Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (03): 431-438.doi: 10.3724/SP.J.1006.2014.00431

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Over-expressing GsCBRLK/SCMRP from Glycine soja Enhances Alkaline Tolerance and Methionine Content in Transgenic Medicago sativa

ZHAO Yang,ZHU Yan-Ming,BAI Xi,JI Wei,WU Jing,TANG Li-Li,CAI Hua*   

  1. Key Laboratory of Agricultural Biological Functional Genes / Northeast Agricultural University, Harbin 150030, China
  • Received:2013-03-01 Revised:2013-10-18 Online:2014-03-12 Published:2014-01-16
  • Contact: 才华, E-mail:caihua@neau.edu.cn

Abstract:

Drought and saline-alkaline stresses, significantly affect growth and productivity of plants. Plants adapt to these environmental stresses by inducing numerous genes at the transcriptional level and protein phosphorylation. In this study, an expression vector BEOCBRLK-SCMRP was constructed. A stress-responsive kinase gene of Glycine soja (GsCBRLK) was selected by our laboratory previously according to gene expression profiles under salinity, drought and cold stresses. Over expression of GsCBRLK in transgenic Arabidopsis resulted in enhanced tolerance to high salinity and ABA.SCMRP is a kind of storage protein gene coding high-sulfur-containing amino acid, which was designed and synthesized according to the soybean coden usage. We transformed GsCBRLK and SCMRP genes into alfalfa using a developed method, under the treatments of 100, 150 mmol L–1 NaHCO3 for 14 days, the transgenic alfalfa grew well while wild type plants exhibited discoloration and stunted growth, or even death. There were significant changes in MDA content and relative membrane permeability caused by alkaline stress in non-transgenic lines as compared with transgenic lines (P<0.05). Moreover, compared with non-transgenic plant, transgenic alfalfa had higher level of SOD activity under alkali stress condition. Analysis of amino acid content showed that transgenic plants were rich in methionine content compared with non-transformed plants. These results indicated that the transformants carrying GsCBRLK and SCMRP could enhance both alkaline tolerance and methionine amino acid content in alfalfa.

Key words: CBRLK, SCMRP, Transgenic alfalfa, Methionine content;, Alkaline tolerance

[1]耿华珠. 中国苜蓿. 北京:中国农业出版社, 1995. pp 1–5



Geng H Z. Alfalfa in China. Beijing: China Agriculture Press, 1995. pp 1–5 (in Chinese)



[2]Samac D A, Smigocki A C. Expression of oryzacystatin I and II in alfalfa increases resistance to the root-lesion nematode. Phytopathology, 2003, 93: 799–804



[3]Hipskind J D, Pavia N L. Constitutive accumulation of resveratrol glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant Microbe Interact, 2000, 13: 551–562



[4]Guo D G, Chen F, Wheeler J, Winder J, Selman S, Peterson M, Dixon R A. Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methl transferases. Transgenic Res, 2001, 10: 457–464



[5]Strizhov N, Keller M, Mathur J, KonczKalman Z, Bosch D, Prudovsky E, Schell J, Sneh B, Koncz C, Zilberstein A. A synthetic cry IC gene, encoding a Bacillus thuringiensis delta-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc Natl Acad Sci USA, 1996, 93: 15012–15022



[6]Thomas J C, Wasmanm C C, Echt C, Dunn R L, Bohnert H J, Mccoy T J. Introduction and expression of an insect proteinase inhibitor in alfalfa Medicago sativa L. Plant Cell Rep, 1994, 14: 31–36



[7]Narvaez V J. Orozco-Cardenas M L, Ryan C A. Differential expression of a chimeric CaMV-tomato proteinase Inhibitor I gene in leaves of transformed nightshade, tobacco and alfalfa plants. Plant Mol Biol, 1992, 20: 1149–1157



[8]Donn G, Tischer E, Smith J A, Goodman H M. Herbicide resistant alfalfa cells: an example of gene amplication in plants. Mol Appl Genet, 1984, 2: 621–635



[9]D’Halluin K, Botterman J, de Greef W. Engineering of herbicide-resistant alfalfa and evaluation under field conditions. Crop Sci, 1990, 30: 866–871



[10]Padgette S R, Kolacz K H, Delannay X, Re D B, LaVallee B J, Tinius C N, Rhodes W K, Otero Y I, Barry G F, Eichholtz D A, Peschke V M, Nida D L, Taylor N B, Kishore G M. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci, 1995, 35: 1451−1461



[11]秦智慧, 晁跃辉, 杨青川, 康俊梅, 孙彦, 王凭青, 龙瑞才. 紫花苜蓿锌指蛋白基因RNAi表达载体的构建及在苜蓿的转化. 作物学报, 2010, 36: 596−601



Qin Z H, Chao Y H, Yang Q C, Kang J M, Sun Y, Wang P Q, Long R C. Construction and transformation of RNAi vector of MsZFN gene from alfalfa (Medicago sativa L.). Acta Agron Sin, 2010, 36: 596−601 (in Chinese with English abstract)



[12]安宝燕, 罗琰, 李加瑞, 乔卫华, 张宪省, 高新起. 紫花苜蓿Na+/H+逆向转运蛋白基因在拟南芥中表达提高转基因植株的耐盐性. 作物学报, 2008, 34: 557−564



An BY, Luo Y, Li JR, Qiao W H, Zhang X S, Gao X Q. Expression of a vacuolar Na+/H+ antiporter gene of alfalfa enhances salinity tolerance in transgenic arabidopsis. Acta Agron Sin, 2008, 34: 557−564 (in Chinese with English abstract)



[13]Winicov I. Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta, 2002, 210: 416−422



[14]Tesfaye M, Temple S J, Allan D L, Vance C P, Samac D A. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol, 2001, 127: 1834−1844



[15]Samac D A. The influence of organic acid exudation in alfalfa on aluminum tolerance, nutrient acquisition and bacterial diversity. ISB News Rep, 2003, 11: 6−8



[16]Yang L, Ji W, Zhu Y M, Gao P, Li Y, Cai H, Bai X, Guo D J. GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. J Exp Bot, 2010, 61: 2519–2533



[17]Pickering F S, Reis P J. Effects of abomasal supplements of methionine on wool growth of grazing sheep. J Exp Agric, 1993, 33: 7−12



[18]Reis P J. Effects of amino acids on the growth and properties of wool. In: Black J L ed. Physiological and Environmental Limitations to Wool Growth. Armidale: University of New England Publishing Unit, 1979. pp 223−242



[19]Schroeder H E, Khan M R I, Knibb W R, Spencer D, Higgins T J V. Expressing of chicken ovalbumin gene in three Lucerne cultivars. J Plant Physiol, 1991, 18: 495−505



[20]吕德扬, 范云六, 俞梅敏, 唐顺学, 侯宁, 汪清. 苜蓿高含硫氨基酸蛋白转基因植株再生. 遗传学报, 2000, 27:331−337



Lü D Y, Fan Y L, Yu M M, Tang S X, Hou N, Wang Q. Regeneration of HNP transgenic alfalfa plants by agrobacterium mediated gene transfer. Acta Genet Sin, 2000, 27: 331−337 (in Chinese with English abstract)



[21]Avraham T, Badani H, Galili S, Amir R. Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants overexpressing the Arabidopsis cystathionine γ-synthase gene. Plant Biotechnol J, 2005, 3: 71−79



[22]朱延明, 柏锡, 才华, 纪巍, 李勇, 季佐军. 提高大豆蛋氨酸含量的人工序列及其植物表达载体: 中国专利, 编号200910073162.7, [2010-04-28]



Zhu Y M, Bai X, Cai H, Ji W, Li Y, Ji Z J. Artificial Sequence of Methionine Improved Content in Soybean and Expression Vector Construction. Chinese patent, No. 200910073162.7 [2010-04-28] (in Chinese)



[23]翟红, 柏锡, 朱延明, 陈秀华. SCMRP基因原核表达及多克隆抗体制备. 东北农业大学学报, 2009, 40(7): 60−65



Zhai H, Bai X, Zhu Y M, Chen X H. Protokaryotic expression of SCMRP gene and preparation of polyclonal antibody. J Northeast Agric Univ, 2009, 40(7): 60−65 (in Chinese with English abstract)



[24]张凤. 转SCMRP基因大豆的遗传稳定性分析及环境安全性初步评价. 东北农业大学硕士论文, 2012



Zhang F. Field Test and Genetic Stability Analysis of Transgenic SCMRP Soybean Lines. MS Thesis of Northeast Agricultural University, 2012. (in Chinese with English abstract)



[25]盛慧, 朱延明, 李杰, 柏锡, 才华. DREB2A基因对苜蓿遗传转化的研究. 草业科学, 2007, 24(3): 40−45



Shen H, Zhu Y M, Li J, Bai X, Cai H. Genetic transformation of DREB2A gene into alfalfa. Pratac Sci, 2007, 24(3): 40−45 (in Chinese with English abstract)



[26]陈富成, 祁建民, 徐建堂, 陈涛, 陶爱芬, 林培清, 陈美霞, 郭英, 李华丽. 圆果种黄麻功能叶总蛋白提取方法及双向电泳体系的优化. 作物学报, 2011, 37: 369−373



Chen F C, Qi J M, Xu J T, Chen T, Tao A F, Lin P Q, Chen M X, Guo Y, Li H L. Optimization of extraction method and two-dimensional electrophoresis conditions for proteome analysis of jute functional leaf. Acta Agron Sin, 2011, 37: 369−373 (in Chinese with English abstract)



[27]Sambrook J, Russell D W. Molecular Cloning: a laboratory manual, 3rd edn. New York: Cold Spring Harbor Laboratory Press, 2001. pp 1713−1726



[28]Hodges D M, DeLong J M, Forney C F, Prange R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207: 604–611



[29]Health R L, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 1968, 125: 1892–1981



[30]Gibon Y, Larher F. Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Anal Biochem, 1997, 251: 153–157



[31]魏正巍. 耐盐碱GsGST13SCMRP和GsCBRLKSCMRP双价基因对苜蓿的遗传转化及转基因植株的培育. 东北农业大学硕士论文, 2012



Wei Z W. The Transformation of Saline-Alkaline Stress Gene Into Alfalfa and the Creation of Transgenic Plants. MS Thesis of Northeast Agricultural University, 2012 (in Chinese with English abstract)



[32]Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohshi Y. Efficient Promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol, 1996, 37: 49–59



[33]Garrett R H. Biochemistry 3rd ed. Beijing: Higher Education Press, 2005



[34]杨靓. 野生大豆渗透胁迫相关蛋白激酶基因的克隆及功能分析. 东北农业大学博士论文. 2010



Yang L. Isolation and Functional Analysis of Protein Kinase Genes Relevant to Osmotic Stress in Glycine soja. PhD Dissertation of Northeast Agricultural University, 2010 (in Chinese with English abstract)



[35]魏正巍, 朱延明, 化烨, 才华, 纪巍, 柏锡, 王臻昱, 文益东. 转GsPPCK1基因苜蓿植株的获得及其耐碱性分析. 作物学报, 2013, 39: 68−75



Wei Z W, Zhu Y M, Hua Y, Cai H, Ji W, Bai X, Wang Z Y, Wen Y D. Transgenic alfalfa with GsPPCK1 and its alkaline tolerance analysis. Acta Agron Sin, 2013, 39: 68−75 (in Chinese with English abstract)



[36]高文俊, 徐静, 谢开云, 董宽虎. Na2CO3和NaHCO3胁迫下冰草的生长及生理响应. 草业学报, 2011, 20(4): 299−304



Gao W J, Xu J, Xie K Y, Dong K H. Physiological responses of Agropyroncristatum under Na2CO3 and NaHCO3 stress. Acta Pratac Sin, 2011, 20(4): 299−304 (in Chinese with English abstract)



[37]李源, 刘贵波, 高洪文, 孙桂枝, 赵海明, 谢楠. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应. 草业学报, 2010, 19(4): 79−86



Li Y, Liu G B, Gao H W, Sun G Z, Zhao H M, Xie N. A comprehensive evaluation of salt tolerance and the physiological response of Medicago sativa at the seedling stage. Acta Pratac Sin, 2010, 19(4):79−86 (in Chinese with English abstract)



[38]张海娜, 李小娟, 李存东, 肖凯. 过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响. 作物学报, 2008, 34(8): 1403−1408



Zhang H N, Li X J, Li C D, Xiao K. Effects of overexpression of wheat superoxide dismutase (SOD) genes on salt tolerant capability in tobacco. Acta Agron Sin, 2008, 34(8): 1403−1408 (in Chinese with English abstract)



[39]王玉祥, 张博, 王涛. 盐胁迫对苜蓿叶绿素、甜菜碱含量和细胞膜透性的影响. 草业科学, 2009, 26(3): 53−56



Wang Y X, Zhang B, Wang T. Effect of salt stress on the contents of chlorophyll and betaine and its membrane permeability of Medicago sativa. Pratac Sci, 2009, 26(3): 53−56 (in Chinese with English abstract)



[40]李宝健, 朱华晨. 论应用多基因转化策略综合改良生物体遗传性研究方向的前景. 中山大学学报(自然科学版), 2005, 44(4): 79−83



Li B J, Zhu H C. On the prospects of applying the multi-gene transformation strategy (MTS) to modify the inheritance of organisms: II. General principles, possible problems and prospects of the MTS. Acta Sci Nat Univ Sunyatseni (Nat Sci Edn), 2005, 44(4): 79−83 (in Chinese with English abstract)

[1] ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521.
[2] ZHU Ping-Hui**,CHEN Ran-Ran**,YU Yang,SONG Xue-Wei,LI Hui-Qing,DU Jian-Ying,LI Qiang,DING Xiao-Dong,ZHU Yan-Ming*. Cloning of Gene GsWRKY15 Related to Alkaline Stress and Alkaline Tolerance of Transgenic Plants [J]. Acta Agron Sin, 2017, 43(09): 1319-1327.
[3] WEI Zheng-Wei,ZHU Yan-Ming,HUA Ye,CAI Hua,JI Wei,BAI Xi,WANG Zhen-Yu,WEN Yi-Dong. Transgenic Alfalfa with GsPPCK1 and Its Alkaline Tolerance Analysis [J]. Acta Agron Sin, 2013, 39(01): 68-75.
[4] WANG Zhen-Yu,CAI Hua,BAI Xi,JI Wei,LI Yong,WEI Zheng-Wei,ZHU Yan-Ming. Isolation of GsGST19 from Glycine soja and Analysis of Saline-Alkaline Tolerance for Transgenic Medicago sativa [J]. Acta Agron Sin, 2012, 38(06): 971-979.
[5] ZHANG Yan-Min, ZHANG Hong-Mei, XIANG Jin-Yang, GUO Xiu-Lin, LIU Zi-Hui, LI Guo-Liang, CHEN Dao-Yi. Analysis of T-DNA Flanking Sequences and Event Specific Detection of Transgenic Alfalfa with Gene BADH [J]. Acta Agron Sin, 2011, 37(03): 397-404.
[6] QI Dong-Ling,GUO Gui-Zhen,LEE Myung-Chul,YANG Chun-Gang,ZHANG Jun-Guo,CAO Gui-Lan,ZHANG San-Yuan,SUH Seok-Cheol,ZHOU Qing-Yang,HAN Long-Zhi. Identification of Quantitative Trait Loci for Alkaline Tolerance at Early Seedling Stage under Alkaline Stress in Japonica Rice [J]. Acta Agron Sin, 2009, 35(2): 301-308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!