Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (11): 2870-2882.doi: 10.3724/SP.J.1006.2024.44027

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of foliar spraying regulators on nitrogen utilization during the overwintering stage and yield of late-sowing rapeseed

GUO Mao-Chang1(), CHEN Du-Juan1, YUAN Jin-Zhan1, ZHANG Zhe2, JIANG Bo3, YANG Shu-Ting1, CHEN Min1, GUO An-Da1, WANG Qi1, KUAI Jie1, WANG Bo1, WANG Jing1, ZHAO Jie1, XU Zheng-Hua1,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Hubei Hongshan Laboratory / Key Laboratory of Crop Ecophysiology and Farming System for the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2NationalAgricultural Technology Extension Service Center, Beijing 100125, China
    3Hubei Department of Rape Production Management, Wuhan 430070, Hubei, China
  • Received:2024-02-19 Accepted:2024-06-20 Online:2024-11-12 Published:2024-07-10
  • Contact: *E-mail: xzh@mail.hzau.edu.cn
  • Supported by:
    Key Research and Development Program of Hubei Province(2023BBB028);Hubei Provincial Project(HBZY2023B001-01)

Abstract:

Ensuring high yields of late-sown rapeseed plays a crucial role in mitigating the conflict of cropping seasons between rice and rapeseed cultivation, while maximizing the utilization of winter fallow fields in the Yangtze River Basin (YRB). In this study, we focused on the early-maturing rapeseed variety, Huayouza 137. A completely randomized block design was employed, including a control group (CK) with clear water, as well as treatments with different concentrations of gibberellic acid (GA3) at 10, 25, and 50 mg L-1 (G1, G2, G3), 2,4-epibrassinolide (2,4-EBR) at 0.25 mg L-1 and 0.5 mg L-1 (B1, B2), and Diethyl aminoethyl hexanoate (DA-6) at 10 and 20 mg L-1 (D1, D2). The foliar spraying of these regulators was carried out at the 3-leaf stage from 2021 to 2023, and their effects on nitrogen utilization and yield formation of late-sown rapeseed during the overwintering stage were investigated. The results showed that moderate concentrations of GA3, 2,4-EBR, and DA-6 significantly enhanced the yield of late-sown rapeseed compared to CK. However, excessive application of regulators, such as GA3 and B2 treatments, had a negative impact. Notably, G1, B1, and D2 treatments exhibited the highest yield increases. Specifically, compared to CK, they resulted in yield increments of 13.9%, 10.3%, and 6.3% from 2021 to 2022, and 12.5%, 7.2%, and 6.2% from 2022 to 2023, respectively. Foliar spraying regulators also increased the leaf area and leaf dry matter. On one hand, the content of leaf gibberellin (GA3), indoleacetic acid (IAA), and zeatin (Zt) increased, while the abscisic acid (ABA) content decreased, leading to an expansion of the leaf area. On the other hand, the activities of leaf nitrate reductase (NR), glutamine synthetase (GS), and glutamate synthetase (GOGAT) increased, enhancing the nitrogen assimilation capacity of the leaves and resulting in increased leaf dry weight. Correlation analysis revealed that yield was positively correlated with leaf area and leaf dry matter. Leaf area showed a positive correlation with GA3, IAA, and Zt content, while negatively correlating with ABA content. Moreover, NR, GS, and GOGAT activities were positively correlated with GA3, IAA, and Zt content, respectively, while negatively correlated with ABA content. In conclusion, foliar spraying of late-sown rapeseed with appropriate concentrations of GA3, 2,4-EBR, and DA-6 at the 3-leaf stage enhanced the activities of NR, GS, and GOGAT enzymes. This, in turn, improved leaf nitrogen assimilation capacity and nitrogen use efficiency by regulating hormone levels in the leaves. Additionally, it facilitated leaf expansion, resulting in a larger leaf area, increased dry matter accumulation, and ultimately higher yield. Among the treatments, G1 (10 mg L-1 GA3), B1 (0.25 mg L-1 2,4-EBR), and D2 (10 mg L-1 DA-6) demonstrated the most effective outcomes. This study provides important theoretical and technical support for the exogenous regulation of late-sown rapeseed cultivation in the YRB, particularly in terms of pre-winter strong seedling cultivation, and the improvement of winter fallow field utilization.

Key words: rapeseed, late-sowing, foliar spraying, regulators, nitrogen utilization, yield

Fig. 1

Major meteorological factors for 2021-2022 (A) and 2022-2023 (B) Ta-min and Ta-max represent the daily minimum temperature and the daily maximum temperature, respectively."

Table 1

Effect of foliar spraying regulators on yield and yield components of late-sowing rapeseed"

年份
Year
调节剂
PGR
单株角果数
Pods per plant
每角果粒数
Seeds per pod
千粒重
1000-seed wight
(g)
单株产量
Yield per plant
(g)
成株率
Survival rate
(%)
小区产量
Yield
(kg hm-2)
2021 CK 104.5 bc 18.6 ab 3.71 a 6.94 d 55.9 abc 2511.1 c
G1 139 a 19.2 ab 3.68 a 9.24 a 59.5 a 2842.2 a
G2 116.5 abc 18.1 b 3.66 a 8.47 c 56.8 abc 2649.8 b
G3 97.6 c 18.6 ab 3.69 a 6.65 e 52.0 c 2416.5 cd
B1 128.5 ab 19.6 a 3.57 a 8.97 b 57.7 abc 2768.9 ab
B2 98.1 c 18.3 b 3.76 a 6.31 f 54.3 abc 2338.9 d
D1 97.1 c 18.2 b 3.58 a 6.64 e 54.3 abc 2448.9 cd
D2 111.1 abc 18.7 ab 3.58 a 8.33 c 57.3 abc 2692.3 b
2022 CK 95.1 c 18.0 abc 3.53 a 5.76 e 54.2 abc 2176.3 c
G1 108.3 bc 18.9 a 3.50 a 8.08 a 58.2 ab 2448.8 a
G2 100.5 bc 17.8 bc 3.48 a 7.63 c 52.8 bc 2294.1 b
G3 96.3 c 18.1 abc 3.54 a 5.73 e 55.8 abc 2157.0 c
B1 98.2 c 18.7 ab 3.52 a 7.95 b 56.3 abc 2312.9 b
B2 93.7 c 17.7 c 3.64 a 5.19 f 54.7 abc 2053.0 d
D1 91.7 c 18.0 abc 3.53 a 5.02 g 52.9 bc 2088.7 d
D2 105.5 bc 18.2 abc 3.44 a 7.07 d 53.3 bc 2311.1 b
方差分析ANOVA
年份 Year (Y) ** * NS ** NS **
调节剂 PGR (P) ** NS NS ** NS **
年份×调节剂 Y×P ** NS NS ** NS **

Table 2

Effect of foliar spraying regulators on key agronomic traits of late-sowing rapeseed at maturity stage"

年份
Year
调节剂
PGR
株高
Plant height
(cm)
根颈粗
Root-crown
diameter (cm)
分枝数
Branch number
有效分枝高度
Effective branch
height (cm)
地上部干重
Shoot dry
matter (g)
2021 CK 166.3 de 9.7 c 4.0 c 111.3 a 17.9 d
G1 171.1 bc 11.6 a 5.6 a 100.2 cd 25.1 a
G2 169.3 c 10.6 bc 4.6 b 100.4 cd 20.6 c
G3 165.5 e 10.9 ab 4.5 b 104.4 bc 18.0 d
B1 173.3 ab 10.2 bc 5.5 a 108.7 ab 23.6 b
B2 165.3 e 10.2 bc 3.8 c 98.9 d 17.0 e
D1 168.7 cd 10.5 bc 4.5 b 101.8 cd 17.5 d
D2 174.7 a 10.1 bc 5.6 a 98.1 d 23.2 b
2022 CK 165.5 b 7.5 c 3.1 d 110.7 a 16.3 e
G1 169.6 a 10.7 a 4.5 ab 107.8 ab 23.2 a
G2 162.6 c 9.7 b 4.0 c 96.5 cd 18.7 c
G3 159.0 d 9.3 b 3.4 d 102.3 bcd 16.1 e
2022 B1 167.7 a 9.5 b 4.5 ab 103.5 abc 21.9 b
B2 164.1 bc 9.5 b 4.1 c 95.3 d 15.7 f
D1 163.6 c 9.7 b 4.2 bc 105.1 ab 16.1 e
D2 168.5 a 10.5 a 4.6 a 96.4 cd 18.0 d
方差分析ANOVA
年份 Year (Y) ** ** ** ** **
调节剂 PGR (P) ** ** ** ** **
年份×调节剂 Y×P ** ** ** ** **

Fig. 2

Effect of foliar spraying regulators on lodging resistance of late-sowing rapeseed Different lowercase letters indicate significant differences at P < 0.05. Treatments are the same as those given in Table 1."

Table 3

Effect of foliar spraying regulators on key agronomic traits of late-sowing rapeseed at wintering stage"

年份
Year
调节剂
PGRs
株高
Plant height (cm)
根长
Root length (cm)
根颈粗
Root-crown
diameter (mm)
绿叶数
Green leaves
number
叶面积
Leaf area
(cm2)
叶干重
Leaf dry matter (g)
2021 CK 24.5 e 14.1 bc 4.01 d 4.6 c 404.7 d 2.17 b
G1 30.4 a 16.2 a 6.19 a 5.2 b 516.2 a 3.16 a
G2 26.5 c 15.6 ab 4.65 bc 5.0 b 433.0 c 2.32 b
G3 24.5 e 14.6 abc 4.91 b 4.6 c 390.3 de 2.16 b
B1 29.0 b 15.6 ab 4.23 cd 5.4 a 459.5 b 3.14 a
B2 25.2 de 12.9 c 5.67 a 5.0 b 363.9 e 2.18 b
D1 26.1 cd 14.7 abc 4.57 bc 5.1 b 384.9 de 2.15 b
D2 28.9 b 16.0 ab 5.94 a 5.1 b 475.6 b 3.04 a
2022 CK 23.7 c 12.9 ab 3.68 d 4.0 c 416.8 cd 2.28 b
G1 28.7 a 14.7 a 5.47 a 4.5 b 490.2 a 3.30 a
G2 25.3 b 14.5 a 4.38 b 4.5 b 427.8 c 2.48 b
G3 24.7 bc 13.6 ab 4.40 b 4.3 bc 363.2 e 2.30 b
B1 27.9 a 12.0 b 3.84 cd 5.0 a 465.0 b 3.36 a
B2 24.3 bc 13.9 ab 5.15 a 4.5 b 357.7 e 2.15 b
D1 24.9 bc 13.3 ab 4.16 bc 4.7 ab 401.7 d 2.18 b
D2 27.5 a 14.5 a 5.42 a 5.0 a 474.8 ab 3.13 a
方差分析ANOVA
年份 Year (Y) ** ** ** ** NS NS
调节剂 PGR (P) ** ** ** ** ** **
年份×调节剂 Y×P NS NS NS NS * NS

Fig. 3

Relationship between yield and leaf number, leaf area, and leaf dry matter during overwintering *** represents significant difference at P < 0.001. Treatments are the same as those given in Table 1."

Fig. 4

Effects of foliar spraying regulators on nitrogen content and nitrogen use efficiency of late-sowing rapeseed Different lowercase letters indicate significant differences at P < 0.05. Treatments are the same as those given in Table 1."

Fig. 5

Effect of foliar spraying regulators on the activities of NR, GS, and GOGAT of late-sowing rapeseed leaves Different lowercase letters indicate significant differences at P < 0.05. Treatments are the same as those given in Table 1."

Fig. 6

Effect of foliar spraying regulators on the contents of endogenous hormones in late-sowing rapeseed leaves Different lowercase letters indicate significant differences at P < 0.05. Treatments are the same as those given in Table 1."

Table 4

Correlation analysis between endogenous hormone content and key enzyme activities of nitrogen metabolism in leaves"

指标
Index
硝酸还原酶活性
NR activity
谷氨酸合成酶活性
GS activity
谷氨酰胺合成酶活性
GOAGT activity
赤霉素 GA3 0.583** 0.841** 0.531**
吲哚乙酸 IAA 0.674** 0.732** 0.773**
玉米素 Zt 0.529** 0.517** 0.674**
脱落酸 ABA -0.651** -0.749** -0.854**

Fig. 7

Correlation between endogenous hormone content in leaves and leaf area *: P < 0.05; ***: P < 0.001. Treatments are the same as those given in Table 1."

[17] Chang B W, Zhong P, Liu J, Tang Z H, Gao Y B, Yu H J, Guo W. Effect of low-temperature stress and gibberellin on seed germination and seedling physiological responses in peanut. Acta Agron Sin, 2019, 45: 118-130 (in Chinese with English abstract).
[18] 高少凡, 韦丁一, 何庆彪, 徐劲松, 张学昆, 谢伶俐, 许本波. 甘蓝型油菜苗期赤霉素含量及其代谢关键基因转录特性. 中国油料作物学报: 1-11. https://doi.org/10.19802/j.issn.1007-9084.2023094.
Gao S F, Wei D Y, He Q B, Xu J S, Zhang X K, Xie L L, Xu B B. Gibberellin metabolism level and key gene transcription characteristics at seedling stage of Brassica napus L. Chin J Oil Crop Sci, 1-11. https://doi.org/10.19802/j.issn.1007-9084.2023094. (in Chinese with English abstract).
[19] 王庆燕, 管大海, 潘海波, 李建民, 段留生, 张明才, 李召虎. 油菜素内酯对春玉米灌浆期叶片光合功能与产量的调控效应. 作物学报, 2015, 41: 1557-1563.
Wang Q Y, Guan D H, Pan H B, Li J M, Duan L S, Zhang M C, Li Z H. Effect of brassinolide on leaf photosynthetic function and yield in spring maize filling stage. Acta Agron Sin, 2015, 41: 1557-1563. (in Chinese with English abstract).
[20] Gao Z, Liang X G, Zhang L, Lin S, Zhao X, Zhou L L, Shen S, Zhou S-L. Spraying exogenous 6-benzyladenine and brassinolide at maize yield by enhancing source and sink capacity tasseling increases. Field Crops Res, 2017, 211: 1-9.
[21] Xu Y, Zhang X Y, Yang H, Lu D. Effects of exogenous brassinolide application at the silking stage on nutrient accumulation, translocation and remobilization of waxy maize under post-silking heat stress. Agriculture-basel, 2022, 12: 572.
[22] 王洁, 华一帆, 秦际远, 贺明荣, 鞠正春, 吕鹏, 邓淑珍, 代兴龙. 表油菜素内酯喷施时期对宽幅播种小麦产量和氮素利用率的影响. 应用生态学报, 2023, 34: 99-106.
doi: 10.13287/j.1001-9332.202301.041
Wang J, Hua Y F, Qin J Y, He M R, Ju Z C, Lyu P, Deng S Z, Dai X L. Effects of timing of epilbrassinolide spraying on yield and nitrogen use efficiency of wide-belt sowing wheat. Chin J Appl Ecol, 2023, 34: 99-106 (in Chinese with English abstract).
[23] 王道平, 徐江, 牟永莹, 闫文秀, 赵梦洁, 马博, 李群, 张丽娜, 潘映红. 表油菜素内酯影响水稻幼苗响应低温胁迫的蛋白质组学分析. 作物学报, 2018, 44: 897-908.
doi: 10.3724/SP.J.1006.2018.00897
Wang D P, Xu J, Mu Y Y, Yan W X, Zhao M J, Ma B, Li Q, Zhang L, Pan Y H. Proteomic analysis of the effect of 2,4-Epibrassinolide on rice seedlings response to cold stress. Acta Agron Sin, 2018, 44: 897-908 (in Chinese with English abstract).
[24] 刘春娟, 冯乃杰, 郑殿峰, 宫香伟, 孙福东, 石英, 崔洪秋, 张盼盼, 赵晶晶. 植物生长调节剂S3307和DTA-6对大豆源库碳水化合物代谢及产量的影响. 中国农业科学, 2016, 49: 657-666.
doi: 10.3864/j.issn.0578-1752.2016.04.005
Liu C J, Feng N J, Zheng D F, Gong X W, Sun F D, Shi Y, Cui H Q, Zhang P P, Zhao J J. Effects of plant growth regulators S3307 and DTA-6 on carbohydrate content and yield in soybean. Sci Agric Sin, 2016, 49: 657-666 (in Chinese with English abstract).
[25] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 263-270.
Bao S D. Soil Agrochemical Analysis. Beijing: China Agriculture Press, 2000. pp 263-270 (in Chinese).
[26] 郑飞娜, 初金鹏, 张秀, 费立伟, 代兴龙, 贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应. 作物学报, 2020, 46: 423-431.
doi: 10.3724/SP.J.1006.2020.91046
Zheng F N, Chu J P, Zhang X, Fei L W, Dai X L, He M R. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar. Acta Agron Sin, 2020, 46: 423-431 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.91046
[27] Hu S L, Chen Q H, Guo F, Wang M L, Zhao H, Wang Y, Ni D J, Wang P. (Z)‑3‑Hexen‑1‑ol accumulation enhances hyperosmotic stress tolerance in Camellia sinensis. Plant Mol Biol, 2020, 103: 287-302.
[28] 袁圆, 汪波, 周广生, 刘芳, 黄俊生, 蒯婕. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54: 1613-1626.
doi: 10.3864/j.issn.0578-1752.2021.08.004
Yuan Y, Wang B, Zhou G S, Liu F, Huang J S, Kuai J. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed. Sci Agric Sin, 2021, 54: 1613-1626 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.08.004
[1] 刘成, 黄杰, 冷博峰, 冯中朝, 李俊鹏. 我国油菜产业现状、发展困境及建议. 中国农业大学学报, 2017, 22(12): 203-210.
Liu C, Huang J, Leng B F, Feng Z C, Li J P. Current situation, development difficulties and suggestions of Chinese rape industry. J Chin Agric Univ, 2017, 22(12): 203-210 (in Chinese with English abstract).
[2] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
doi: 10.7505/j.issn.1007-9084.2018.05.001
Wang H Z. New - demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617 (in Chinese with English abstract).
[3] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489.
doi: 10.7505/j.issn.1007-9084.2019.04.001
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2019.04.001
[4] 周广生, 左青松, 廖庆喜, 吴江生, 傅廷栋. 我国油菜机械化生产现状、存在问题及对策. 湖北农业科学, 2013, 52: 2153-2157.
Zhou G S, Zuo Q S. Liao Q X, Wu J S, Fu T D. Mechanical production status, existing problems and strategy discussion of rapeseed in China. Hubei Agric Sci, 2013, 52: 2153-2157 (in Chinese with English abstract).
[5] 张哲, 殷艳, 刘芳, 王积军, 傅廷栋. 我国油菜多功能开发利用现状及发展对策. 中国油料作物学报, 2018, 40: 618-623.
doi: 10.7505/j.issn.1007-9084.2018.05.002
Zhang Z, Yin Y, Liu F, Wang J J, Fu T D. Current situation and development countermeasures of Chinese rapeseed multifunctional development and utilization. Chin J Oil Crop Sci, 2018, 40: 618-623 (in Chinese with English abstract).
[29] 余新颖, 王春云, 李大双, 王宗铠, 蒯婕, 汪波, 王晶, 徐正华, 周广生. 高产油菜品种稳产性形成机制. 作物学报, 2023, 49: 1601-1615.
doi: 10.3724/SP.J.1006.2023.24115
Yu X Y, Wang C Y, Li D S, Wang Z K, Kuai J, Wang B, Wang J, Xu Z H, Zhou G S. Formation mechanism of yield stability in high-yielding rapeseed varieties. Acta Agron Sin, 2023, 49: 1601-1615 (in Chinese with English abstract).
[30] 蒯婕, 李真, 汪波, 刘芳, 叶俊, 周广生. 密度和行距配置对油菜苗期性状及产量形成的影响. 中国农业科学, 2021, 54: 2319-2332.
doi: 10.3864/j.issn.0578-1752.2021.11.006
Kuai J, Li Z, Wang B, Liu F, Ye J, Zhou G S. Effects of density and row spacing on seedling traits of rapeseed and seed yield. Sci Agric Sin, 2021, 54: 2319-2332 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.11.006
[31] Waalen W, Øvergaard S I, Åssveen M, Eltun R, Gusta L. Winter survival of winter rapeseed and winter turnip rapeseed in field trials, as explained by PPLS regression. Eur J Agron, 2013, 51: 81-90.
[32] 刘秋霞. 氮肥施用调控直播冬油菜产量构成因子的机制研究. 华中农业大学博士论文, 湖北武汉, 2020.
Liu Q X. Study on The Mechanism Of Yield Components Of Direct-Sown Oilseed Rape (Brassica napus L.) Under Regulation Of Nitrogen Fertilizer. PhD Thesis of Huazhong Agriculture University, Wuan, Hubei, China, 2014 (in Chinese with English abstract).
[33] de Bang T C, Husted S, Laursen K H, Persson D P, Schjoerring J K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol, 2021, 229: 2446-2469.
doi: 10.1111/nph.17074 pmid: 33175410
[34] Li A, Hu B, Chu C. Epigenetic regulation of nitrogen and phosphorus responses in plants. J Plant Physiol. 2021, 258-259:153363.
[35] Miflin B, Habash D. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in nitrogen utilization of crops. J Exp Bot, 2002, 53: 979-987.
doi: 10.1093/jexbot/53.370.979 pmid: 11912240
[6] 陈静. 湖北省油菜产业发展问题研究. 华中农业大学博士学位论文, 湖北武汉, 2014.
Chen J. Research on the Rape Industry Development of Hubei Province. PhD Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2014 (in Chinese with English abstract).
[7] Buresh R J, Pampolino M F, Witt C. Field-specific potassium and phosphorus balances and fertilizer requirements for irrigated rice-based cropping systems. Plant Soil, 2010, 335: 35-64.
[8] Timsina J, Connor D J. Productivity and management of rice-wheat cropping systems: issues and challenges. Field Crop Res, 2001, 69: 93-132.
[9] 谭云娟, 邱新法, 曾燕, 施国萍. 近50a来中国不同流域降水的变化趋势分析. 气象科学, 2016, 36: 494-501.
Tan T J. Qiu X F. Zeng Y. Shi G P. Variation trend of precipitation in different river basins in recent 50 years. J Meteorol Sci, 2016, 36: 494-501.
[10] Scott R K, Ogunremi E A, Ivins J D, Mendham N J. The effect of sowing date and season on growth and yield of oilseed rape (Brassica napus). J Agric Sci, 1973, 81: 277-285.
[11] 李小勇, 顾炽明, 刘康, 廖星, 黄威, 杨志远, 秦璐. 施氮量对迟播油菜氮素利用和产量品质的影响. 中国农业科学, 2021, 54: 3726-3736.
doi: 10.3864/j.issn.0578-1752.2021.17.014
Li X Y, Gu C M, Liu K, Liao X, Huang W, Yang Z Y, Qin L. Effects of nitrogen spraying rate on nitrogen use efficiency, yield and quality of late sowing rapeseed. Sci Agric Sin, 2021, 54: 3726-3736 (in Chinese with English abstract).
[12] Kuai J, Li X Y, Yang Y, Zhou G S. Effects of paclobutrazol on biomass production in relation to resistance to lodging and pod shattering in Brassica napus L. J Integr Agric, 2017, 16: 2470-2481.
[36] Xing J, Cao X, Zhang M, Wei X, Zhang J, Wan X. Plant nitrogen availability and crosstalk with phytohormones signalings and their biotechnology breeding spraying in crops. Plant Biotechnol J, 2022, 21: 1320-1342.
[37] Foyer C, Parry M, Noctor G. Markers and signals associated with N assimilation in higher plants. J Exp Bot, 2003, 54: 585-593.
[38] Avery G, Burkholder P, Creighton H. Nutrient deficiencies and growth hormone concentration in Helianthus and Nicotiana. Am J Bot, 1937, 24: 553-557.
[39] Lou H X, Zhao B W, Peng Y, El-Badri A M, Batool M, Wang C Y, Wang Z K, Huang W, Wang T Y, Li Z, Xu Z H, Wang J, Wang B, Kuai J, Zhou G S. Auxin plays a key role in nitrogen and plant density-modulated root growth and yield in different plant types of rapeseed. Field Crop Res, 2023, 302: 109066.
[40] Camut L, Gallova B, Jilli L, Sirlin-Josserand M, Carrera E, Sakvarelidze-Achard L, Ruffel S, Krouk G, Thomas S, Hedden P, Phillips A, Davière J-M, Achard P. Nitrate signaling promotes plant growth by upregulating gibberellin biosynthesis and destabilization of DELLA proteins. Curr Biol, 2021, 31: 4971-4982.
[41] Wang Y B, Yao Q Q, Zhang Y S, Zhang Y X, Xing J P, Yang B Z, Mi G H, Li Z H, Zhang M C. The role of gibberellins in regulation of nitrogen uptake and physiological traits in maize responding to nitrogen availability. Int J Mol Sci, 2020, 21: 1824.
[42] Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci, 2006, 11: 440-448.
pmid: 16899391
[43] Signora L, Smet I, Foyer C. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J, 2001, 28: 655-662.
doi: 10.1046/j.1365-313x.2001.01185.x pmid: 11851911
[44] Guo Y G, Ren G D, Zhang K W, Li Z H, Miao Y, Guo H W. Leaf senescence: progression, regulation, and application. Mol Hortic, 2021, 1: 5.
doi: 10.1186/s43897-021-00006-9 pmid: 37789484
[45] 杨东清, 董文华, 骆永丽, 宋文挺, 蔡铁, 李勇, 尹燕枰, 王振林. 外源6-BA对两种氮素水平下小麦幼苗叶片光合性能及内源激素含量的影响. 中国农业科学, 2017, 50: 3871-3884.
doi: 10.3864/j.issn.0578-1752.2017.20.004
[13] 罗凯, 谢琛, 汪锦, 王甜, 何舜, 雍太文, 杨文钰. 外源喷施植物生长调节剂对套作大豆碳氮代谢和花荚脱落的影响. 作物学报, 2021, 47: 752-760.
doi: 10.3724/SP.J.1006.2021.04129
Luo K, Xie C, Wang J, Wang T, He S, Yong T W, Yang W Y. Effect of exogenous plant growth regulators on carbon-nitrogen metabolism and flower-pod abscission of relay strip intercropping soybean. Acta Agron Sin, 2021, 47: 752-760 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04129
[14] Kuai J, Yang Y, Sun Y, Zhou G, Zuo Q, Wu J, Ling X. Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L. Field Crop Res, 2015, 180: 10-20.
[15] Li Y, Han X, Ren H, Zhao B, Zhang J, Ren B, Gao H, Liu P. Exogenous SA or 6-BA maintains photosynthetic activity in maize leaves under high temperature stress. Crop J, 2023, 11: 605-617.
doi: 10.1016/j.cj.2022.08.006
[16] 金云倩, 王彬, 郭书磊, 赵霖熙, 韩赞平. 赤霉素调控玉米种子活力的研究进展. 生物技术通报, 2023, 39(1): 84-94.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0473
Jin Y Q, Wang B, Guo S L, Zhao L X, Han Z P. Research progress in gibberellin regulation on maize seed vigor. Biol Bull, 2023, 39(1): 84-94 (in Chinese with English abstract).
[17] 常博文, 钟鹏, 刘杰, 唐中华, 高亚冰, 于洪久, 郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响. 作物学报, 2019, 45: 118-130.
doi: 10.3724/SP.J.1006.2019.84043
[45] Yang D Q, Dong W H, Luo Y L, Song W T, Cai T, Li Y, Yin Y P, Wang Z L. Effects of exogenous 6-BA on photosynthetic characteristics and endogenous hormone content in wheat leaves under two nitrogen spraying levels at seedling sage. Sci Agric Sin, 2017, 50: 3871-3884 (in Chinese with English abstract).
[1] XU Yi-Fan, XU Cai-Long, LI Rui-Dong, WU Zong-Sheng, HUA Jian-Xin, YANG Lin, SONG Wen-Wen, WU Cun-Xiang. Deep side fertilization improved soybean yield by optimizing leaf function and nitrogen accumulation [J]. Acta Agronomica Sinica, 2024, 50(9): 2335-2346.
[2] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[3] LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424.
[4] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[5] PENG Jie, XIE Xiao-Qi, ZHANG Zhao, YAO Xiao-Fen, QIU Shen, CHEN Dan-Dan, GU Xiao-Na, WANG Yu-Jie, WANG Chen-Chen, YANG Guo-Zheng. Relationship between cotton yield and canopy microenvironment under summer direct seeding [J]. Acta Agronomica Sinica, 2024, 50(9): 2371-2382.
[6] ZHANG Gui-Qin, WANG Hong-Zhang, GUO Xin-Song, ZHU Fu-Jun, GAO Han, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Peng, REN Hao. Effects of organic material inputs on soil physicochemical properties and summer maize yield formation in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(9): 2323-2334.
[7] ZHANG Qi-Qi, CHEN Jie-Chang, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHAO Jie, ZHAO Si-Ming, JIA Cai-Hua, ZHOU Guang-Sheng. Effect of high density planting on the quality of cold pressed rapeseed oil [J]. Acta Agronomica Sinica, 2024, 50(9): 2358-2370.
[8] ZHANG Zhen, HE Jian-Ning, SHI Yu, YU Zhen-Wen, ZHANG Yong-Li. Effects of row spacing and planting patterns on photosynthetic characteristics and yield of wheat [J]. Acta Agronomica Sinica, 2024, 50(9): 2396-2407.
[9] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[10] SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038.
[11] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[12] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[13] CAO Zi-Qi, ZHAO Xiao-Qing, ZHANG Xiang-Qian, WANG Jian-Guo, LI Juan, HAN Yun-Fei, LIU Dan, GAO Yan-Hua, LU Zhan-Yuan, REN Yong-Feng. Effects of nitrogen application levels on the accumulation, distribution of nitrogen, phosphorus and potassium, and the corresponding yield of Cyperus esculentus in sandy soil [J]. Acta Agronomica Sinica, 2024, 50(7): 1805-1817.
[14] XIE Xiong-Ze, XIE Jie, CHU Qian-Mei, YIN Yu-Feng, YU Xiao-Hong, WANG Dun, FENG Peng. Analysis of water requirement and water surplus/deficit characteristics of winter rapeseed in Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(7): 1829-1840.
[15] HAN Xiao-Chen, ZHANG Gui-Qin, WANG Ya-Hui, REN Hao, WANG Hong-Zhang, LIU Guo-Li, LIN Dian-Xu, WANG Zi-Qiang, ZHANG Ji-Wang, ZHAO Bin, REN Bao-Zhao, LIU Peng. Effects of soil conditioners on soil salinity content and maize yield in coastal saline-alkali land [J]. Acta Agronomica Sinica, 2024, 50(7): 1776-1786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!