Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (12): 1859-1867.doi: 10.3724/SP.J.1006.2019.94041

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics and influencing factors of geographical agglomeration of cotton plantation in Xinjiang

Chun-Yue MA1,2,Sawut Mamat1,2,3,*(),Ablet Ershat1,2,Jie YAO4   

  1. 1 College of Resources and Environmental Science, Xinjiang University, Urumqi 830046, Xinjiang, China
    2 Key Laboratory of Oasis Ecology of Ministry of Education, Urumqi 830046, Xinjiang, China
    3 Key Laboratory for Wisdom City and Environmental Modeling, Xinjiang University, Urumqi 830046, Xinjiang, China
    4 Chongqing Yingxi Hengzong Information Technology Co. Ltd, Chongqing 400014, China
  • Received:2019-03-15 Accepted:2019-06-20 Online:2019-12-12 Published:2019-07-16
  • Contact: Sawut Mamat E-mail:korxat@xju.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(41361016);This study was supported by the National Natural Science Foundation of China(41461051)

Abstract:

Xinjiang is the largest cotton production base in China. The study on the geographical agglomeration characteristics of cotton planting in Xinjiang is of great significance in adjusting and optimizing the agricultural structure distribution of cotton production, increasing farmers’ income, and promoting the sustainable development of cotton. Based on the cotton production data of Xinjiang from 1988 to 2016, we explored the spatial-temporal change characteristics of cotton plantation by Location quotient, Gini coefficient, and spatial autocorrelation analysis, qualitatively and quantitatively analyzed various influence factors on the geographical agglomeration of cotton plantation by spatial panel data model, and revealed the main driving force of cotton planting industry in Xinjiang. The cotton planting area in Xinjiang experienced three stages, including continuous growth (1988-1999), slow decrease (2000-2004) and fluctuating growth (2005-2016). In 2016, the cotton planting area accounted for nearly 3/5 of the total area in China, and its professional agglomeration level was higher than that of other regions in China, with the increasingly strengthened leading position since 1992. The regional characteristics of cotton planting industry in Xinjiang were obvious. The change of cotton area in southern Xinjiang dominated the change of cotton plantation in Xinjiang. The agglomeration level of cotton plantation in Xinjiang showed a trend of slow recovery after a decline in fluctuation since 1988. The high aggregation (H-H) area transferred from Kashgar area to Kuqa and Xinhe in Aksu area, at the same time, the changes of high-low cluster, low-high cluster and low-low cluster were not significant. The main factors promoting the geographical agglomeration of cotton planting in Xinjiang included the proportion of productive land area, cotton comparative income, mechanization level and policy factors.

Key words: cotton plantation, geographical agglomeration, spatio-temporal characteristics, spatial panel data model

Fig. 1

Proportion of cotton areas in the country from 1988 to 2016"

Table 1

Location quotient (Qi) of top five provinces or autonomous region and cities from 1988 to 2016"

年份
Year
第1 Top 1 第2 Top 2 第3 Top 3 第4 Top 4 第5 Top 5
省、区
Region
区位商Qi 省、区
Region
区位商Qi 省、区
Region
区位商Qi 省、区
Region
区位商Qi 省、区
Region
区位商Qi
1988 山东Shandong 3.4 新疆Xinjiang 3.4 河北Hebei 2.8 河南Henan 2.0 江苏Jiangsu 1.9
1992 新疆Xinjiang 4.6 山东Shandong 3.1 河南Henan 2.3 河北Hebei 2.3 江苏Jiangsu 1.8
1996 新疆Xinjiang 8.1 河南Henan 2.6 江苏Jiangsu 2.0 湖北Hubei 2.0 河北Hebei 1.6
2000 新疆Xinjiang 12.1 河南Henan 2.3 山东Shandong 1.9 湖北Hubei 1.6 河北Hebei 1.4
2004 新疆Xinjiang 8.5 天津Tianjin 4.7 山东Shandong 2.7 河北Hebei 2.1 河南Henan 1.9
2008 新疆Xinjiang 10.2 天津Tianjin 4.3 山东Shandong 2.3 河北Hebei 2.2 湖北Hubei 2.0
2012 新疆Xinjiang 11.7 天津Tianjin 4.0 河北Hebei 2.3 湖北Hubei 2.0 安徽Anhui 1.2
2016 新疆Xinjiang 16.6 山东Shandong 1.9 河北Hebei 1.5 天津Tianjin 1.3 湖北Hubei 1.2

Table 2

Cotton plantation areas of top five provinces and cities from 1988 to 2016 (×104 hm2)"

年份
Year
第1 Top 1 第2 Top 2 第3 Top 3 第4 Top 4 第5 Top 5
省、区
Region
面积
Area
省、区
Region
面积
Area
省、区
Region
面积
Area
省、区
Region
面积
Area
省、区
Region
面积
Area
1988 山东Shandong 141.2 河北Hebei 92.4 河南Henan 89.6 江苏Jiangsu 59.9 湖北Hubei 44.2
1992 山东Shandong 147.7 河南Henan 122.9 河北Hebei 87.7 江苏Jiangsu 66.0 新疆Xinjiang 63.2
1996 河南Henan 95.4 新疆Xinjiang 74.3 山东Shandong 50.9 江苏Jiangsu 47.3 湖北Hubei 44.1
2000 新疆Xinjiang 106.3 河南Henan 79.1 山东Shandong 54.1 河北Hebei 33.0 安徽Anhui 31.0
2004 新疆Xinjiang 112.8 山东Shandong 105.9 河南Henan 95.2 河北Hebei 66.9 江苏Jiangsu 41.0
2008 新疆Xinjiang 166.8 山东Shandong 88.8 河北Hebei 69.0 河南Henan 60.6 湖北Hubei 54.3
2012 新疆Xinjiang 172.1 山东Shandong 69.0 河北Hebei 57.8 湖北Hubei 47.3 安徽Anhui 30.5
2016 新疆Xinjiang 215.5 山东Shandong 46.5 河北Hebei 28.9 湖北Hubei 20.3 安徽Anhui 18.3

Fig. 2

Variation of cotton plantation areas in Xinjiang from 1988 to 2016"

Fig. 3

Changing trend of geographical agglomeration of cotton industry in Xinjiang from 1988 to 2016"

Fig. 4

Global correlation analysis of Xinjiang cotton industry from 1988 to 2016"

Fig. 5

Local spatial auto-correlation of geographical agglomeration in Xinjiang cotton industry (1988-2016) H-H indicates that a high value is surrounded by its adjacent high value, which belongs to high-high aggregation; H-L indicates that a high value is surrounded by its adjacent low value, which belongs to high-low aggregation; L-H indicates that a low value is surrounded by its adjacent high value, which belongs to low-high aggregation; L-L indicates that a low value is surrounded by its adjacent low value, which belongs to low-low aggregation."

Table 3

Assumption of influence factor and variable description"

影响因素
Influence factor
变量
Variable
变量说明
Variable description
资源条件
Resource conditions
生产性土地面积比重
Proportion of productive land area (X1)
棉花种植面积/土地面积
Cotton plantation areas/land area
人均粮食产量
Per capita grain yield (X2)
粮食总产量/总人口数
Total grain production/total population
灌溉水平
Irrigation level (X3)
区域灌溉用水量/耕地面积
Irrigation water consumption/cultivated area
经济和市场因素
Economic and market factors
人均GDP情况
Per capita GDP (X4)
区域GDP总量/总人口数
Total regional GDP/total population
棉花比较效益
Comparative benefit of cotton (X5)
棉花与竞争性作物(粮食)价格比值
The price ratio of cotton to a competitive crop (grain)
技术因素
Technical factors
机械化水平
Mechanization level (X6)
农业机械总动力/耕地面积
Total power of agricultural machinery/cultivated area
化肥施用量
Consumption of chemical fertilizers (X7)
化肥折纯量/耕地面积
Consumption of chemical fertilizers/cultivated area
塑料薄膜使用情况
Consumption of plastic film (X8)
塑料薄膜使用量/耕地面积
Consumption of plastic film/cultivated area
交通条件和政策因素
Traffic condition and policies
交通运输网密度
Traffic network density (X9)
每百平方千米铁路和公路的总里程数
The total mileage of a railroad or highway per 100 square kilometers
政策虚拟变量
Policy dummy variable (X10)

Table 4

Regression results of spatial Durbin panel data model"

变量
Variable
系数
Coefficient
直接效应
Direct effect
间接效应
Indirect effect
总效应
Total effect
生产性土地面积比重
Proportion of productive land area (X1)
0.8663*** 0.8852*** 0.3180** 1.2032***
人均粮食产量
Per capita grain yield (X2)
0.4889** 0.4240** -0.2182* 0.2058*
灌溉水平
Irrigation level (X3)
0.2631** 0.2136* 0.0116 0.2252*
人均GDP情况
Per capita GDP (X4)
0.3591* 0.3619** 0.1007 0.4626
棉花比较效益
Comparative benefit of cotton (X5)
1.0390* 1.0328* 0.3328*** 1.3656***
机械化水平
Mechanization level (X6)
0.4320** 0.4186** -0.1245* 0.2911**
化肥施用量
Consumption of chemical fertilizers (X7)
0.0772 0.0639 0.0281 0.0920
塑料薄膜使用情况
Consumption of plastic film (X8)
0.1092 0.1164 0.0334 0.1498
交通运输网密度
Traffic network density (X9)
-0.1840* 0.1526 -0.0214 0.1312*
政策虚拟变量
Policy dummy variable (X10)
0.4798** 0.4173*** 0.1017** 0.5190***

Fig. 6

Influence of various variables on the geographical agglomeration of cotton planting in Xinjiang"

[1] 徐培秀, 梅方权, 唐志发 . 中国棉花区划研究. 地理研究, 1983,2(1):12-22.
Xu P X, Mei F Q, Tang Z F . A study of regionalization of ctton cultivation in China. Geogr Res, 1983,2(1):12-22 (in Chinese with English abstract).
[2] 吕昭智, 陈键, 吴志勇, 马桂龙 . 新疆棉区主要有害生物与可持续发展. 干旱区研究, 1999,16(3):28-32.
Lyu Z Z, Chen J, Wu Z Y, Ma G L . The main pest in Xinjiang cotton region and sustainable development. Arid Zone Res, 1999,16(3):28-32 (in Chinese with English abstract).
[3] 依尔夏提·阿不来提, 买买提·沙吾提, 白灯莎·买买提艾力, 安申群, 马春玥 . 基于随机森林法的棉花叶片叶绿素含量估算. 作物学报, 2019,45:81-90.
doi: 10.3724/SP.J.1006.2019.84058
Ershat A, Mamat S, Baidengsha M, An S Q, Ma C Y . Estimation of leaf chlorophyll content in cotton based on the random forest approach. Acta Agron Sin, 2019,45:81-90 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.84058
[4] 朱会义 . 1980年以来中国棉花生产向新疆集中的主要原因. 地理研究, 2013,32:744-754.
doi: 10.11821/yj2013040017
Zhu H Y . The underlying cause for the concentration of China’s cotton production in Xinjiang. Geogr Res, 2013,32:744-754 (in Chinese with English abstract).
doi: 10.11821/yj2013040017
[5] 潘学标, 李克让 . 基于GIS的新疆棉花生产发展时空变异分析. 干旱区地理, 2000,23(3):199-206.
Pan X B, Li K R . Analysis on the temporal and spatial change of cotton production development in Xinjiang based on GIS. Arid Land Geogr, 2000,23(3):199-206 (in Chinese with English abstract).
[6] 徐培秀 . 新疆棉花基地布局研究. 地理学报, 1990,45:31-40.
Xu P X . On the allocation of cotton production base in Xinjiang. Acta Geogr Sin, 1990,45:31-40 (in Chinese with English abstract).
[7] 杨莉, 杨德刚, 张豫芳, 王国刚, 唐宏 . 新疆棉花种植面积时空格局演变特征及驱动机制研究. 中国沙漠, 2011,31:476-484.
Yang L, Yang D G, Zhang Y F, Wang G G, Tang H . Spatio-temporal pattern dynamic of cotton plantation in Xinjiang and its driving forces. J Desert Res, 2011,31:476-484 (in Chinese with English abstract).
[8] 贺林均, 马威 . 基于CR4分析的新疆棉花产业集群形成中的自然环境因素限制和影响分析. 经济地理, 2013,33(11):97-103.
He L J, Ma W . Restrictions and impact analysis of natural environmental factors on Xinjiang cotton industry cluster formation based on the analysis of CR4. Econ Geogr, 2013,33(11):97-103 (in Chinese with English abstract).
[9] 毛树春, 韩迎春, 李亚兵, 王国平, 范正义 . 棉花工厂化育苗和机械化移栽新技术. 中国棉花, 2008,35(3):34-36.
Mao S C, Han Y C, Li Y B, Wang G P, Fan Z Y . The technique of cotton seedling raising in greenhouse and root-naked transplanting by machine. China Cotton, 2008,35(3):34-36 (in Chinese with English abstract).
[10] 武建设, 陈学庚 . 新疆兵团棉花生产机械化发展现状问题及对策. 农业工程学报, 2015,31(18):5-10.
Wu J S, Chen X G . Present situation, problems and countermeasures of cotton production mechanization development in Xin- jiang Production and Construction Corps. Trans CSAE, 2015,31(18):5-10 (in Chinese with English abstract).
[11] 赵小汎 . 区位商模型在土地利用变化分析中的新运用. 经济地理, 2013,33(2):162-167.
Zhao X P . New application of location entropy model in analyzing land use change. Econ Geogr, 2013,33(2):162-167 (in Chinese with English abstract).
[12] 贾兴梅, 李平 . 农业集聚度变动特征及其与农业经济增长的关系——我国12类农作物空间布局变化的实证检验. 中国农业大学学报, 2014,19(1):209-217.
Jia X M, Li P . Degree of agriculture concentration and agricultural economic growth: empirical test spatial layout changes of 12 types of crops in China. J China Agric Univ, 2014,19(1):209-217 (in Chinese with English abstract).
[13] Druckman A, Jackson T . Measuring resource inequalities: the concepts and methodology for an area-based Gini coefficient. Ecol Econ, 2008,65:242-252.
doi: 10.1016/j.ecolecon.2007.12.013
[14] Fischer M M, Getis A . Handbook of applied spatial analysis. J Geogr Syst, 2010,10:109-139.
doi: 10.1007/s10109-008-0060-x
[15] Baltagi B H . Econometric Analysis of Panel Data, 5th edn. Econ Theory, 2013,5:747-754.
[16] Elhorst J P . Specification and estimation of spatial panel data models. Int Regional Sci Rev, 2003,26:244-268.
doi: 10.1177/0160017603253791
[17] Elhorst J P . Spatial Panel Data Models. Berlin: Springer, 2010. pp 377-407.
[18] Ugarte M D . Introduction to spatial econometrics. J Royal Statistical Soc, 2011,174:513-514.
[19] 王国刚, 王明利, 王济民, 杨春, 刘玉凤 . 中国草食家畜养殖的时空动态及其影响因素. 地理学报, 2015,70:1091-1100.
doi: 10.11821/dlxb201507006
Wang G G, Wang M L, Wang J M, Yang C, Liu Y F . Spatial-temporal dynamics and its influencing factors of herbivorous livestock breeding in China. Acta Geogr Sin, 2015,70:1091-1100 (in Chinese with English abstract).
doi: 10.11821/dlxb201507006
[20] Zhao H, Xiong Y, Li F M, Wang R Y . Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agric Water Manage, 2012,104:68-78.
doi: 10.1016/j.agwat.2011.11.016
[21] 龙冬平, 李同昇, 苗园园, 于正松 . 中国农业现代化发展水平空间分异及类型. 地理学报, 2014,69:213-226.
doi: 10.11821/dlxb201402006
Long D P, Li T S, Miao Y Y, Yu Z S . The spatial distribution and types of the development level of Chinese agricultural modernization. Acta Geogr Sin, 2014,69:213-226 (in Chinese with English abstract).
doi: 10.11821/dlxb201402006
[22] 倪印锋, 王明利 . 中国牧草产业地理集聚特征及影响因素. 经济地理, 2018,38(6):142-150.
Ni Y F, Wang M L . The characteristics and influencing factors of geographical agglomeration of forage industry in China. Econ Geogr, 2018,38(6):142-150 (in Chinese with English abstract).
[23] Xie Y, Mei Y, Tian G, Xue R X . Socio-economic driving forces of arable land conversion: a case study of Wuxian City, China. Global Environ Change, 2005,15:238-252.
doi: 10.1016/j.gloenvcha.2005.03.002
[24] Zhang D, Zhang L, Liu J, Han S, Wang Q, Evers J, van der Werf W, Liu J, Li L . Plant density affects light interception and yield in cotton grown as companion crop in young jujube plantations. Field Crops Res, 2014,169:132-139.
doi: 10.1016/j.fcr.2014.09.001
[25] He C, Li J, Wang Y, Shi P J . Understanding cultivated land dynamics and its driving forces in northern China during 1983- 2001. J Geogr Sci, 2005,15:387-395.
doi: 10.1007/BF02892145
[26] 陈佑启 . 我国耕地利用变化及其对粮食生产的影响. 农业工程学报, 2000,16(6):29-32.
Chen Y Q . Arable-land use change and its effects on the grain production in China. Trans CSAE, 2000,16(6):29-32 (in Chinese with English abstract).
[27] Wood E C, Tappan G G, Hadj A . Understanding the drivers of agricultural land use change in south-central Senegal. J Arid Environ, 2004,59:565-582.
doi: 10.1016/j.jaridenv.2004.03.022
[28] Yang T C . Introduction to spatial econometrics. Spatial Demogr, 2013,1:143-145.
doi: 10.1007/BF03354894
[29] Baltagi B H, Long L . Random effects, fixed effects and Hausman’s test for the generalized mixed regressive spatial autoregressive panel data model. Econ Rev, 2016,35:638-658.
doi: 10.1080/07474938.2014.998148
[30] Baltagi B H, Seuck-Heun S, Byoung-Cheol J, Won K . Testing for serial correlation, spatial autocorrelation and random effects. J Econ, 2007,140:5-51.
doi: 10.1016/j.jeconom.2006.09.001
[31] 王力, 韩亚丽 . 基于主成分分析的新疆棉花种植面积变动及驱动力. 江苏农业科学, 2017,45(1):267-270.
Wang L, Han Y L . The changes of cotton planting area and its driving force in Xinjiang based on Principal component analysis. Jiangsu J Agric Sci, 2017,45(1):267-270 (in Chinese).
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!