Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 526-533.doi: 10.3724/SP.J.1006.2025.43024

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Study on the haploid breeding performance of maize inbred lines

CHEN Chen1,FU Xiu-Yi1,CHEN Chuang-Yong1,WU Shan-Shan1,ZHANG Hua-Sheng1,ZHANG Chun-Yuan1,CHEN Shao-Jiang2,ZHAO Jiu-Ran1,WANG Yuan-Dong1,*   

  1. 1 Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; 2 National Maize Improvement Center of China, College of Agronomy, China Agricultural University, Beijing 1001937, China
  • Received:2024-06-13 Revised:2024-09-18 Accepted:2024-09-18 Online:2025-02-12 Published:2024-10-10
  • Supported by:
    This study was supported by BAAFS Youth Research Fund (QNJJ202430), BAAFS Science and Technology Innovation Capability Improvement Project (KJCX20230103, KJCX20230433), and the China Agriculture Research System of MOF and MARA (CARS-02-11).

Abstract:

Doubled haploid (DH) technology is widely applied in commercial maize breeding, and the efficiency of haploid breeding can be improved by evaluating the haploid breeding performance of common germplasm. In this study, 17 genotypes were used to assess haploid breeding performance through haploid induction, identification, and chromosomal doubling. The results showed that the Reid germplasm exhibited a significant advantage in haploid induction and identification, with the mean haploid induction rate (HIR) ranging from 12.23% to 15.31% and the accuracy of haploid selection ranging from 95.27% to 96.37%. Substantial differences were observed among the inbred lines in terms of HIR and the number of haploids per ear (HPE), with HIR ranging from 9.68% to 17.51% and HPE ranging from 8.44 to 23.66. Zheng58 and B73 showed significant advantages in haploid chromosome doubling, with DH productivity in Zheng58 reaching 74.36% and B73 achieving the highest average seed set per haploid at 53.80. Cluster analysis revealed that Zheng58, Jing1110, Jing724, and JG296 were more suitable for haploid breeding, whereas Mo17, 4F1, and Qi319 were less efficient. These findings will aid in the planning of haploid breeding programs and provide a foundation for enhancing the efficiency of DH technology.

Key words: haploid, induction, identification, chromosomal doubling, maize 

[1] 陈绍江, 黎亮, 李浩川, 徐小炜. 玉米单倍体育种技术(第2版). 北京: 中国农业大学出版社, 2012. pp 92–94.
Chen S J, Li L, Li H C, Xu X W. Maize Doubled Haploid Technology, 2nd edn. Beijing: China Agricultural University Press, 2012. pp 92–94 (in Chinese).

[2] Chaikam V, Molenaar W, Melchinger A E, Boddupalli P M. Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet, 2019, 132: 3227–3243.

[3] 刘志增, 宋同明. 玉米孤雌生殖诱导系Stock6的表现及其遗传改良初报. 中国农业大学学报, 1998, (增刊3): 6–10.
Liu Z Z, Song T M. The performance and improvement of corn gynogenesis-inducer Stock6. J China Agric Univ, 1998, (S3): 6–10 (in Chinese with English abstract). 

[4] 李浩川, 曲彦志, 杨继伟, 陈琼, 刘宗华. 玉米生物诱导孤雌生殖单倍体影响因素研究进展. 中国农学通报, 2015, 31: 239–243.
Li H C, Qu Y Z, Yang J W, Chen Q, Liu Z H. Research progress on influence factors of in vivo maternal haploid induction in maize. Chin Agric Sci Bull, 2015, 31: 239–243 (in Chinese with English abstract).

[5] 黎亮, 李浩川, 徐小炜, 陈绍江. 玉米孤雌生殖单倍体诱导效率优化方法研究. 中国农业大学学报, 2012, 17(1): 9–13.
Li L, Li H C, Xu X W, Chen S J. Preliminary optimization of in vivo haploid induction in maize. J China Agric Univ, 2012, 17(1): 9–13 (in Chinese with English abstract).

[6] Eder J Chalyk S. In vivo haploid induction in maize. Theor Appl Genet, 2002, 104: 703–708.

[7] Liu C X, Li J L, Chen M, Li W, Zhong Y, Dong X, Xu X W, Chen C, Tian X L, Chen S J. Development of high-oil maize haploid inducer with a novel phenotyping strategy. Crop J, 2022, 10: 524–531.

[8] Chen C, Xiao Z J, Zhang J W, Li W, Li J L, Liu C X, Chen S J. Development of in vivo haploid inducer lines for screening haploid immature embryos in maize. Plants (Basel), 2020, 9: 739.

[9] 才卓, 徐国良, 刘向辉, 董亚琳, 代玉仙, 李淑华. 玉米高频率单倍生殖诱导系吉高诱系3号的选育. 玉米科学, 2007, 15(1): 1–4.
Cai Z, Xu G L, Liu X H, Dong Y L, Dai Y X, Li S H. The breeding of JAAS3-haploid inducer with high frequency parthenogenesis in maize. J Maize Sci, 2007, 15(1): 1–4 (in Chinese with English abstract).

[10] Wu P H, Li H C, Ren J J, Chen S J. Mapping of maternal QTLs for in vivo haploid induction rate in maize (Zea mays L.). Euphytica, 2014, 196: 413–421.

[11] Nanda D K, Chase S S. An embryo marker for detecting monoploids of maize (Zea mays L.). Crop Sci, 1966, 6: 213–215.

[12] Meng Y J, Li J H, Liu J J, Hu H X, Li W, Liu W X, Chen S J. Ploidy effect and genetic architecture exploration of stalk traits using DH and its corresponding haploid populations in maize. BMC Plant Biol, 2016, 16: 50.

[13] Chaikam V, Nair S K, Babu R, Martinez L, Tejomurtula J, Boddupalli P M. Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor Appl Genet, 2015, 128: 159–171.

[14] Ren J J, Wu P H, Trampe B, Tian X L, Lübberstedt T, Chen S J. Novel technologies in doubled haploid line development. Plant Biotechnol J, 2017, 15: 1361–1370.

[15] Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult, 2011, 104: 359–373.

[16] Melchinger A E, Molenaar W S, Mirdita V, Schipprack W. Colchicine alternatives for chromosome doubling in maize haploids for doubled-haploid production. Crop Sci, 2016, 56: 559–569.

[17] 陈宝建, 刘丽威, 徐丽, 孟玉杰, 桂光菊, 徐小炜, 金危危, 陈绍江. 玉米单倍体幼胚加倍效果观察. 中国农业大学学报, 2016, 21(5): 10–16.
Chen B J, Liu L W, Xu L, Meng Y J, Gui G J, Xu X W, Jin W W, Chen S J. Observation on doubling effects of immature haploid embryo in maize. J China Agric Univ, 2016, 21(5): 10–16 (in Chinese with English abstract).

[18] Lashermes P, Beckert M. Genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theor Appl Genet, 1988, 76: 405–410.

[19] Prigge V, Xu X W, Li L, Babu R, Chen S J, Atlin G N, Melchinger A E. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics, 2012, 190: 781–793.

[20] Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio M L, Green J, Chen Z Y, Mccuiston J, Wang W L, Liebler T, Bullock P, Martin B. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature, 2017, 542: 105–109.

[21] Liu C X, Li X, Meng D X, Zhong Y, Chen C, Dong X, Xu X W, Chen B J, Li W, Li L, Tian X L, Zhao H M, Song W B, Luo H S, Zhang Q H, Lai J S, Jin W W, Yan J B, Chen S J. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Mol Plant, 2017, 10: 520–522.

[22] Gilles L M, Khaled A, Laffaire J B, Chaignon S, Gendrot G, Laplaige J, Bergès H, Beydon G, Bayle V, Barret P, Comadran J, Martinant J P, Rogowsky P M, Widiez T. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J, 2017, 36: 707–717.

[23] Zhong Y, Liu C X, Qi X L, Jiao Y Y, Wang D, Wang Y W, Liu Z K, Chen C, Chen B J, Tian X L, Li J L, Chen M, Dong X, Xu X W, Li L, Li W, Liu W X, Jin W W, Lai J S, Chen S J. Mutation of ZmDMP enhances haploid induction in maize. Nat Plants, 2019, 5: 575–580.

[24] Li Y, Lin Z, Yue Y, Zhao H M, Fei X H, Li Z E, Liu C X, Chen S J, Lai J S, Song W B. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. Nat Plants, 2021, 7: 1579–1588.

[25] Jiang C L, Sun J, Li R, Yan S J, Chen W, Guo L, Qin G C, Wang P C, Luo C, Huang W J, Zhang Q H, Fernie A R, Jackson D, Li X, Yan J B. A reactive oxygen species burst causes haploid induction in maize. Mol Plant, 2022, 15: 943–955.

[26] Coe E H Jr. A line of maize with high haploid frequency. Am Nat, 1959, 93: 381–382.

[27] 苏娟娟, 景希强. 玉米单倍体诱导系对不同母本资源诱导效果的比较. 玉米科学, 2015, 23: 25–27.
Su J J, Jing X Q. Induction effects of haploid inducer lines on different maize materials. J Maize Sci, 2015, 23: 25–27 (in Chinese with English abstract).

[28] 李国良, 苏俊, 李春霞, 龚士琛, 宋锡章, 阎淑琴, 扈光辉, 王明泉. 农大高诱1号对玉米不同种质和世代单倍体诱导频率的研究. 玉米科学, 2008, 16(5): 3–6.
Li G L, Su J, Li C X, Gong S C, Song X Z, Yan S Q, Hu G H, Wang M Q. Research on haploids frequency of different germplasm and generations in maize by Cauho Inducer 1. J Maize Sci, 2008, 16(5): 3–6 (in Chinese with English abstract).

[29] De La Fuente G N, Frei U K, Trampe B, Ren J J, Bohn M, Yana N, Verzegnazzi A, Murray S C, Lübberstedt T. A diallel analysis of a maize donor population response to in vivo maternal haploid induction: II. Haploid male fertility. Crop Sci, 2020, 60: 873–882.

[30] 魏俊杰, 陈梅香. 玉米单倍体育性自然恢复的初步研究. 玉米科学, 2006, 14(2): 24–26.
Wei J J, Chen M X. Primary study on the natural fertility of maize haploid. J Maize Sci, 2006, 14(2): 24–26 (in Chinese with English abstract).

[31] Wu P H, Ren J J, Tian X L, Lübberstedt T, Li W, Li G L, Li X L, Chen S J. New insights into the genetics of haploid male fertility in maize. Crop Sci, 2017, 57: 637–647.

[32] 蔡泉, 曹靖生, 史桂荣, 郭晓明, 张建国, 赵伟, 李树军, 殷跃. 几个不同来源玉米单倍体诱导系诱导效果的研究. 玉米科学, 2012, 20(4): 19–21.
Cai Q, Cao J S, Shi G R, Guo X M, Zhang J G, Zhao W, Li S J, Yin Y. Induction effect of the haploid inducers from different sources. J Maize Sci, 2012, 20(4): 19–21 (in Chinese with English abstract).

[33] 王元东, 赵久然, 冯培煜, 段民孝, 张华生, 王荣焕, 陈传永. 京科968等系列玉米品种“易制种”性状选育与高产高效制种关键技术研究. 玉米科学, 2016, 24(2): 11–14.
Wang Y D, Zhao J R, Feng P Y, Duan M X, Zhang H S, Wang R H, Chen C Y. Characteristics related to ‘Easy Seed Production’ and the key technology of high yield and high efficiency seed production of commercial hybrids Jingke968 et al. J Maize Sci, 2016, 24(2): 11–14 (in Chinese with English abstract).

[34] 段民孝, 刘新香, 张华生, 宋伟, 王元东, 邢锦丰, 张雪原, 张春原, 赵久然. 我国玉米地方种质的单倍体诱导和加倍特性研究. 种子, 2017, 36(6): 30–34.
Duan M X, Liu X X, Zhang H S, Song W, Wang Y D, Xing J F, Zhang X Y, Zhang C Y, Zhao J R. Study on the induced and doubled properties of maize landraces in China. Seed, 2017, 36(6): 30–34 (in Chinese with English abstract).

[35] Fu J J, Hao Y F, Li H H, Reif J C, Chen S J, Huang C L, Wang G Y, Li X H, Xu Y B, Li L. Integration of genomic selection with doubled-haploid evaluation in hybrid breeding: from GS 1.0 to GS 4.0 and beyond. Mol Plant, 2022, 15: 577–580.

[1] LIU Bo, CHI Ming, CAO Meng-Qi, TANG Da, YANG Heng-Zhao, ZHANG Wei-Hua, XUE Cong. Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana [J]. Acta Agronomica Sinica, 2024, 50(9): 2237-2247.
[2] AI Sha, LI Sha, FANG Zhi-Wei, LI Lun, LI Tian-Tian, GAO Li-Fen, CHEN Li-Hong, XIAO Hua-Feng, WAN Ren-Jing, YAN Duo-Zi, WU Xing-Ting, PENG Hai, HAN Rui-Xi, ZHOU Jun-Fei. Development and application of cotton MNP marker for fingerprint cons- truction [J]. Acta Agronomica Sinica, 2024, 50(9): 2267-2278.
[3] TIAN Hong-Li, YANG Yang, FAN Ya-Ming, YI Hong-Mei, WANG Rui, JIN Shi-Qiao, JIN Fang, ZHANG Yun-Long, LIU Ya-Wei, WANG Feng-Ge, ZHAO Jiu-Ran. Development of an optimal core SNP loci set for maize variety genuineness identification [J]. Acta Agronomica Sinica, 2024, 50(5): 1115-1123.
[4] CHEN Jia-Ting, BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages [J]. Acta Agronomica Sinica, 2024, 50(5): 1193-1206.
[5] FAN Hui-Ling, BAI Sheng-Wen, LU Yan, PENG Xiao-Xing, ZHOU Xian-Li, ZHANG Hong-Yan, TENG Chang-Cai, WU Xue-Xia, LIU Yu-Jiao. Identification and comprehensive evaluation of salt-alkali tolerance throughout the growth period of 155 faba bean germplasms [J]. Acta Agronomica Sinica, 2024, 50(12): 3035-3045.
[6] XIA Xiu-Zhong, ZHANG Zong-Qiong, NONG Bao-Xuan, FENG Rui, GUO Hui, CHEN Can, LIANG Shu-Hui, ZHUANG Jie, LIAO Zu-Yu, SONG Guo-Xian, YANG Xing-Hai, LI Dan-Ting. QTL mapping for salt tolerance traits throughout the entire growth period of deep-water rice [J]. Acta Agronomica Sinica, 2024, 50(10): 2493-2502.
[7] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[8] WAN Yi-Man, XIAO Sheng-Hui, BAI Yi-Chao, FAN Jia-Yin, WANG Yan, WU Chang-Ai. Establishment and optimization of a high-efficient hairy-root system in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 1758-1768.
[9] XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633.
[10] ZHAO Xiao-Xin, HUANG Shuo-Qi, TAN Wen-Bo, XING Wang, LIU Da-Li. Identification and relative expression profile of HIPPs gene family cadmium stress in sugar beet [J]. Acta Agronomica Sinica, 2023, 49(12): 3302-3314.
[11] LIU Xiao-Juan, LIU Xin, ZHANG Ming-Hu, HAO Ming, NING Shun-Zong, YUAN Zhong-Wei, HUANG Lin, LIU Deng-Cai, ZHANG Lian-Quan. Creation of doubled haploid in wheat using distant hybridization and unreduced gamete genes [J]. Acta Agronomica Sinica, 2023, 49(12): 3154-3161.
[12] TIAN Hong-Li, ZHANG Ru-Yang, FAN Ya-Ming, YANG Yang, ZHANG Yun-Long, YI Hong-Mei, XING Jin-Feng, WANG Feng-Ge, ZHAO Jiu-Ran. Application of maize 6H-60K chip in identification of maize essentially derived varieties [J]. Acta Agronomica Sinica, 2023, 49(11): 2876-2885.
[13] SHEN Qing-Qing, WANG Tian-Ju, WANG Jun-Gang, ZHANG Shu-Zhen, ZHAO Xue-Ting, HE Li-Lian, LI Fu-Sheng. Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(10): 2654-2664.
[14] HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264.
[15] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!