Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Salt tolerance identification, screening and salt tolerance index evaluation of wheat-Thinopyrum intermedium radiation mutagenesis germplasm at germination and seedling stage

Qi Qing-Song1,Niu Xiang-Yu1,Liu Bing-Ke1,Kang Lu1,Wang Chen1,Feng De-Shun1,2,*   

  1. 1 State Kay Laboratory of Wheat Improvement / College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China; 2 Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture and Rural Affairs, Tai’an 271018, Shandong, China
  • Received:2025-08-04 Revised:2025-10-30 Accepted:2025-10-30 Published:2025-11-11
  • Contact: 封德顺, E-mail: dsfeng@sdau.edu.cn E-mail:2023120037@sdau.edu.cn
  • Supported by:
    This study was supported by the Taian Major Scientific and Technological Innovation Project (National Major Innovation Platform Support) 2025 (GZ-JSGG04), the Shandong Provincial Natural Science Foundation (ZR2023MC199) and the Funding for the “Double First Class” Construction Project of Shandong Agricultural University (SKL81113).

Abstract: Saline-alkali land is widespread in China and poses a significant limitation to crop growth. Screening for salt-tolerant crop varieties is a key strategy to enhance the utilization of saline-alkali soils. In this study, 40 radiation-induced wheat–Thinopyrum intermedium lines, three conventional wheat varieties, and the wheat–Th. intermedium disomic addition line SN6306 were used as experimental materials. Chinese Spring (CS) was used as a salt-sensitive control, and Shanrong 3 (SR3) served as a salt-tolerant control. Phenotypic traits were comprehensively analyzed under hydroponic conditions, and the optimal salt treatment concentrations for both germination and seedling stages were determined. Using multivariate statistical analysis, salt tolerance of the 44 experimental materials was evaluated at the seedling and germination stages. Based on the results, the materials were classified into four salt tolerance levels: five highly salt-tolerant lines (e.g., A275, A051), thirty-one moderately salt-tolerant lines (e.g., A079, A262), seven salt-sensitive lines (e.g., A140, A284), with CS identified as highly sensitive. A stepwise regression model was established using the salt tolerance scores and the relative salt tolerance coefficients of physiological and biomass indices: D-value =0.0330.050×K+-S+0.002×Na+-R+0.237×K+-R+0.176×GP+0.139×GR-0.005×PC+0.197×SFW+0.088×WCS0.110×RDW+0.242×SL+0.019×MRL (R2=0.999). Significant indicators for identifying salt-tolerant wheat included potassium content in shoots and roots, sodium content in roots, germination potential and rate, proline content, seedling fresh weight, water content, root dry weight, seedling height, and maximum root length. This study established a reliable regression model for evaluating wheat salt tolerance and identified both salt-tolerant and salt-sensitive lines, providing valuable genetic resources for further research on the molecular mechanisms of salt tolerance and for breeding salt-tolerant wheat varieties.

Key words: cultivate salt-resistant varieties, salt tolerance at seedling and bud stage, radiation mutagenesis, multivariate statistics, salt resistance evaluation

[1] 卢春燕. 我国小麦生产现状与提高小麦生产能力的思考. 南方农业, 2021, 15(30): 177–178.
Lu C Y. Current situation of wheat production in China and thoughts on improving wheat production capacity. South China Agric, 2021, 15(30): 177–178 (in Chinese with English abstract).

[2] 蒋赟, 张丽丽, 薛平, . 我国小麦产业发展情况及国际经验借鉴. 中国农业科技导报, 2021, 23(7): 1–10.
Jiang Y, Zhang L L, Xue P, et al. Development status of wheat industry in China and international experience for reference. J Agric Sci Technol, 2021, 23(7): 1–10 (in Chinese with English abstract).

[3] 蒋赟, 王秀东. 我国小麦产业发展现状问题及对策浅析. 南方农业, 2020, 14(31): 31–34.
Jiang Y, Wang X D. Analysis on the current problems and countermeasures of wheat industry. South China Agric, 2020, 14(31): 31–34 (in Chinese with English abstract).

[4] 张浩. 关于中国小麦生产成本现状分析与展望. 农业与技术, 2021, 41(23): 139–143.
Zhang H. Analysis and prospect on wheat production cost in China. Agric Technol, 2021, 41(23): 139–143 (in Chinese with English abstract).

[5] 刘小京, 郭凯, 封晓辉, 等. 农业高效利用盐碱地资源探讨. 中国生态农业学报(中英文), 2023, 31: 345–353.
Liu X J, Guo K, Feng X H, et al. Exploration on efficient utilization of saline-alkali land in agriculture. Chin J Eco-Agric, 2023, 31: 345–353 (in Chinese with English abstract).

[6] 王佳丽, 黄贤金, 钟太洋, . 盐碱地可持续利用研究综述. 地理学报, 2011, 66: 673–684.
Wang J L, Huang X J, Zhong T Y, et al. Review on sustainable utilization of salt-affected land. Acta Geogr Sin, 2011, 66: 673–684 (in Chinese with English abstract).

[7] 董宏图, 解超杰, 侯佩臣, . 高盐胁迫下小麦幼苗离子吸收动态及耐盐性筛选. 中国生态农业学报(中英文), 2021, 29: 762–770.
Dong H T, Xie C J, Hou P C, et al. Dynamic of ionic absorption and salt tolerance screening in wheat seedling under salt stress. Chin J Eco-Agric, 2021, 29: 762–770 (in Chinese with English abstract).

[8] 遆晋松, 童文杰, 王玉浩, . 河套灌区小麦耐盐性指标筛选与评价. 中国农业大学学报, 2013, 18(6): 54–60.
Ti J S, Tong W J, Wang Y H, et al. Screening and evaluation of salinity tolerance index for wheat in Hetao Irrigation District. J China Agric Univ, 2013, 18(6): 54–60 (in Chinese with English abstract).

[9] 刘恩良, 金平, 马林, . 新疆冬小麦耐盐指标筛选及分析评价研究. 新疆农业科学, 2013, 50: 809–816.
Liu E L, Jin P, Ma L, et al. Study on screening out salt tolerance indexes of Xinjiang winter wheat and their relevant analysis and evaluation. Xinjiang Agric Sci, 2013, 50: 809–816 (in Chinese with English abstract).

[10] 孟祥浩, 林琪, 张玉梅, . 盐胁迫对小麦萌发的影响及耐盐指标的筛选. 华北农学报, 2014, 29(4): 175–180.
Meng X H, Lin Q, Zhang Y M, et al. Effect of salt stress on germination of wheat and screening of salt tolerance indices. Acta Agric Boreali-Sin, 2014, 29(4): 175–180 (in Chinese with English abstract).

[11] 张莹莹, 赵明辉, 孟祥海, . 55份衡麦系列种质资源萌发期耐盐性筛选与鉴定. 山西农业科学, 2025, 53(2): 92–100.
Zhang Y Y, Zhao M H, Meng X H, et al. Screening and identification of salt tolerance of 55 Hengmai wheat accessions of germplasms at germination stage. J Shanxi Agric Sci, 2025, 53(2): 92–100 (in Chinese with English abstract).

[12] 高珅奥, 田仁美, 贾惠宁, . 236份小麦种质苗期耐盐性鉴定及耐盐指标筛选. 麦类作物学报, 2024, 44: 1115–1124.
Gao S A, Tian R M, Jia H N, et al. Identification of salt tolerance of 236 wheat germplasm at seedling stage and screening of salt tolerance indicators. J Triticeae Crops, 2024, 44: 1115–1124 (in Chinese with English abstract).

[13] 李媛媛, 陈博, 姚立蓉, . 283份小麦品种()萌发期耐盐碱性评价及种质筛选. 中国农业科技导报, 2021, 23(3): 25–33.
Li Y Y, Chen B, Yao L R, et al. Evaluation of salt and alkali tolerance and germplasm screening of 283 wheat varieties (lines) during germination. J Agric Sci Technol, 2021, 23(3): 25–33 (in Chinese with English abstract).

[14] 韩冉, 解树斌, 李欣, . 耐盐小麦种质筛选、鉴定与评价. 山东农业科学, 2020, 52(9): 12–18.
Han R, Xie S B, Li X, et al. Screening, identification and evaluation of salt-tolerant wheat germplasms. Shandong Agric Sci, 2020, 52(9): 12–18 (in Chinese with English abstract).

[15] 张婷婷, 于崧, 于立河, . 松嫩平原春小麦耐盐碱性鉴定及品种()筛选. 麦类作物学报, 2016, 36: 1008–1019.
Zhang T T, Yu S, Yu L H, et al. Saline-alkaline tolerance identification and varieties(lines)screening of spring wheat in Songnen Plain. J Triticeae Crops, 2016, 36: 1008–1019 (in Chinese with English abstract).

[16] 库尼都孜阿依·吐尔汗, 任毅, 颜安, 等. 新疆冬小麦品种萌发期耐盐性综合评价及耐盐种质的筛选. 新疆农业科学, 2020, 57: 20–31.
Turhan K, Ren Y, Yan A, et al. Comprehensive evaluation and screening of salt tolerance in winter wheat varieties at germination stage in Xinjiang. Xinjiang Agric Sci, 2020, 57: 20–31 (in Chinese with English abstract).

[17] 吴秀宁, 赵麟, 徐芳琴, . 盐胁迫下黑小麦的萌发特性及耐盐评价指标与耐盐种质的筛选. 贵州农业科学, 2023, 51(3): 19–26.
Wu X N, Zhao L, Xu F Q, et al. Germination characteristics of black wheat and screening of salt tolerance evaluation indexes and salt tolerance germplasm under salt stress. Guizhou Agric Sci, 2023, 51(3): 19–26 (in Chinese with English abstract).

[18] 苏寒, 王金涛, 董心亮, . 不同质量浓度咸水灌溉对冬小麦产量和生理生化特性的影响. 灌溉排水学报, 2021, 40(8): 1–9.
Su H, Wang J T, Dong X L, et al. Effects of different saline water irrigation on yield, physiological and biochemical traits of winter wheat. J Irrig Drain, 2021, 40(8): 1–9 (in Chinese with English abstract).

[19] 王芳, 段迪, 段培, . 不同耐盐性小麦胚芽鞘伸长对NaCl胁迫的响应. 作物学报, 2007, 33: 2053–2058.
Wang F, Duan D, Duan P, et al. Coleoptile elongation response of different salt-tolerant wheat cultivars to NaCl stress. Acta Agron Sin, 2007, 33: 2053–2058 (in Chinese with English abstract).

[20] 王文杰60Co-γ辐射诱变小偃麦后代的抗白粉病、耐盐性及品质分析. 山东农业大学硕士学位论文, 山东泰安, 2024.
Wang W J. Analysis of Powdery Mildew Resistance, Salt Tolerance and Quality of Trititrigia Progenies Induced by 60Co-γ Radiation. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2024 (in Chinese with English abstract).

[21] 黄承彦, 楚秀生. 山东小麦图鉴第二卷-育成品种. 北京: 中国农业出版社, 2024. p 336.
Huang C Y, Chu X S. Shandong Wheat Atlas Volume II: Breeding Varieties. Beijing: China Agricultural Press, 2024. p 336 (in Chinese).

[22] 王维. 小麦耐盐种质的筛选鉴定及利用. 山东农业大学硕士学位论文, 山东泰安, 2021.
Wang W. Screening, Identification and Utilization of Salt-tolerant Wheat Germplasm. MS Thesis of Shandong Agricultural University, Taian, Shandong, China, 2021 (in Chinese with English abstract).

[23] 张志良, 瞿伟菁. 植物生理学实验指导(第三版). 北京: 高等教育出版社, 2014. pp 258–260.
Zhang Z L, Qu W J. Experimental Guide for Plant Physiology, 3rd edn. Beijing: Higher Education Press, 2014. pp 258–260 (in Chinese).

[24] 赵玮. 小麦α/β水解酶ABHD6基因的生物信息学分析及耐盐小麦的筛选鉴定. 山东农业大学硕士学位论文, 山东泰安, 2024.
Zhao W. Bioinformatics Analysis of Wheat α / β Hydrolase ABHD6 Gene and Screening and Identification of Salt-tolerant Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2024 (in Chinese with English abstract).

[25] 李申. 耐低钾和抗盐水稻种质资源的筛选与评价. 南京农业大学硕士学位论文, 江苏南京, 2021.
Li S. Screening and Evaluation of Rice Germplasm Resources for Resistance to Low Potassium and Salt Stress. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2021 (in Chinese with English abstract).

[26] 刘吉, 黄梦桑, 赵敏华, . NaCl胁迫对菠菜萌发和苗期生理特性的影响. 上海师范大学学报(自然科学版), 2022, 51(1): 1–8.
Liu J, Huang M S, Zhao M H, et al. Effects of NaCl stress on seed germination and the physiological characteristics of spinach. J Shanghai Norm Univ (Nat Sci), 2022, 51(1): 1–8 (in Chinese with English abstract).

[27] 张子怡. microRNA在水稻抗逆性状中的研究进展. 农学学报, 2020, 10(11): 1–6.
Zhang Z Y. microRNA in stress resistance characters of rice: research progress. J Agric, 2020, 10(11): 1–6 (in Chinese with English abstract).

[28] 高玉刚. 基于转录组和代谢组联合分析燕麦响应盐碱胁迫的机制研究. 黑龙江八一农垦大学博士学位论文, 黑龙江大庆, 2022.
Gao Y G. Study on the Responses of Ota to Saline-alkali Stress Based on Transcriptome and Metabolome Joint Analysis. PhD Dissertation of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2022 (in Chinese with English abstract).

[29] 王晓歌, 高利英, 邓永胜, . 棉花萌发出苗期耐盐性鉴定和评价. 山东农业科学, 2025, 57(2): 29–37.
Wang X G, Gao L Y, Deng Y S, et al. Identification and evaluation of cotton salt tolerance during germination and seedling stages. Shandong Agric Sci, 2025, 57(2): 29–37 (in Chinese with English abstract).

[30] 蒋优, 马雪融, 张博, . 苏丹草种子萌发期耐盐性评价及耐盐种质筛选. 作物学报, 2025, 51(3): 835–844.
Jiang Y, Ma X R, Zhang B, et al. Evaluation of salt tolerance and screening of salt-tolerant germplasm of Sorghum sudanese during seed germination period. Acta Agron Sin, 2025, 51(3): 835–844 (in Chinese with English abstract).

[31] 陈宏, 许娜丽, 朱保磊, . 腐植酸钾盐对盐碱胁迫下小麦种子萌发和幼苗生长的影响. 腐植酸, 2025(3): 28–34.
Chen H, Xu N L, Zhu B L, et al. Effects of potassium humate salts on seed germination and seedling growth of wheat under saline-alkali stress. Humic Acid, 2025(3): 28–34 (in Chinese with English abstract).

[32] 王掌军, 赵梓翔, 张雪婷, . 宁夏春麦区小麦品种()耐盐性鉴定及种质筛选. 南方农业学报, 2025, 56: 1651–1662.
Wang Z J, Zhao Z X, Zhang X T, et al. Identification of wheat varieties(lines) for salt tolerance and screening of germplasm in Ningxia spring wheat region. J South Agric, 2025, 56: 1651–1662 (in Chinese with English abstract).

[33] 李若璇. 小麦滨麦、华山新麦草衍生系耐盐种质筛选及分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2024.
Li R X. Screening and Analysis of Salt-tolerant Germplasm of Wheat-Leymus mollis and Psathyrostachys huashanica Keng Derivative Lines. MS Thesis of Northwest A & F University, Yangling, Shaanxi, China, 2024 (in Chinese with English abstract).

[34] 张军, 吴秀宁, 王新军. 盐胁迫对小麦幼苗根系生长的影响. 商洛学院学报, 2016, 30(4): 52–55.
Zhang J, Wu X N, Wang X J. Effects of salt stress on root growth of wheat at its seedling stage. J Shangluo Univ, 2016, 30(4): 52–55 (in Chinese with English abstract).

[35] 孙现军, 胡正, 姜雪敏, . 大豆种质资源苗期耐盐性鉴定评价与筛选. 作物学报, 2024, 50: 2179–2186.
Sun X J, Hu Z, Jiang X M, et al. Identification, evaluation and screening of salt-tolerant of soybean germplasm resources at seedling stage. Acta Agron Sin, 2024, 50: 2179–2186 (in Chinese with English abstract).

[36] 刘欣玥, 郭潇阳, 王欣茹, . 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选. 作物学报, 2024, 50: 2122–2130.
Liu X Y, Guo X Y, Wang X R, et al. Establishment of screening method for salt tolerance at germination stage and identification of salt-tolerant germplasms in soybean. Acta Agron Sin, 2024, 50: 2122–2130 (in Chinese with English abstract).

[37] 耿玉珂, 周宜君, 丁宁, . 植物耐盐突变体筛选与耐盐转基因研究. 中央民族大学学报(自然科学版), 2009, 18(4): 10–17.
Geng Y K, Zhou Y J, Ding N, et al. Selection of salt-tolerant mutant and research on salt-tolerant transgenic in plant. J Minzu Univ China (Nat Sci Edn), 2009, 18(4): 10–17 (in Chinese with English abstract).

[38] 龙海婷, 荆桂花, 鹿美航, . 新型钙镁硅复合无机材料对盐胁迫下小麦幼苗生长的影响. 河北科技师范学院学报, 2024, 38(1): 29–36.
Long H T, Jing G H, Lu M H, et al. Effects of novel calcium magnesium silicon composite Inorganic Materials on growth of wheat seedlings under salt stress. J Hebei Norm Univ Sci Technol, 2024, 38(1): 29–36 (in Chinese with English abstract).

[39] 陈家婷, 白欣, 谷雨杰, . 小麦芽期和苗期耐盐鉴定方法的适用性评价. 作物学报, 2024, 50: 1193–1206.
Chen J T, Bai X, Gu Y J, et al. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages. Acta Agron Sin, 2024, 50: 1193–1206 (in Chinese with English abstract).

[40] 乔麟轶, 张潇文, 李世姣, . 小偃麦渗入系苗期耐盐鉴定与分子标记评价. 山东农业科学, 2021, 53(5): 69–73.
Qiao L Y, Zhang X W, Li S J, et al. Salt-tolerance identification at seedling stage and molecular marker evaluation of wheat-Thinopyrum intermedium introgression lines. Shandong Agric Sci, 2021, 53(5): 69–73 (in Chinese with English abstract).

[41] 李红, 李波, 杨曌. 60Co-γ辐射对谷稗幼苗抗盐碱生理特性及抗氧化酶活性的影响. 黑龙江畜牧兽医, 2019(8): 127–130.
Li H, Li B, Yang Z. Effects of 60Co-γ radiation on resistance to saline physiological characteristics and antioxidant enzyme activities of hiedani seedlings. Heilongjiang Anim Sci Vet Med, 2019(8): 127–130 (in Chinese).

[42] 贾玉芳, 陈曙, 柴明良. γ射线对沟叶结缕草愈伤组织再生和耐盐性的影响. 草业学报, 2010, 19(5): 25–30.
Jia Y F, Chen S, Chai M L. Effect of γ-irradiation on callus regeneration and salt tolerance in Manilagrass. Acta Pratac Sin, 2010, 19(5): 25–30 (in Chinese with English abstract)

[1] TONG Xing,ZHAO Bo,JING Wen-Lin,ZENG Chao-Wu,LIU Hong-Xia,WU Bao-Mei,PU Shao-Jing. Identification of Mutants from Adzuki Bean (Vigna angularisi) Jingnong 6 seed Induced by Physical and Chemical Agents [J]. Acta Agron Sin, 2010, 36(4): 565-573.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!