Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 526-533.doi: 10.3724/SP.J.1006.2025.43024

;

• RESEARCH NOTES • Previous Articles     Next Articles

Study on the haploid breeding performance of maize inbred lines

CHEN Chen1(), FU Xiu-Yi1, CHEN Chuan-Yong1, WU Shan-Shan1, ZHANG Hua-Sheng1, ZHANG Chun-Yuan1, CHEN Shao-Jiang2, ZHAO Jiu-Ran1, WANG Yuan-Dong1,*()   

  1. 1Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    2National Maize Improvement Center of China, College of Agronomy, China Agricultural University, Beijing 100193, China
  • Received:2024-06-13 Accepted:2024-09-18 Online:2025-02-12 Published:2024-10-10
  • Contact: E-mail: wyuandong@126.com
  • Supported by:
    BAAFS Youth Research Fund(QNJJ202430);BAAFS Science and Technology Innovation Capability Improvement Project(KJCX20230103);BAAFS Science and Technology Innovation Capability Improvement Project(KJCX20230433);China Agriculture Research System of MOF and MARA(CARS-02-11)

Abstract:

Doubled haploid (DH) technology is widely applied in commercial maize breeding, and the efficiency of haploid breeding can be improved by evaluating the haploid breeding performance of common germplasm. In this study, 17 genotypes were used to assess haploid breeding performance through haploid induction, identification, and chromosomal doubling. The results showed that the Reid germplasm exhibited a significant advantage in haploid induction and identification, with the mean haploid induction rate (HIR) ranging from 12.23% to 15.31% and the accuracy of haploid selection ranging from 95.27% to 96.37%. Substantial differences were observed among the inbred lines in terms of HIR and the number of haploids per ear (HPE), with HIR ranging from 9.68% to 17.51% and HPE ranging from 8.44 to 23.66. Zheng 58 and B73 showed significant advantages in haploid chromosome doubling, with DH productivity in Zheng 58 reaching 74.36% and B73 achieving the highest average seed set per haploid at 53.80. Cluster analysis revealed that Zheng 58, Jing 1110, Jing 724, and JG296 were more suitable for haploid breeding, whereas Mo17, 4F1, and Qi 319 were less efficient. These findings will aid in the planning of haploid breeding programs and provide a foundation for enhancing the efficiency of DH technology.

Key words: haploid, induction, identification, chromosomal doubling, maize

Table 1

Haploid induction and identification of different group germplasms"

诱导系
Inducer
类群
Group
单倍体总粒数
Total of haploids
平均单穗结实数
Mean of SPE
平均单穗单倍体数
Mean of HPE
平均准确率
Mean of AR (%)
平均诱导率
Mean of HIR (%)
CAU5 瑞德 Reid 181 143.96±14.29 ab 17.96±0.71 a 96.21±2.01 ab 12.23±1.90 ab
兰卡斯特 LAN 260 120.14±27.19 b 14.81±2.86 ab 96.86±1.19 ab 12.43±1.92 a
黄改系 HIL 151 117.42±12.31 b 12.19±1.38 ab 95.44±1.22 b 9.96±0.45 b
改良瑞德 IR 255 105.69±11.35 b 12.14±1.73 b 98.89±0.62 a 11.48±0.83 ab
X群 X 265 156.52±19.79 a 17.33±2.30 a 95.43±1.38 b 10.64±0.39 b
P群 P 209 123.55±14.45 ab 15.33±0.93 ab 95.81±3.50 ab 11.81±1.09 ab
CAU6 瑞德 Reid 141 123.42±7.08 ab 20.00±1.00 a 95.27±1.22 ab 15.31±0.36 a
兰卡斯特 LAN 199 119.92±32.65 ab 17.08±5.65 ab 95.52±0.74 a 12.85±2.48 ab
黄改系 HIL 174 154.47±7.94 a 17.72±2.66 ab 93.96±1.35 ab 10.74±1.62 b
改良瑞德 IR 225 92.36±17.31 b 12.10±1.79 b 96.65±1.25 a 12.94±0.52 ab
X群 X 288 139.64±15.76 a 17.21±2.92 ab 92.92±1.70 b 11.43±0.85 b
P群 P 208 99.65±13.02 b 15.06±1.44 ab 93.53±4.64 ab 13.73±0.96 ab
CS2 瑞德Reid 95 103.67±19.67 c 15.83±3.83 ab 96.37±1.93 b 14.34±1.13 a
兰卡斯特 LAN 137 113.42±24.13 bc 14.03±2.53 ab 96.96±0.85 b 12.23±0.70 ab
黄改系 HIL 514 149.23±23.47 a 18.03±3.91 a 97.85±0.07 ab 11.57±0.89 ab
改良瑞德 IR 548 106.78±23.97 bc 12.16±4.15 b 98.52±0.74 a 10.71±1.25 b
X群 X 256 136.17±24.57 b 16.04±3.72 a 97.41±0.77 ab 11.26±1.34 ab
P群 P 72 105.33±23.00 bc 12.00±1.67 b 96.34±3.66 b 11.16±1.30 ab
CHOI4 瑞德Reid 170 128.58±2.75 ab 20.25±4.08 ab 96.22±2.41 b 15.28±3.02 ab
兰卡斯特 LAN 295 104.31±36.34 b 17.25±4.76 ab 98.17±0.73 a 17.24±3.09 a
黄改系 HIL 259 149.72±12.72 a 23.22±4.07 a 98.81±0.15 a 15.10±1.36 ab
改良瑞德 IR 261 113.82±6.50 ab 16.82±0.94 ab 97.78±1.12 a 14.41±0.46 ab
X群 X 297 127.98±17.31 ab 17.78±2.94 ab 97.65±0.69 ab 13.55±0.68 ab
P群 P 100 98.53±16.28 b 10.85±2.35 b 97.73±2.27 ab 10.67±0.60 b

Fig. 1

Haploid induction rate and haploids of per ear of different inbred lines HIR: haploid induction rate; HPE: haploids of per ear; C7-2: Chang7-2; S3336: Shen 3336; Z58: Zheng 58; J2416K: Jing 2416K; J724: Jing 724; J92GH: Jing 92GH; J1110: Jing 1110; JJ2418: JingJ2418; JMC01: JingMC01. Different lowercase letters indicate a significant differ-ence among groups at P < 0.05 (Tukey HSD)."

Table 2

Efficiency of spontaneous doubling and artificial doubling of different inbred lines"

材料
Line
处理
Treatment
总株数
Total number
露药率
AER (%)
散粉率
PPR (%)
结实率
SSR (%)
平均结实数
Mean of seeds
DH生产率
DH productivity (%)
京2416K J2416K SD 123 23.58 18.70 30.43 4.86 5.69
AD 89 75.28 75.28 50.75 13.79 38.20
昌7-2 C7-2 SD 88 19.32 12.50 27.27 2.67 3.41
AD 60 55.00 55.00 75.76 5.20 41.67
京92GH J92GH SD 130 22.31 16.92 40.91 6.78 6.92
AD 74 64.86 59.46 63.64 22.39 37.84
京1110 J1110 SD 122 21.31 18.03 54.55 11.25 9.84
AD 77 79.22 71.43 74.55 28.17 53.25
京724 J724 SD 86 26.74 20.93 44.44 8.50 9.30
AD 92 81.52 78.26 59.72 37.65 46.74
JG296 SD 101 29.70 25.74 42.31 7.82 10.89
AD 101 64.36 64.36 64.62 35.79 41.58
京MC01 JMC01 SD 77 22.08 19.48 40.00 9.33 7.79
AD 96 73.96 69.79 52.24 25.71 36.46
PH4CV SD 81 33.33 22.22 55.56 9.30 12.35
AD 71 49.30 45.07 62.50 23.90 28.17
PH6WC SD 99 25.25 19.19 36.84 6.57 7.07
AD 81 59.26 51.85 69.05 18.62 35.80
京J2418 JJ2418 SD 82 24.39 15.85 38.46 4.20 6.10
AD 71 71.83 63.38 68.89 16.81 43.66
B73 SD 67 32.84 32.84 72.73 32.25 23.88
AD 98 83.67 80.61 77.22 53.80 62.24
C229 SD 137 16.79 10.95 46.67 3.29 5.11
AD 68 83.82 63.24 62.79 16.41 39.71
郑58 Z58 SD 232 14.66 12.07 32.14 2.33 3.88
AD 117 92.31 90.60 82.08 25.33 74.36
4F1 SD 73 27.40 21.92 56.25 3.11 12.33
AD 77 92.21 83.12 62.50 15.33 23.38
Mo17 SD 88 15.91 9.09 25.00 5.00 2.27
AD 97 57.73 46.39 40.00 16.50 18.56
齐319 Qi319 SD 92 18.48 5.43 40.00 1.50 2.17
AD 87 82.76 79.31 60.87 13.90 48.28
沈3336 S3336 SD 68 7.35 7.35 80.00 8.00 5.88
AD 89 84.27 71.91 79.69 19.75 57.30

Table 3

Mean and range for the cluster group of HIR, HPE and AR within the groups of inbred lines"

聚类
Cluster
自交系个数
Number of lines
平均单倍体诱导率
Mean of HIR (%)
平均单穗单倍体数
Mean of HPE
平均准确率
Mean of AR (%)
均值Mean 变异范围Range 均值Mean 变异范围Range 均值Mean 变异范围Range
1 3 13.01 12.08-13.81 22.51 21.19-23.66 97.14 96.04-97.76
2 5 13.94 11.49-17.51 18.11 16.53-20.42 98.02 97.10-99.78
3 5 11.17 9.69-12.68 14.22 12.08-16.60 94.19 92.33-96.39
4 4 12.08 11.47-12.53 10.89 8.43-12.04 97.19 95.29-99.37

Fig. 2

Cluster analysis of haploid breeding characters A: cluster analysis of haploid induction and identification characters; B: cluster analysis of haploid chromosomal doubling characters. Abbreviatione are the same as those given in Fig. 1."

Table 4

Mean and range for the cluster group of PPR, SSR, mean of seeds and DH productivity within the groups of inbred lines"

聚类
Cluster
自交系个数
Number of lines
散粉率
PPR (%)
结实率
SSR (%)
平均结实数
Mean of seeds
DH生产效率
DH productivity (%)
均值
Mean
变异范围
Range
均值
Mean
变异范围
Range
均值
Mean
变异范围
Range
均值
Mean
变异范围
Range
1 2 85.61 80.61-90.60 79.65 77.22-82.08 39.57 25.33-53.80 68.30 62.24-74.36
2 4 71.49 64.36-78.26 69.64 59.72-79.69 30.34 19.75-35.79 49.72 41.58-57.30
3 5 58.59 51.85-63.38 68.02 62.79-75.76 15.89 5.20-22.39 39.73 35.80-43.66
4 4 76.87 69.79-83.12 56.59 50.75-62.50 17.18 13.79-25.71 36.58 23.38-48.28
5 2 45.73 45.06-46.39 51.25 40.00-62.50 20.20 16.50-23.90 23.36 18.56-28.17
[1] 陈绍江, 黎亮, 李浩川, 徐小炜。 玉米单倍体育种技术(第2版). 北京: 中国农业大学出版社, 2012. pp 92-94.
Chen S J, Li L, Li H C, Xu X W. Maize Doubled Haploid Technology, 2nd edn. Beijing: China Agricultural University Press, 2012. pp 92-94 (in Chinese).
[2] Chaikam V, Molenaar W, Melchinger A E, Boddupalli P M. Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet, 2019, 132: 3227-3243.
doi: 10.1007/s00122-019-03433-x pmid: 31555890
[3] 刘志增, 宋同明. 玉米孤雌生殖诱导系Stock6的表现及其遗传改良初报. 中国农业大学学报, 1998, (增刊3): 6-10.
Liu Z Z, Song T M. The performance and improvement of corn gynogenesis-inducer Stock6. J China Agric Univ, 1998, (S3): 6-10 (in Chinese with English abstract).
[4] 李浩川, 曲彦志, 杨继伟, 陈琼, 刘宗华. 玉米生物诱导孤雌生殖单倍体影响因素研究进展. 中国农学通报, 2015, 31: 239-243.
doi: 10.11924/j.issn.1000-6850.2014-1890
Li H C, Qu Y Z, Yang J W, Chen Q, Liu Z H. Research progress on influence factors of in vivo maternal haploid induction in maize. Chin Agric Sci Bull, 2015, 31: 239-243 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb15060155
[5] 黎亮, 李浩川, 徐小炜, 陈绍江. 玉米孤雌生殖单倍体诱导效率优化方法研究. 中国农业大学学报, 2012, 17(1): 9-13.
Li L, Li H C, Xu X W, Chen S J. Preliminary optimization of in vivo haploid induction in maize. J China Agric Univ, 2012, 17(1): 9-13 (in Chinese with English abstract).
[6] Eder J Chalyk S. In vivo haploid induction in maize. Theor Appl Genet, 2002, 104: 703-708.
doi: 10.1007/s00122-001-0773-4 pmid: 12582677
[7] Liu C X, Li J L, Chen M, Li W, Zhong Y, Dong X, Xu X W, Chen C, Tian X L, Chen S J. Development of high-oil maize haploid inducer with a novel phenotyping strategy. Crop J, 2022, 10: 524-531.
doi: 10.1016/j.cj.2021.07.009
[8] Chen C, Xiao Z J, Zhang J W, Li W, Li J L, Liu C X, Chen S J. Development of in vivo haploid inducer lines for screening haploid immature embryos in maize. Plants (Basel), 2020, 9: 739.
[9] 才卓, 徐国良, 刘向辉, 董亚琳, 代玉仙, 李淑华. 玉米高频率单倍生殖诱导系吉高诱系3号的选育. 玉米科学, 2007, 15(1): 1-4.
Cai Z, Xu G L, Liu X H, Dong Y L, Dai Y X, Li S H. The breeding of JAAS3-haploid inducer with high frequency parthenogenesis in maize. J Maize Sci, 2007, 15(1): 1-4 (in Chinese with English abstract).
[10] Wu P H, Li H C, Ren J J, Chen S J. Mapping of maternal QTLs for in vivo haploid induction rate in maize (Zea mays L.). Euphytica, 2014, 196: 413-421.
[11] Nanda D K, Chase S S. An embryo marker for detecting monoploids of maize (Zea mays L.). Crop Sci, 1966, 6: 213-215.
[12] Meng Y J, Li J H, Liu J J, Hu H X, Li W, Liu W X, Chen S J. Ploidy effect and genetic architecture exploration of stalk traits using DH and its corresponding haploid populations in maize. BMC Plant Biol, 2016, 16: 50.
[13] Chaikam V, Nair S K, Babu R, Martinez L, Tejomurtula J, Boddupalli P M. Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor Appl Genet, 2015, 128: 159-171.
doi: 10.1007/s00122-014-2419-3 pmid: 25385333
[14] Ren J J, Wu P H, Trampe B, Tian X L, Lübberstedt T, Chen S J. Novel technologies in doubled haploid line development. Plant Biotechnol J, 2017, 15: 1361-1370.
doi: 10.1111/pbi.12805 pmid: 28796421
[15] Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult, 2011, 104: 359-373.
[16] Melchinger A E, Molenaar W S, Mirdita V, Schipprack W. Colchicine alternatives for chromosome doubling in maize haploids for doubled-haploid production. Crop Sci, 2016, 56: 559-569.
[17] 陈宝建, 刘丽威, 徐丽, 孟玉杰, 桂光菊, 徐小炜, 金危危, 陈绍江. 玉米单倍体幼胚加倍效果观察. 中国农业大学学报, 2016, 21(5): 10-16.
Chen B J, Liu L W, Xu L, Meng Y J, Gui G J, Xu X W, Jin W W, Chen S J. Observation on doubling effects of immature haploid embryo in maize. J China Agric Univ, 2016, 21(5): 10-16 (in Chinese with English abstract).
[18] Lashermes P, Beckert M. Genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theor Appl Genet, 1988, 76: 405-410.
doi: 10.1007/BF00265341 pmid: 24232205
[19] Prigge V, Xu X W, Li L, Babu R, Chen S J, Atlin G N, Melchinger A E. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics, 2012, 190: 781-793.
[20] Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio M L, Green J, Chen Z Y, Mccuiston J, Wang W L, Liebler T, Bullock P, Martin B. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature, 2017, 542: 105-109.
[21] Liu C X, Li X, Meng D X, Zhong Y, Chen C, Dong X, Xu X W, Chen B J, Li W, Li L, Tian X L, Zhao H M, Song W B, Luo H S, Zhang Q H, Lai J S, Jin W W, Yan J B, Chen S J. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Mol Plant, 2017, 10: 520-522.
[22] Gilles L M, Khaled A, Laffaire J B, Chaignon S, Gendrot G, Laplaige J, Bergès H, Beydon G, Bayle V, Barret P, Comadran J, Martinant J P, Rogowsky P M, Widiez T. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J, 2017, 36: 707-717.
doi: 10.15252/embj.201796603 pmid: 28228439
[23] Zhong Y, Liu C X, Qi X L, Jiao Y Y, Wang D, Wang Y W, Liu Z K, Chen C, Chen B J, Tian X L, Li J L, Chen M, Dong X, Xu X W, Li L, Li W, Liu W X, Jin W W, Lai J S, Chen S J. Mutation of ZmDMP enhances haploid induction in maize. Nat Plants, 2019, 5: 575-580.
doi: 10.1038/s41477-019-0443-7 pmid: 31182848
[24] Li Y, Lin Z, Yue Y, Zhao H M, Fei X H, Li Z E, Liu C X, Chen S J, Lai J S, Song W B. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. Nat Plants, 2021, 7: 1579-1588.
[25] Jiang C L, Sun J, Li R, Yan S J, Chen W, Guo L, Qin G C, Wang P C, Luo C, Huang W J, Zhang Q H, Fernie A R, Jackson D, Li X, Yan J B. A reactive oxygen species burst causes haploid induction in maize. Mol Plant, 2022, 15: 943-955.
doi: 10.1016/j.molp.2022.04.001 pmid: 35395409
[26] Coe E H Jr. A line of maize with high haploid frequency. Am Nat, 1959, 93: 381-382.
[27] 苏娟娟, 景希强. 玉米单倍体诱导系对不同母本资源诱导效果的比较. 玉米科学, 2015, 23(2): 25-27.
Su J J, Jing X Q. Induction effects of haploid inducer lines on different maize materials. J Maize Sci, 2015, 23(2): 25-27 (in Chinese with English abstract).
[28] 李国良, 苏俊, 李春霞, 龚士琛, 宋锡章, 阎淑琴, 扈光辉, 王明泉. 农大高诱1号对玉米不同种质和世代单倍体诱导频率的研究. 玉米科学, 2008, 16(5): 3-6.
Li G L, Su J, Li C X, Gong S C, Song X Z, Yan S Q, Hu G H, Wang M Q. Research on haploids frequency of different germplasm and generations in maize by Cauho Inducer 1. J Maize Sci 2008, 16(5): 3-6 (in Chinese with English abstract).
[29] De La Fuente G N, Frei U K, Trampe B, Ren J J, Bohn M, Yana N, Verzegnazzi A, Murray S C, Lübberstedt T. A diallel analysis of a maize donor population response to in vivo maternal haploid induction: II. Haploid male fertility. Crop Sci, 2020, 60: 873-882.
[30] 魏俊杰, 陈梅香. 玉米单倍体育性自然恢复的初步研究. 玉米科学, 2006, 14(2): 24-26.
Wei J J, Chen M X. Primary study on the natural fertility of maize haploid. J Maize Sci, 2006, 14(2): 24-26 (in Chinese with English abstract).
[31] Wu P H, Ren J J, Tian X L, Lübberstedt T, Li W, Li G L, Li X L, Chen S J. New insights into the genetics of haploid male fertility in maize. Crop Sci, 2017, 57: 637-647.
[32] 蔡泉, 曹靖生, 史桂荣, 郭晓明, 张建国, 赵伟, 李树军, 殷跃. 几个不同来源玉米单倍体诱导系诱导效果的研究. 玉米科学, 2012, 20(4): 19-21.
Cai Q, Cao J S, Shi G R, Guo X M, Zhang J G, Zhao W, Li S J, Yin Y. Induction effect of the haploid inducers from different sources. J Maize Sci, 2012, 20(4): 19-21 (in Chinese with English abstract).
[33] 王元东, 赵久然, 冯培煜, 段民孝, 张华生, 王荣焕, 陈传永. 京科968等系列玉米品种“易制种”性状选育与高产高效制种关键技术研究. 玉米科学, 2016, 24(2): 11-14.
Wang Y D, Zhao J R, Feng P Y, Duan M X, Zhang H S, Wang R H, Chen C Y. Characteristics related to ‘Easy Seed Production’ and the key technology of high yield and high efficiency seed production of commercial hybrids Jingke 968 et al. J Maize Sci, 2016, 24(2): 11-14 (in Chinese with English abstract).
[34] 段民孝, 刘新香, 张华生, 宋伟, 王元东, 邢锦丰, 张雪原, 张春原, 赵久然. 我国玉米地方种质的单倍体诱导和加倍特性研究. 种子, 2017, 36(6): 30-34.
Duan M X, Liu X X, Zhang H S, Song W, Wang Y D, Xing J F, Zhang X Y, Zhang C Y, Zhao J R. Study on the induced and doubled properties of maize landraces in China. Seed, 2017, 36(6): 30-34 (in Chinese with English abstract).
[35] Fu J J, Hao Y F, Li H H, Reif J C, Chen S J, Huang C L, Wang G Y, Li X H, Xu Y B, Li L. Integration of genomic selection with doubled-haploid evaluation in hybrid breeding: from GS 1.0 to GS 4.0 and beyond. Mol Plant, 2022, 15: 577-580.
[1] WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770.
[2] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[3] XIN Yu-Ning, REN Hao, WANG Hong-Zhang, LIANG Ming-Lei, YU Tao, LIU Peng. Effects of spraying 6-benzylaminopurine (6-BA) on grain filling and yield of summer maize under post-pollination high temperature stress [J]. Acta Agronomica Sinica, 2025, 51(2): 418-431.
[4] QIAN Yu-Ping, SU Bing-Bing, GAO Ji-Xing, RUAN Fen-Hua, LI Ya-Wei, MAO Lin-Chun. Effects of maize and soybean intercropping on soil physicochemical properties and microbial carbon metabolism in karst region [J]. Acta Agronomica Sinica, 2025, 51(1): 273-284.
[5] HAO Qi, CHEN Tian-Lu, WANG Fu-Gui, WANG Zhen, BAI Lan-Fang, WANG Yong-Qiang, WANG Zhi-Gang. Estimation of canopy nitrogen concentration in maize based on UAV multi- spectral data and spatial nitrogen heterogeneity [J]. Acta Agronomica Sinica, 2025, 51(1): 189-206.
[6] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[7] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[8] LIU Bo, CHI Ming, CAO Meng-Qi, TANG Da, YANG Heng-Zhao, ZHANG Wei-Hua, XUE Cong. Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana [J]. Acta Agronomica Sinica, 2024, 50(9): 2237-2247.
[9] AI Sha, LI Sha, FANG Zhi-Wei, LI Lun, LI Tian-Tian, GAO Li-Fen, CHEN Li-Hong, XIAO Hua-Feng, WAN Ren-Jing, YAN Duo-Zi, WU Xing-Ting, PENG Hai, HAN Rui-Xi, ZHOU Jun-Fei. Development and application of cotton MNP marker for fingerprint cons- truction [J]. Acta Agronomica Sinica, 2024, 50(9): 2267-2278.
[10] GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013.
[11] CAO Xiao-Qing, QI Xian-Tao, LIU Chang-Lin, XIE Chuan-Xiao. Construction and verification of the CRISPR/Cas9 system containing DsRed fluorescent expression cassette for editing of ZmCCT10, ZmCCT9, and ZmGhd7 genes in maize [J]. Acta Agronomica Sinica, 2024, 50(8): 1961-1970.
[12] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[13] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[14] LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906.
[15] LIANG Lu, ZHOU Bao-Yuan, GAO Zhuo-Han, WANG Rui, WANG Xin-Bing, ZHAO Ming, LI Cong-Feng. Root and shoot growth of different maize varieties in response to soil compaction stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2053-2066.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .