Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 943-957.doi: 10.3724/SP.J.1006.2025.44167

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of mechanical properties of peanut pods and screening of early maturing germplasm

CHI Xiao-Yuan1(), BI Jing-Nan1, ZHAO Jian-Xin1,2, CHEN Na1, PAN Li-Juan1, JIANG Xiao1, YIN Xiang-Zhen1, ZHAO Xu-Hong1, MA Jun-Qing1, XU Jing1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
  • Received:2024-09-30 Accepted:2024-12-12 Online:2025-04-12 Published:2024-12-18
  • Contact: E-mail: xu_jing_cool@yeah.net
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Natural Science Fund of Shangdong Province(ZR2021QC172);Natural Science Fund of Shangdong Province(ZR2023QC146);Major Scientific and Technological Project in Xinjiang(2022A02008-3);Taishan Scholars Program(tstp20240523);Taishan Scholars Program(tsqn202312292);China Agriculture Research System of MOF and MARA(CARS-13);Research and Development Program of Shandong Province(2024LZGC035);Key Research and Development Plan of Shandong Province (Action Plan to Boost Scientific and Technological Innovation in Rural Revitalization)(2022TZXD0031);Innovation Project of SAAS(CXGC2023F20);Innovation Project of SAAS(CXGC2024F20);Key Laboratory of Digital Upland Crops of Zhejiang Province(2022E10012);Open Project of Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs(KF2024007)

Abstract:

The mechanical properties of peanut pods are critical reference indicators for mechanized harvesting, and selecting early-maturing varieties is a key strategy to meet market demand and improve agricultural production efficiency. In this study, we measured and analyzed peg strength, pod rupture force, and maturity rates in 499 peanut germplasm resources from around the world. The results revealed wide variation in peg strength (3.55-15.54 N), with the peg strength of mature pods (7.13 N) in 265 varieties being greater than that of immature pods (6.99 N). Significant or highly significant differences in peg strength across different maturity stages were observed in 38 materials. The force required to detach the plant from its petiole (7.51 N) was higher than that required to detach the pod from its petiole (7.11 N), with 48 peanut germplasm resources showing significantly or highly significantly higher plant-petiole detachment forces. Significant differences in pod rupture force were detected across three orientations: the lowest rupture force occurred when pods were positioned vertically, and the highest when positioned laterally. Peg strength was most strongly correlated with pod-petiole detachment force (r = 0.99, P < 0.01). Principal component analysis extracted four main factors related to mechanical properties, with a cumulative contribution rate of 63.83%. Multiple regression analysis identified pod-petiole detachment force, pod-petiole detachment ratio, pod layer thickness, peg strength of immature pods, and plant-petiole detachment force as the main factors influencing peg strength. Ultimately, 16 germplasm resources with early maturity and superior pod mechanical properties were identified. This study provides valuable insights for the development of early-maturing peanut varieties well-suited for mechanized harvesting.

Key words: peanut, pod mechanical properties, peg strength, pod rupture force, maturity

Table 1

Mean of copies, peg strength, pod rupture force, and maturing rate of germplasms from different geographical origins"

地理分布
Geographic
distribution
份数
No. accessions
果柄强度a
Peg strengtha
(N)
正压破壳力b
Transverse
pressureb (N)
侧压破壳力c
Lateral
pressurec (N)
立压破壳力d
Vertical
pressured (N)
成熟率e
Maturing ratee (%)
美国
USA
259 6.63 41.01 43.33 29.43 62.23
日本
Japan
1 7.82 41.85 46.20 31.16 88.00
澳大利亚
Australia
1 8.88 40.45 45.34 26.58 28.33
中国China 北方North 211 7.56 41.13 43.93 28.77 80.88
南方South 27 7.87 38.32 42.60 28.65 80.91

Table 2

Mean and variation of peg strength, maturing rate, ratio of pod-petiole dropping, seed-setting range, peg length in different peanut genetic resources"

性状Trait 均值±标准差 Mean ± SD 变幅Range
果柄强度 Peg strength (N) 7.10 ± 1.91 3.55-15.54
成熟荚果果柄强度 Mature pods peg strength (N) 7.13 ± 2.02 3.49-15.97
未熟荚果果柄强度Immature pods peg strength (N) 6.99 ± 2.29 1.35-17.45
果-柄脱落力 Pod-petiole dropping force (N) 7.11 ± 1.96 3.67-15.73
秧-柄脱落力 Plant-petiole dropping force (N) 7.51 ± 2.45 1.57-20.96
成熟率 Maturing rate (%) 71.10 ± 0.21 0-100.00
果-柄脱落百分率 Ratio of pod-petiole dropping (%) 84.90 ± 0.10 20.00-100.00
正压破壳力 Transverse pressure (N) 53.64 ± 8.04 30.69-80.90
侧压破壳力 Lateral pressure (N) 58.23 ± 8.80 31.94-87.72
立压破壳力 Vertical pressure (N) 38.97 ± 6.78 21.56-68.68
荚果层高度 Pod layer height (cm) 10.60 ± 2.35 5.88-21.17
荚果层厚度 Pod layer thickness (cm) 10.72 ± 1.17 7.42-14.17
果柄长度 Peg length (cm) 5.18 ± 0.95 2.91-8.58

Fig. 1

Analysis of peg strength in different peanut genetic resources A: grades of peg strength in peanut genetic resources; B: distribution of peg strength in 499 peanut genetic resources; C: significance of peanut peg strength during four years; D: distribution of pod dropping force in 499 peanut genetic resources, the red triangle indicates the significant difference between the two nodes; E: ratio of pod-petiole dropping in 499 peanut genetic resources; F: distribution of peg strength of mature and immature pods in 499 peanut genetic resources in four years, the red triangle indicates the significant difference between the two type of peanuts; G: gomparison of peg strength of germplasms from different countries; H: comparison of peg strength of germplasms from different geographical origins. ns indicates no significant difference at the 0.05 level; * indicates significant difference at the 0.05 probability level; ** indicates significant difference at the 0.01 probability level."

Fig. 2

Maturing rate in different peanut genetic resources A: variation in maturity rates of peanut germplasm resources in 2020-2023; B: significance analysis of peg strength at different maturity rates at two fracture nodes of 499 peanut germplasm; C: comparison of maturity rates of germplasms from different countries; D: comparison of maturity rates of germplasms from different geographical origins. E: 499 peanut germplasm maturity rates in 2020-2023; F: coefficient of variation of the proportion of peanut germplasm maturity rate in 2020-2023. ns indicates no significant difference at the 0.05 level; * indicates significant difference at the 0.05 probability level; ** indicates significant difference at the 0.01 probability level."

Fig. 3

Pod rupture force and seed-setting range in different peanut genetic resources A: distribution of pod rupture force in different directions; B: comparison of pod rupture force in different directions; C: seed-setting range in different peanut genetic resources; D: peg length in different peanut genetic resources; E: comparison of pod rupture force of germplasms from different countries; F: comparison of pod rupture force of germplasms from different geographical origins; G: pod rupture force of different peanut germplasm materials in different directions in 2020-2023; H: seed-setting range in different peanut genetic resources in 2020-2023; I: peg length in different peanut genetic resources in 2020-2023. ns indicates no significant difference at the 0.05 level; * indicates significant difference at the 0.05 probability level; ** indicates significant difference at the 0.01 probability level."

Table 3

Principal component analysis of mechanical property in different peanut genetic resources"

性状
Trait
主成分Principal component
1 2 3 4
果柄强度 Peg strength (N) 0.89 −0.17 0.17 0.05
成熟荚果果柄强度 Mature pods peg strength (N) 0.75 −0.10 −0.07 0.02
未熟荚果果柄强度 Immature pods peg strength (N) 0.72 −0.08 0.06 −0.03
果-柄脱落力 Pod-petiole dropping force (N) 0.89 −0.19 0.16 0.06
秧-柄脱落力 Plant-petiole dropping force (N) 0.23 −0.09 −0.15 −0.72
成熟率 Maturing rate (%) 0.48 0.03 −0.27 0.48
果-柄脱落百分率 Ratio of pod-petiole dropping (%) −0.35 0.43 −0.24 0.41
正压破壳力 Transverse pressure (N) 0.19 0.83 0.24 −0.09
侧压破壳力 Lateral pressure (N) 0.20 0.81 0.08 0
立压破壳力 Vertical pressure (N) 0.26 0.70 0.20 −0.19
荚果层高度 Pod layer height (cm) −0.42 −0.11 0.65 −0.13
荚果层厚度 Pod layer thickness (cm) 0.13 0 0.68 0.23
果柄长度 Peg length (cm) −0.21 −0.30 0.62 0.15
特征值 Eigenvalue 3.45 2.22 1.58 1.05
贡献率 Contribution rate (%) 26.54 17.04 12.15 8.10
累计贡献率 Accumulative contribution rate (%) 26.54 43.58 55.73 63.83

Fig. 4

Correlation analysis among different traits T1-T13 represent peg strength, immature pods peg strength, mature pods peg strength, pod-petiole dropping force, plant-petiole dropping force, maturing rate, ratio of pod-petiole dropping, transverse pressure, lateral pressure, vertical pressure, pod layer height, pod layer thickness, and peg length, respectively. *, **, and *** indicates significant correlation at the 0.05, 0.01, and 0.001 probability levels, respectively."

Table 4

Huayu series of high-quality, early-maturing peanut varieties"

品种名称Variety 成熟率Maturing rate (%) 果柄强度Peg strength (N)
花育20号 Huayu 20 87.04 5.83
花育915 Huayu 915 95.00 11.10
花育918 Huayu 918 96.67 7.27
花育60 Huayu 60 81.67 7.96
花育55号 Huayu 55 86.00 5.06
花育611 Huayu 611 85.00 8.96
花育24号 Huayu 24 83.33 7.87
花育612 Huayu 612 85.00 9.30
花育919 Huayu 919 86.44 5.81
花育912 Huayu 912 90.00 7.96
花育30号 Huayu 30 86.00 8.66
花育17号 Huayu 17 96.67 5.84
花育23号 Huayu 23 80.39 5.93
花育26号 Huayu 26 86.21 5.80
花育29号 Huayu 29 96.67 8.02
花育34号 Huayu 34 81.67 5.26
花育38号 Huayu 38 82.05 10.26
花育911 Huayu 911 89.36 10.31
花育9120 Huayu 9120 85.45 9.24
花育9122 Huayu 9122 85.00 9.58
鲁花14号 Luhua 14 85.00 9.73

Table 5

Elite peanut genetic resources with excellent pod mechanical properties and early maturing"

品种名称
Variety
果柄强度
Peg strength (N)
荚果破壳力
Pod rupture force (N)
成熟率
Maturing rate (%)
日花4号 Rihua 4 6.03 31.04 81.82
花育661 Huayu 661 7.55 28.79 91.67
冀9814 Ji 9814 8.53 31.43 88.33
花育30号 Huayu 30 8.66 28.41 86.00
DUS88 8.26 27.75 88.33
驻20150 Zhu 20150 7.15 28.15 86.67
豫花9326 Yuhua 9326 8.21 34.42 83.33
泉0806 Quan 0806 7.47 32.44 95.00
花育962 Huayu 962 8.51 30.97 93.33
DUS217 7.51 32.93 96.61
冀花13 Jihua 13 7.35 29.25 90.00
花育912 Huayu 912 7.96 27.02 90.00
青农引进资源16 Qingnongyinjinziyuan 16 7.66 26.43 81.36
花育60 Huayu 60 7.96 31.95 81.67
DUS152 8.38 23.30 82.22
青农引进资源10 Qingnongyinjinziyuan 10 7.30 28.61 84.75
[1] 冯喜梅, 聂江文, 彭良斌, 臧华栋, 杨亚东, 曾昭海. 全球花生生产和贸易的时空动态变化研究. 花生学报, 2021, 50(4): 1-8.
Feng X M, Nie J W, Peng L B, Zang H D, Yang Y D, Zeng Z H. Spatio-temporal dynamics of global peanut production and trade. J Peanut Sci, 2021, 50(4): 1-8 (in Chinese with English abstract).
[2] 许静, 潘丽娟, 陈娜, 王通, 陈明娜, 王冕, 禹山林, 丁红, 孙伟, 赵孝东, 等. 不同花生荚果力学特性研究及优异品系筛选. 中国油料作物学报, 2021, 43: 803-815.
Xu J, Pan L J, Chen N, Wang T, Chen M N, Wang M, Yu S L, Ding H, Sun W, Zhao X D, et al. Pods mechanical property of different peanuts and identification of elite varieties (lines). Chin J Oil Crop Sci, 2021, 43: 803-815 (in Chinese with English abstract).
[3] 申海洋, 罗伟文, 吴峰, 顾峰玮, 杨红光, 胡志超. 花生机械化收获装备与技术研究进展. 农业机械学报, 2024, 55(8): 21-38.
Shen H Y, Luo W W, Wu F, Gu F W, Yang H G, Hu Z C. Research progress on mechanized harvesting equipment and technology for peanuts. Trans CSAM, 2024, 55(8): 21-38 (in Chinese with English abstract).
[4] Pattee H E, Johns E B, Singleton J A, Sanders T H. Composition changes of peanut fruit parts during Maturation1. Peanut Sci, 1974, 1: 57-62.
[5] Upadhyaya H D, Reddy L J, Gowda C L L, Singh S. Identification of diverse groundnut germplasm: sources of early maturity in a core collection. Field Crops Res, 2006, 97: 261-271.
[6] 沈一, 刘永惠, 陈志德. 不同花生品种(系)果柄拉力强度测试和荚果主要性状调查. 江苏农业科学, 2012, 40(10): 82-83.
Shen Y, Liu Y H, Chen Z D. Tensile strength test of different peanut varieties (lines) and investigation of main pod characters. Jiangsu Agric Sci, 2012, 40(10): 82-83 (in Chinese).
[7] 刘志侠, 吴国振, 于永强, 王京, 康智伟, 董占伟, 杨德旭, 何凤宇. 花生荚果生物力学特性研究. 沈阳农业大学学报, 2023, 54: 732-740.
Liu Z X, Wu G Z, Yu Y Q, Wang J, Kang Z W, Dong Z W, Yang D X, He F Y. Study on biomechanical characteristics of peanut pod. J Shenyang Agric Univ, 2023, 54: 732-740 (in Chinese with English abstract).
[8] 张晓, 陈玲, 孙雅文, 司彤, 张晓军, 王月福, 邹晓霞, 王铭伦. 不同落果特性花生品种荚果性状及果壳强度的研究. 花生学报, 2019, 48(3): 60-64.
Zhang X, Chen L, Sun Y W, Si T, Zhang X J, Wang Y F, Zou X X, Wang M L. The research on pod traits and shell strength of peanut varieties with different fruit drop characteristics. J Peanut Sci, 2019, 48(3): 60-64 (in Chinese with English abstract).
[9] 孙雅文, 邹晓霞, 相云秋, 张晓军, 王月福, 王铭伦. 不同落果特性花生品种子房柄力学性能的研究. 花生学报, 2017, 46(1): 33-37.
Sun Y W, Zou X X, Xiang Y Q, Zhang X J, Wang Y F, Wang M L. The research on gynophores' mechanical properties of peanut varieties with different peanut-dropping characteristics. J Peanut Sci, 2017, 46(1): 33-37 (in Chinese with English abstract).
[10] 迟晓元, 李昊远, 陈明娜, 潘丽娟, 郝翠翠, 王冕, 王通, 陈娜, 禹山林. 76个花生品种(系)果柄强度的研究. 花生学报, 2018, 47(3): 14-18.
Chi X Y, Li H Y, Chen M N, Pan L J, Hao C C, Wang M, Wang T, Chen N, Yu S L. Analysis on peg strength of 76 peanut varieties. J Peanut Sci, 2018, 47(3): 14-18 (in Chinese with English abstract).
[11] 迟晓元, 王东伟, 孙伟, 许静, 陈明娜, 潘丽娟, 陈娜, 王通, 王冕, 王冰, 等. 92个花生品种(系)的果柄和荚果力学特性研究. 花生学报, 2020, 49(1): 31-40.
Chi X Y, Wang D W, Sun W, Xu J, Chen M N, Pan L J, Chen N, Wang T, Wang M, Wang B, et al. Mechanical properties of pegs and pods in 92 peanut varieties. J Peanut Sci, 2020, 49(1): 31-40 (in Chinese with English abstract).
[12] 丁红, 张冠初, 许静, 修明霞, 徐扬, 郭庆, 张智猛, 于遒功. 适宜机械化种植的花生高产品种筛选与评价. 花生学报, 2022, 51(2): 16-24.
Ding H, Zhang G C, Xu J, Xiu M X, Xu Y, Guo Q, Zhang Z M, Yu Q G. Screening and evaluation of high yield peanut varieties for mechanized planting properties. J Peanut Sci, 2022, 51(2): 16-24 (in Chinese with English abstract).
[13] 鲁清, 梁炫强, 陈小平, 李少雄, 刘浩, 周桂元, 刘海燕, 李海芬, 洪彦彬. 花生落荚、裂荚和裂仁特性评鉴及优异种质筛选. 植物遗传资源学报, 2020, 21: 1102-1111.
doi: 10.13430/j.cnki.jpgr.20191231001
Lu Q, Liang X Q, Chen X P, Li S X, Liu H, Zhou G Y, Liu H Y, Li H F, Hong Y B. Evaluation on traits of pod abscission, dehiscence and kernel cracking of peanut and identification of elite germplasm. J Plant Genet Resour, 2020, 21: 1102-1111 (in Chinese with English abstract).
[14] 王传堂, 王志伟, 王秀贞, 唐月异, 吴琪, 王东伟, 战庆涛. 6个高油酸夏花生品种(系)机械化收获特性研究. 山东农业科学, 2019, 51(1): 28-31.
Wang C T, Wang Z W, Wang X Z, Tang Y Y, Wu Q, Wang D W, Zhan Q T. Study of mechanical harvest characterizations of 6 high oleic summer peanut varieties (lines). Shandong Agric Sci, 2019, 51(1): 28-31 (in Chinese with English abstract).
[15] 王传堂, 王志伟, 王秀贞, 吴琪, 唐月异, 杜祖波, 李秋, 于树涛, 王东伟. 不同花生基因型机械化收获相关特性的研究. 花生学报, 2019, 48(1): 52-57.
Wang C T, Wang Z W, Wang X Z, Wu Q, Tang Y Y, Du Z B, Li Q, Yu S T, Wang D W. Evaluation of different peanut genotypes for mechanized harvest properties. J Peanut Sci, 2019, 48(1): 52-57 (in Chinese with English abstract).
[16] 王传堂, 张建成, 王秀贞, 唐月异, 吴琪, 王志伟, 杜祖波, 李秋. 高油酸早熟高产兰娜型出口小花生新品种花育665的选育. 山东农业科学, 2019, 51(7): 21-23.
Wang C T, Zhang J C, Wang X Z, Tang Y Y, Wu Q, Wang Z W, Du Z B, Li Q. Breeding of a new runner-type export peanut variety Huayu 665 with high oleic acid, early maturity and high yield. Shandong Agric Sci, 2019, 51(7): 21-23 (in Chinese with English abstract).
[17] 吴琪, 曹广英, 王云云, 祁雪, 王秀贞, 唐月异, 孙全喜, 张青云, 王传堂. 26个花生品种果柄强度研究. 山东农业科学, 2016, 48(4): 47-49.
Wu Q, Cao G Y, Wang Y Y, Qi X, Wang X Z, Tang Y Y, Sun Q X, Zhang Q Y, Wang C T. Analysis on peg strength of 26 peanut varieties. Shandong Agric Sci, 2016, 48(4): 47-49 (in Chinese with English abstract).
[18] 迟晓元, 许静, 潘丽娟, 姜骁, 王明清, 王亮, 付春, 陈娜. 不同花生种质荚果力学特性研究. 花生学报, 2022, 51(4): 18-28.
Chi X Y, Xu J, Pan L J, Jiang X, Wang M Q, Wang L, Fu C, Chen N. Study on pod mechanical properties of different peanut germplasms. J Peanut Sci, 2022, 51(4): 18-28 (in Chinese with English abstract).
[19] Silvio H L, McClendon R W, Tollner E W. Improving peanut maturity prediction using a hybrid artificial neural network and fuzzy inference system. In: Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. pp 543-548.
[20] George K J, Murthy T, Sen P, Reddy P S. High peg strength donors in groundnut (Arachis Hypogaea L.). Curr Sci, 1988, 57: 1006.
[21] 隋荣娟, 潘滢月, 孙居彦. 不同成熟度花生果柄节点力学性能研究. 山东农业工程学院学报, 2019, 36(3): 25-28.
Sui R J, Pan Y Y, Sun J Y. Research on mechanical properties of peg nodes with different maturity of peanuts. J Shandong Agric Eng Univ, 2019, 36(3): 25-28 (in Chinese with English abstract).
[22] 葛选良, 钱春荣, 王柏臣, 于洋, 姜宇博. 作物早熟性基因定位与遗传效应的研究进展. 植物遗传资源学报, 2014, 15: 1161-1166.
doi: 10.13430/j.cnki.jpgr.2014.05.036
Ge X L, Qian C R, Wang B C, Yu Y, Jiang Y B. Research progress in gene mapping and genetic effects of crop earliness. J Plant Genet Resour, 2014, 15: 1161-1166 (in Chinese with English abstract).
[23] 王传堂, 祁雪, 刘婷, 王志伟, 唐月异, 孙全喜, 王秀贞, 吴琪, 邵俊飞, 杨同荣. 花生果柄脱落特性的研究. 花生学报, 2017, 46(1): 64-68.
Wang C T, Qi X, Liu T, Wang Z W, Tang Y Y, Sun Q X, Wang X Z, Wu Q, Shao J F, Yang T R. Studies on peg detachment properties of peanut. J Peanut Sci, 2017, 46(1): 64-68 (in Chinese with English abstract).
[24] 关萌. 全喂入花生摘果试验装置与摘果机关键部件研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2016.
Guan M. Research on Full-feeding Peanut Picking Test Device and Key Components of Peanut Picker. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2016 (in Chinese with English abstract).
[25] 周德欢. 花生联合收获全喂入摘果特性试验研究. 中国农业科学院硕士学位论文, 北京, 2017.
Zhou D H. Experimental Study on Full-feeding Picking Characteristics of Peanut Combined Harvesting. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2017 (in Chinese with English abstract).
[26] 王冰. 四行半喂入花生联合收获摘果机理与筛选特性研究. 中国农业科学院博士学位论文, 北京, 2018.
Wang B. Pod-picking Mechanism and Sereening Characteristie Researchfor Bottom-feeding Four Rows Peanut Combine Harvester. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2018 (in Chinese with English abstract).
[27] Thomas R J, Pettit R E, Taber R A, Jones B L. Peanut peg strength: force required for pod detachment in relation to peg Structure1. Peanut Sci, 1983, 10: 97-101.
[28] Tiwari S P, Murthy T G K, Johnson G K, Varmoda D L. Path-coefficient analysis of anatomical characters affecting peg strength in groundnut. Euphytica, 1988, 39: 119-121.
[29] 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选. 作物学报, 2025, 51: 395-404.
doi: 10.3724/SP.J.1006.2025.44088
Wang R F, Li W J, Liao Y J, Lu Q, Liu H, Li H F, Li S X, Liang X Q, Hong Y B, Chen X P. Evaluation of pod maturity and identification of early-maturinggermplasm for core peanut germplasm resources. Acta Agron Sin, 2025, 51: 395-404 (in Chinese with English abstract).
[30] 王传堂, 张建成. 花生遗传改良. 上海: 上海科学技术出版社, 2013. pp 311-313.
Wang C T, Zhang J C. Genetic Improvement of Peanut. Shanghai: Shanghai Scientific & Technical Publishers, 2013. pp 311-313 (in Chinese).
[31] 杨亚洲, 刘姗姗, 杨立权. 花生荚果及花生仁力学特性试验研究. 中国农机化学报, 2016, 37(10): 108-111.
Yang Y Z, Liu S S, Yang L Q. Experimental study on mechanical properties of peanut pods and peanut kernels. J Chin Agric Mech, 2016, 37(10): 108-111 (in Chinese with English abstract).
[32] Jolliffe I T, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci, 2016, 374: 20150202.
[33] Jiang H F, Huang L, Ren X P, Chen Y N, Zhou X J, Xia Y L, Huang J Q, Lei Y, Yan L Y, Wan L Y, et al. Diversity characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) mini-core collection. J Integr Plant Biol, 2014, 56: 159-169.
[34] Banla E M, Dzidzienyo D K, Diangar M M, Melomey L D, Offei S K, Tongoona P, Desmae H. Molecular and phenotypic diversity of groundnut (Arachis hypogaea L.) cultivars in Togo. Physiol Mol Biol Plants, 2020, 26: 1489-1504.
[1] LIN Wei-Jin, GUO Ze-Jia, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, CHEN Xiao-Ping, HONG Yan-Bin, LI Shao-Xiong, LU Qing. QTL mapping and candidate gene analysis of peanut pod yield-related traits [J]. Acta Agronomica Sinica, 2025, 51(4): 969-981.
[2] JIN Gao-Rui, WU Xiao-Li, DENG Li, CHEN Yu-Ning, YU Bo-Lun, GUO Jian-Bin, DING Ying-Bin, LIU Nian, LUO Huai-Yong, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, HUAI Dong-Xin, TAN Jia-Zhuang, JIANG Hui-Fang, REN Li, LEI Yong, LIAO Bo-Shou. Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production [J]. Acta Agronomica Sinica, 2025, 51(3): 687-895.
[3] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[4] ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556.
[5] WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404.
[6] HU Peng-Ju, GUO Song, SONG Ya-Hui, JIN Xin-Xin, SU Qiao, YANG Yong-Qing, WANG Jin. Genetic and QTL mapping analysis of oil content in peanut across multiple environments [J]. Acta Agronomica Sinica, 2025, 51(2): 324-333.
[7] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[8] ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121.
[9] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[10] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
[11] LU Qing, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 969-980.
[12] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[13] YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164.
[14] JIN Xin-Xin, SU Qiao, SONG Ya-Hui, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Metabolome and transcriptome analysis of flavonoids in peanut testa [J]. Acta Agronomica Sinica, 2024, 50(12): 2950-2961.
[15] ZHAO Wei, HU Xiao-Na, ZHENG Yan, LIANG Na, ZHENG Bin, WANG Xiao-Xiao, WANG Jiang-Tao, LIU Ling, FU Guo-Zhan, SHI Zhao-Yong, JIAO Nian-Yuan. Characteristics of AMF community in maize and peanut rhizosphere soil and its response to phosphate application [J]. Acta Agronomica Sinica, 2024, 50(11): 2896-2907.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!