Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2517-2532.doi: 10.3724/SP.J.1006.2022.14185
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
MA Xin-Lei1,2(), XU Rui-Qi2, SUO Xiao-Man2, LI Jing-Shi1,2, GU Peng-Peng1,2, YAO Rui1,2, LIN Xiao-Hu1,2,*(), GAO Hui1,2,*()
[1] |
Salekdeh G H, Reynolds M, Bennett J, Boyer J. Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci, 2009, 14: 488-496.
doi: 10.1016/j.tplants.2009.07.007 |
[2] |
Møller I M, Sweetlove L J. ROS signalling-specificity is required. Trends Plant Sci, 2010, 15: 370-374.
doi: 10.1016/j.tplants.2010.04.008 pmid: 20605736 |
[3] |
Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
doi: 10.1016/j.plaphy.2010.08.016 |
[4] |
Cooke M S, Evans M D, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 2003, 17: 1195-1214.
doi: 10.1096/fj.02-0752rev |
[5] |
Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279.
doi: 10.1146/annurev.arplant.49.1.249 |
[6] | Knoops B, Loumaye E, Van Der Eecken V. Evolution of the peroxiredoxins. Subcell Biochem, 2007, 44: 27-40. |
[7] |
Hofmann B, Hecht H J, Flohé L. Peroxiredoxins. Biol Chem, 2002, 383: 347-364.
pmid: 12033427 |
[8] | Nonn L, Berggren M, Powis G. Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis. Mol Cancer Res, 2003, 1: 682-689. |
[9] |
Lee T H, Kim S U, Yu S L, Kim S H, Park D S, Moon H B, Dho S H, Kwon K S, Kwon H J, Han Y H, Jeong S, Kang S W, Shin H S, Lee K K, Rhee S G, Yu D Y. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood, 2003, 101: 5033-5038.
doi: 10.1182/blood-2002-08-2548 |
[10] |
Dierick J F, Wenders F, Chainiaux F, Remacle J, Fisher A B, Toussaint O. Retrovirally mediated overexpression of peroxiredoxin Ⅵ increases the survival of WI-38 human diploid fibroblasts exposed to cytotoxic doses of tert-butylhydroperoxide and UVB. Biogerontology, 2003, 4: 125-131.
doi: 10.1023/A:1024154024602 |
[11] |
Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol, 2001, 42: 462-468.
pmid: 11382811 |
[12] |
Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot, 2002, 53: 1305-1319.
pmid: 11997377 |
[13] |
Piontek K, Smith A T, Blodig W. Lignin peroxidase structure and function. Biochem Soc Trans, 2001, 29: 111-116.
doi: 10.1042/bst0290111 |
[14] |
Tognolli M, Penel C, Greppin H, Simon P. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene, 2002, 288: 129-138.
pmid: 12034502 |
[15] |
Zheng X, Huystee R B. Oxidation of tyrosine by peroxidase isozymes derived from peanut suspension culture medium and by isolated cell wall. Plant Cell Tissue Organ Cult, 1991, 25: 35-43.
doi: 10.1007/BF00033910 |
[16] |
Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879-1893.
pmid: 15279994 |
[17] |
Intapruk C, Higashimura N, Yamamoto K, Okada N, Shinmyo A, Takano M. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana. Gene, 1991, 98: 237-241.
pmid: 2016063 |
[18] |
Barceló A R, Pomar F. Oxidation of cinnamyl alcohols and aldehydes by a basic peroxidase from lignifying Zinnia elegans hypocotyls. Phytochemistry, 2001, 57: 1105-1113.
pmid: 11430983 |
[19] |
Hiraga S, Yamamoto K, Ito H, Sasaki K, Matsui H, Honma M, Nagamura Y, Sasaki T, Ohashi Y. Diverse expression profiles of 21 rice peroxidase genes. FEBS Lett, 2000, 471: 245-250.
pmid: 10767432 |
[20] |
Wang Y, Wang Q, Zhao Y, Han G, Zhu S. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015, 566: 95-108.
doi: 10.1016/j.gene.2015.04.041 pmid: 25895479 |
[21] |
Llorente F, López-Cobollo R M, Catalá R, Martínez-Zapater J M, Salinas J. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J, 2002, 32: 13-24.
doi: 10.1046/j.1365-313X.2002.01398.x |
[22] |
Zhu T, Xin F, Wei S, Liu Y, Han Y, Xie J, Ding Q, Ma L. Genome-wide identification, phylogeny and expression profiling of class III peroxidases gene family in Brachypodium distachyon. Gene, 2019, 700: 149-162.
doi: 10.1016/j.gene.2019.02.103 |
[23] | Yang X, Yuan J, Luo W, Qin M, Yang J, Wu W, Xie X. Genome-wide identification and expression analysis of the class III peroxidase gene family in potato (Solanum tuberosum L.). Front Genet, 2020, 11: 593577. |
[24] | Yan J, Su P, Li W, Xiao G, Zhao Y, Ma X, Wang H, Nevo E, Kong L. Genome-wide and evolutionary analysis of the class III peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses. BMC Genomics, 2019, 20: 666. |
[25] | 彭方林, 王丽, 穆春, 王曦烨, 李迎迎, 王林嵩. 萝卜过氧化物酶基因Rsprx1对其抗氧化能力的影响. 贵州农业科学, 2014, 42(9): 40-42. |
Peng F L, Wang L, Mu C, Wang X Y, Li Y Y, Wang L S. Effect of peroxidase gene Rsprx1 on antioxidant ability in Raphanus sativus. Guizhou Agric Sci, 2014, 42(9): 40-42. (in Chinese with English abstract) | |
[26] | 高正银, 孙文杰, 宋晓云, 胡轼, 左开井. 雷蒙德棉第III类过氧化物酶全基因组鉴定和表达分析. 生物技术进展, 2019, 9: 490-501. |
Gao Z Y, Sun W J, Song X Y, Hu S, Zuo K J. Genome-wide identification and expression pattern analysis of class III peroxidase family in Gossypium raimondii. Curr Biotechnol, 2019, 9: 490-501. (in Chinese with English abstract) | |
[27] | Feng Y, Wei R, Liu A, Fan S, Che J, Zhang Z, Tian B, Yuan Y, Shi G, Shang H. Genome-wide identification, evolution, expression, and alternative splicing profiles of peroxiredoxin genes in cotton. PeerJ, 2021, 9: e10685. |
[28] |
Meng G, Fan W, Rasmussen S K. Characterisation of the class III peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation. Plant Phys Biochem, 2021, 167: 245-256.
doi: 10.1016/j.plaphy.2021.08.004 |
[29] | 张瑞杰, 王喆, 连卜颖, 郭展, 魏东, 于世慧, 李红英, 刘晓东. 谷子ABC转运蛋白基因与抗旱关系的研究. 山西农业大学学报(自然科学版), 2018, 38(1): 11-15. |
Zhang R J, Wang Z, Lian B Y, Guo Z, Wei D, Yu S H, Li H Y, Liu X D. Study on the relationship between ABC transporter genes and drought tolerance in foxtail millet. Shanxi Agric Univ (Nat Sci Edn), 2018, 38(1): 11-15. (in Chinese with English abstract) | |
[30] | 张雁明, 刘晓东, 马建萍, 温琪汾, 韩渊怀. 谷子抗旱研究进展. 山西农业科学, 2013, 41: 282-285. |
Zhang Y M, Liu X D, Ma J P, Wen Q F, Han Y H. Research progress on drought resistance in foxtail millet (Setaria italica L.). Shanxi Agric Sci, 2013, 41: 282-285. (in Chinese with English abstract) | |
[31] | 武懿茂, 樊武哲, 李红英, 李雪垠. 谷子抗旱相关蛋白激酶基因家族鉴定及表达分析. 山西农业大学学报(自然科学版), 2020, 40(1): 1-10. |
Wu Y M, Fan W Z, Li H Y, Li X Y. Identification and expression of protein kinase gene family related to drought resistance in Setaria italica. Shanxi Agric Univ (Nat Sci Edn), 2020, 40(1): 1-10. (in Chinese with English abstract) | |
[32] |
Yang Z, Zhang H, Li X, Shen H, Gao J, Hou S, Zhang B, Mayes S, Bennett M, Ma J, Wu C, Sui Y, Han Y, Wang X. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7 |
[33] | Tang S, Li L, Wang Y, Chen Q, Zhang W, Jia G, Zhi H, Zhao B, Diao X. Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). Sci Rep, 2017, 7: 10009. |
[34] |
Rogozin I B, Wolf Y I, Sorokin A V, Mirkin B G, Koonin E V. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol, 2003, 13: 1512-1517.
pmid: 12956953 |
[35] | Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10. |
[36] | Kaashyap M, Ford R, Kudapa H, Jain M, Edwards D, Varshney R, Mantri N. Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea. Sci Rep, 2018, 8: 4855. |
[37] | Kim Y, Seo C W, Khan A L, Mun B G, Shahzad R, Ko J W, Yun B W, Park S K, Lee I J. Exo-ethylene application mitigates waterlogging stress in soybean (Glycine max L.). BMC Plant Biol, 2018, 18: 254. |
No related articles found! |
|