genomes and development of SSR markers. Acta Bot Boreali-Occident Sin, 2014, 34:1549-1558 (in Chinese with English abstract).
[29] Meiyalaghan S, Thomson S, Kenel F, Monaghan K, Baldwin S. Development and application of high-resolution melting DNA markers for the polygenic control of tuber skin colour in autotetraploid potato. Mol Breed, 2019, 39:1-17.
doi: 10.1007/s11032-018-0907-x
[30] 许芸梅, 李玉梅, 贾玉鑫, 张春芝, 李灿辉, 黄三文, 祝光涛. 马铃薯红色薯肉调控基因的精细定位与候选基因分析. 中国农业科学, 2019, 52:2678-2685.
Xu Y M, Li Y M, Jia Y X, Zhang C Z, Li C H, Huang S W, Zhu G T. Fine mapping and candidate genes analysis for regulatory gene of anthocyanin synthesis in red-colored tuber flesh. Sci Agric Sin, 2019, 52:2678-2685 (in Chinese with English abstract).
[31] Gong Y M, Xu S C, Mao W H, Hu Q Z, Zhang G W, Ding J, Li Y D. Developing new SSR markers from ESTs of pea (Pisum sativum L.). J Zhejiang Univ Sci, 2010, 11:702-707.
[32] Ellis J R, Burke J M. EST-SSRs as a resource for population genetic analyses. Heredity, 2007, 99:125-132.
pmid: 17519965
[1] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[2] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[3] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[4] LIU Shao-Rong, YANG Yang, TIAN Hong-Li, YI Hong-Mei, WANG Lu, KANG Ding-Ming, FANG Ya-Ming, REN Jie, JIANG Bin, GE Jian-Rong, CHENG Guang-Lei, WANG Feng-Ge. Genetic diversity analysis of silage corn varieties based on agronomic and quality traits and SSR markers [J]. Acta Agronomica Sinica, 2021, 47(12): 2362-2370.
[5] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[6] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[7] Hong-Yan ZHANG,Tao YANG,Rong LIU,Fang JIN,Li-Ke ZHANG,Hai-Tian YU,Jin-Guo HU,Feng YANG,Dong WANG,Yu-Hua HE,Xu-Xiao ZONG. Assessment of genetic diversity by using EST-SSR markers in Lupinus [J]. Acta Agronomica Sinica, 2020, 46(3): 330-340.
[8] Li-Lan ZHANG, Lie-Mei ZHANG, Huan-Ying NIU, Yi XU, Yu LI, Jian-Min QI, Ai-Fen TAO, Ping-Ping FANG, Li-Wu ZHANG. Correlation between SSR markers and fiber yield related traits in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2020, 46(12): 1905-1913.
[9] LIU Rong, WANG Fang, FANG Li, YANG Tao, ZHANG Hong-Yan, HUANG Yu-Ning, WANG Dong, JI Yi-Shan, XU Dong-Xu, LI Guan, GUO Rui-Jun, ZONG Xu-Xiao. An integrated high-density SSR genetic linkage map from two F2 population in Chinese pea [J]. Acta Agronomica Sinica, 2020, 46(10): 1496-1506.
[10] YE Wei-Jun,CHEN Sheng-Nan,YANG Yong,ZHANG Li-Ya,TIAN Dong-Feng,ZHANG Lei,ZHOU Bin. Development of SSR markers and genetic diversity analysis in mung bean [J]. Acta Agronomica Sinica, 2019, 45(8): 1176-1188.
[11] Zhi-Jun TONG,Yi-Han ZHANG,Xue-Jun CHEN,Jian-Min ZENG,Dun-Huang FANG,Bing-Guang XIAO. Mapping of quantitative trait loci conferring resistance to brown spot in cigar tobacco cultivar Beinhart1000-1 [J]. Acta Agronomica Sinica, 2019, 45(3): 477-482.
[12] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
[13] XUE Yan-Tao,LU Ping,SHI Meng-Sha,SUN Hao-Yue,LIU Min-Xuan,WANG Rui-Yun. Genetic diversity and population genetic structure of broomcorn millet accessions in Xinjiang and Gansu [J]. Acta Agronomica Sinica, 2019, 45(10): 1511-1521.
[14] Jia-Yu YAO,Li-Wu ZHANG,Jie ZHAO,Yi XU,Jian-Min QI,Lie-Mei ZHANG. Evaluation and characteristic analysis of SSRs from the whole genome of jute (Corchorus capsularis) [J]. Acta Agronomica Sinica, 2019, 45(1): 10-17.
[15] Hong LIU,Zhen-Jiang XU,De-Hua RAO,Qing LU,Shao-Xiong LI,Hai-Yan LIU, ,Xuan-Qiang LIANG,Yan-Bin HONG. Genetic diversity analysis and distinctness identification of peanut cultivars based on morphological traits and SSR markers [J]. Acta Agronomica Sinica, 2019, 45(1): 26-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!