Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2533-2545.doi: 10.3724/SP.J.1006.2022.14183

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification and expression analysis of potato PYL gene family

JIA Xiao-Xia1,2(), QI En-Fang1,2, MA Sheng1,2, HUANG Wei1,2, ZHENG Yong-Wei1,2, BAI Yong-Jie1,2, WEN Guo-Hong1,2,*()   

  1. 1Potato Research Institute of Gansu Academy of Agricultural Sciences / Gansu Engineering Laboratory of Potato Germplasm resources Innovation, Lanzhou 730070, Gansu, China
    2National Germplasm Resources Agricultural Experimental Station, Weiyuan 748201, Gansu, China
  • Received:2021-10-11 Accepted:2022-01-05 Online:2022-10-12 Published:2022-02-09
  • Contact: WEN Guo-Hong E-mail:jiaxx0601@163.com;251580436@qq.com
  • Supported by:
    Key Project of Natural Science Foundation of Gansu Province(21JR7RA728);Science and Technology Support Program of Gansu Academy of Agricultural Sciences(2020GAAS16);Special Project of Biotechnology Breeding of Gansu Academy of Agricultural Sciences(2020GAAS10);National Natural Science Foundation of China(31560412);National Natural Science Foundation of China(31860401);China Agriculture Research System of MOF and MARA(CARS-09-P06)

Abstract:

As a key signalling molecule, abscisic acid (ABA) extensively regulates plant growth and development, and stress response processes through its core signalling pathway PYLs-PP2Cs-SnRK2s. As a core component of ABA signalling transduction, PYLs protein plays an irreplaceable role. In order to explore the evolution and expression pattern of PYL (PYR/PYL/RCARs) genes in potato, 17 PYL genes were identified from the whole potato genome ‘DM-v 6.1’, and their distribution, protein physical and chemical properties, system evolution, structural characteristics, and the relative expression patterns were analysed. The results showed that the 17 StPYL genes were unevenly distributed on 8 chromosomes, with amino acids of 163-231 aa, isoelectric points of 4.5-8.6, and relative molecular weights of 18.71-25.29 kD. According to the gene structure and protein phylogenetic characteristics, the members of the StPYL family were divided into three subgroups. Motif 1 existed in all genes in this family, indicating that it was relatively conserved in the evolution of StPYLs. Gene expression patterns showed that the members of the StPYL family had obvious tissue expression specificity, and except for the up-regulation of StPYL1 under exogenous hormones (BAP, ABA, and IAA) and abiotic stress (high temperature, salt and drought), the rest of the StPYL genes were functionally differentiated and their relative expression patterns were different under different stresses. The results of this study lay a theoretical foundation for further elucidating the function of StPYLs gene in potato.

Key words: potato, PYL gene family, abscisic acid (ABA), gene expression analysis

Table 1

Genes and primers used for qRT-PCR expression verification"

基因编号
Gene ID
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
EF1α ATTGGAAACGGATATGCTCCA TCCTTACCTGAACGCCTGTCA
Soltu.DM.05G022460 TCCTCAAGAGCTGCCACG GCCGCCGACTATACTAATGC
Soltu.DM.10G022490 CTCCCGTCTCCACCGTATG CCCCACCAACAACGCTAAA
Soltu.DM.03G013340 CGTCATTAGTTTCAGCGTCATC CGTTTCTTCCTTTGTATTCCCT
Soltu.DM.10G019340 CAATCCCACCAATCACTACAGC TTTGTACGCTTGAGGGTTGTC
Soltu.DM.02G024820 ATCGAACCTGTTTATCCTCCTG AAATAGCCATCTGGCAAGTCA
Soltu.DM.02G001580 TGAAGACGATGTTTTCCCAGAC TGAAGGCAGTGAAGCGGTAT
Soltu.DM.04G027470 GCATTGCTTCCTCCTCATTACT TGAACTCTTCTGCCCTATCCC
Soltu.DM.01G033740 GTTGCCTGACGGGACATTT CATATCCTTGGACCAGCATTAA

Table 2

Sequence characteristics of PYL genes family members in potato"

基因名称
Gene name
基因编号
Gene ID
染色体定位
Chromosome localization
亚组分类Subgroup 氨基酸数量
Number of amino acids (aa)
等电点
Isoelectric point (pI)
相对分子量
Molecular
weight (kD)
StPYL1 Soltu.DM.01G034800 Chr.01: 74327768-74330316 I 186 6.30 20.79
StPYL2 Soltu.DM.03G013340 Chr.03: 35693624-35694662 II 201 5.95 22.16
StPYL3 Soltu.DM.03G022780 Chr.03: 47692175-47694992 I 185 5.61 20.96
StPYL4 Soltu.DM.05G022460 Chr.05: 50931814-50932956 II 208 7.15 22.89
StPYL5 Soltu.DM.06G010300 Chr.06: 31336857-31338048 II 218 6.40 23.99
StPYL6 Soltu.DM.06G018570 Chr.06: 45115651-45116827 III 213 4.98 23.72
StPYL7 Soltu.DM.08G013560 Chr.08: 39726166-39727508 III 188 6.65 21.08
StPYL8 Soltu.DM.08G014660 Chr.08: 41607872-41608584 I 183 4.93 20.17
StPYL9 Soltu.DM.08G014670 Chr.08: 41614500-41615633 I 176 4.50 19.78
StPYL10 Soltu.DM.08G014680 Chr.08: 41634425-41635105 I 163 5.32 18.71
StPYL11 Soltu.DM.08G022790 Chr.08: 52187476-52188465 III 231 5.12 25.29
StPYL12 Soltu.DM.08G028930 Chr.08: 58181068-58185195 I 189 6.75 21.57
StPYL13 Soltu.DM.09G009100 Chr.09: 10398942-10400047 II 214 8.60 23.39
StPYL14 Soltu.DM.10G019340 Chr.10: 50673639-50674710 II 207 7.10 22.82
StPYL15 Soltu.DM.10G022490 Chr.10: 54650751-54652125 II 213 6.79 23.49
StPYL16 Soltu.DM.12G004400 Chr.12: 3523014-3524941 III 190 5.12 21.24
StPYL17 Soltu.DM.12G008390 Chr.12: 7357759-7362992 I 181 5.97 20.68

Fig. 1

Phylogenetic relationships, gene structure, and conserved motifs analysis of StPYLs A: the phylogenetic tree of StPYLs; B: the structure of StPYLs gene; C: the distribution of conserved motifs in StPYLs."

Fig. 2

Phylogenic tree of PYL gene family At: Arabidopsis thaliana; St: Solanum tubersum; Bn: Brassica napus L.; Os: Oryza sativa."

Fig. 3

PYLs genes promoter sequence binding transcription factor in potato"

Table 3

Evolution selection pressure information of StPYL, AtPYL, and OsPYL"

序号
No.
基因1
Gene 1
基因2
Gene 2
非同义替换率
Ka
同义替换率
Ks
非同义替换率/同义替换率
Ka/Ks
1 AtPYL1 StPYL11 0.252113 2.46901 0.102111
2 AtPYL10 StPYL1 0.209896 2.62041 0.0801006
3 AtPYL10 StPYL3 0.203876 3.47713 0.0586336
4 AtPYL2 StPYL16 0.199507 3.38436 0.0589498
5 AtPYL2 StPYL7 0.202235 3.41170 0.0592768
6 AtPYL4 StPYL14 0.277640 3.19545 0.0868861
7 AtPYL4 StPYL15 0.251724 3.78848 0.0664447
8 AtPYL5 StPYL2 0.337324 3.20802 0.10515
9 AtPYL5 StPYL5 0.358874 3.08254 0.116422
10 AtPYL6 StPYL14 0.391640 2.85503 0.137175
11 AtPYL6 StPYL2 0.335979 3.04837 0.110216
12 AtPYL6 StPYL5 0.310522 3.18218 0.0975815
13 AtPYL7 StPYL1 0.228439 2.12794 0.107352
14 AtPYL7 StPYL12 0.214102 3.49394 0.0612782
15 AtPYL8 StPYL1 0.148691 4.52157 0.0328847
16 AtPYL8 StPYL12 0.176819 3.71724 0.0475675
17 AtPYL8 StPYL3 0.130553 4.14104 0.0315267
18 AtPYL9 StPYL1 0.163537 1.84526 0.0886251
19 AtPYR1 StPYL11 0.196102 1.34623 0.145668
20 AtPYR1 StPYL6 0.204242 3.81927 0.0534767
21 OsPYL1 StPYL11 0.347476 3.45055 0.100702
序号
No.
基因1
Gene 1
基因2
Gene 2
非同义替换率
Ka
同义替换率
Ks
非同义替换率/同义替换率
Ka/Ks
22 OsPYL12 StPYL1 0.330709 2.89213 0.114348
23 OsPYL12 StPYL12 0.285345 2.94688 0.0968295
24 OsPYL4 StPYL13 0.347064 3.44965 0.100609
25 OsPYL4 StPYL5 0.355825 3.12683 0.113797
26 OsPYL5 StPYL13 0.362471 3.22157 0.112514
27 OsPYL5 StPYL14 0.360063 3.06688 0.117404
28 OsPYL5 StPYL5 0.356826 3.18746 0.111947
29 OsPYL6 StPYL13 0.384219 3.18292 0.120713
30 OsPYL6 StPYL14 0.376110 3.09537 0.121507
31 OsPYL6 StPYL5 0.359420 3.20874 0.112013
32 OsPYL7 StPYL1 0.364590 3.24765 0.112262
33 OsPYL7 StPYL3 0.321310 3.17375 0.10124
34 OsPYL8 StPYL12 0.273630 2.71313 0.100854

Fig. 4

Heat map of the relative expression level of StPYLs genes under different stresses"

Fig. 5

Expression pattern of StPYLs genes in different tissues (A) and under different drought stress conditions (B) In Fig. 5-B, T75-1, T75-2, and T75-3 represent three biological replicates of 75%-80%; T65-1, T65-2, and T65-3 represent three biological replicates of 65%-70%; T55-1, T55-2, and T55-3 represent three biological replicates of 55%-60%; T45-1, T45-2, and T45-3 represent three biological replicates of 45%-50%."

Table 4

FPKM value of different genes under different drought stress"

基因名称
Gene name
处理Treatment
T75 T65 T55 T45
StPYL1 82.75±3.26 b 105.73±9.28 a 110.58±13.47 a 101.73±7.90 a
StPYL3 84.46±3.52 a 73.15±4.16 a 73.57±2.17 a 78.06±3.83 a
StPYL12 11.47±2.07 a 15.16±1.26 a 12.43±0.29 a 15.89±2.72 a
StPYL17 38.49±6.22 a 39.70±0.44 a 34.52±1.45 a 27.13±4.26 a
StPYL8 1.53±0.46 ab 1.96±0.04 a 0.99±0.19 b 0.97±0.16 b
StPYL9 2.72±0.32 a 2.91±0.33 a 3.17±0.52 a 3.07±0.09 a
StPYL10 0.46±0.09 b 0.70±0.11 a 0.53±0.15 b 0.52±0.13 b
StPYL2 72.03±3.26 a 58.73±1.45 b 28.23±2.78 c 21.69±5.01 c
StPYL4 17.93±5.37 a 14.44±1.41 a 6.24±1.51 b 5.11±2.19 b
StPYL5 25.90±2.86 a 26.34±4.12 a 17.34±3.35 b 14.46±3.55 b
StPYL13 4.07±0.43 a 2.94±0.48 ab 2.87±0.27 ab 2.54±0.45 b
基因名称
Gene name
处理Treatment
T75 T65 T55 T45
StPYL14 22.86±2.94 a 18.82±1.06 ab 15.00±1.31 bc 9.44±1.92 c
StPYL15 146.99±4.30 a 121.88±7.18 b 105.61±8.19 b 66.12±9.62 c
StPYL6 40.26±5.09 a 48.10±0.99 a 44.86±3.91 a 48.78±3.15 a
StPYL11 1.00±0.08 c 1.42±0.04 ab 1.47±0.11 a 1.10±0.14 bc
StPYL7 1.68±0.28 b 2.03±0.34 a 1.12±0.20 b 1.14±0.28 b
StPYL16 0 0 0 0

Fig. 6

Validation of RNA-seq data by qRT-PCR A: the relative expression levels of differentially expressed genes in T75 vs T45 and T75 vs T55 groups under drought stress. Data from qRT-PCR are means of three replicates, and bars represent standard errors. B: the correlation between qRT-PCR and RNA-seq."

[1] 禄兴丽, 段雅欣, 李闪闪, 岳衡, 吴佳瑞, 刘继虎, 康建宏. 覆膜对半干旱地区马铃薯生长生理性状及作物产量的影响. 植物生理学报, 2021, 57: 1582-1594.
Lu X L, Duan Y X, Li S S, Yue H, Wu J R, Liu J H, Kang J H. Effect of film mulching on potato physiological characters and production in semi-arid area. Plant Physiol J, 2021, 57: 1582-1594. (in Chinese with English abstract)
[2] 秦军红, 张婷婷, 孟丽丽, 徐建飞, 蒙美莲, 金黎平. 引进马铃薯种质资源抗旱性评价. 植物遗传资源学报, 2019, 20: 574-582.
Qin J H, Zhang T T, Meng L L, Xu J F, Meng M L, Jin L P. Evaluation of drought tolerance in exotic potato germplasm. J Plant Genet Resour, 2019, 20: 574-582. (in Chinese with English abstract)
[3] Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci, 2018, 10: 615-620.
doi: 10.1016/j.tplants.2005.10.002
[4] 邵宏波, 梁宗锁, 邵明安. 小麦抗旱生理生化和分子生物学研究进展与趋势. 草业学报, 2006, 15(3): 5-17.
Shao H B, Liang Z S, Shao M A. Progress and trends in the study of anti-drought physiology and biochemistry, and molecular biology of Triticum aestivum. Acta Pratac Sin, 2006, 15(3): 5-17. (in Chinese with English abstract)
[5] Neil S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson L. Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot, 2008, 59: 165-176.
doi: 10.1093/jxb/erm293
[6] Sirichandra C, Davanture M, Turk B E, Zivy M, Valot B, Leung J, Merlot S. The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One, 2010, 5: e13935.
[7] Hubbard K E, Nishimura N, Hitomi K, Getzoff E D, Schroeder J I. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Gene Dev, 2010, 24: 1695-1708.
doi: 10.1101/gad.1953910
[8] Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K R, Ecker J. Type 2C protein phosphatases directly regulate abscisic acid-activated proteinkinases in Arabidopsis. Proc Natl Acad Sci USA, 2009, 106: 17588-17593.
doi: 10.1073/pnas.0907095106
[9] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324.
doi: 10.1016/j.cell.2016.08.029
[10] Pizzio G A, Rodriguez L, Antoni R, Gonzalez-Guzman M, Yunta C, Merilo E, Kollist H, Albert A, Rodriguez P L. The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance. Plant Physiol, 2013, 163: 441-455.
doi: 10.1104/pp.113.224162
[11] Kim H, Lee K, Wang H, Bhatnagar N, Kim D Y, Yoon I S, Byun M O, Kim S T, Jung K H, Kim B G. Over-expression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression. J Exp Bot, 2014, 65: 453-464.
doi: 10.1093/jxb/ert397
[12] 徐冰瑶. 苹果MdPYL9基因在干旱胁迫下的功能研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2019.
Xu B Y. Functional Study of MdPYL9Gene under Drought Stress in Malus. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2019. (in Chinese with English abstract)
[13] 赵仕荣, 杨江伟, 唐勋, 张宁, 文义凯, 周香艳, 司怀军. 马铃薯脱落酸受体StPYR1基因生物信息学分析及过表达载体构建. 分子植物育种, 2018, 16: 309-7314.
Zhao S R, Yang J W, Tang X, Zhang N, Wen Y K, Zhou X Y, Si H J. Bioinformatics analysis and over expression vector construction of abscisic acid receptor StPYR1 gene in potato. Mol Plant Breed, 2018, 16: 7309-7314. (in Chinese with English abstract)
[14] 徐玉伟, 印敬明, 白潇, 史珂, 杨清. 马铃薯StPYL1StPYL8基因的分子克隆与表达分析. 江苏农业学报, 2015, 31(1): 23-31.
Xu Y W, Yin J M, Bai X, Shi K, Yang Q. Molecular cloning and expression analysis of potato StPYL1 and StPYL8 genes. Jiangsu J Agric Sci, 2015, 31(1): 23-31 (in Chinese with English abstract).
[15] Bjellqvist B, Hughes G J, Pasquali C, Paquet N, Ravier F, Sanchez J C, Frutiger S, Hochstrasser D. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis, 1993, 14: 1023-1031.
pmid: 8125050
[16] Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M R, Appel R D, Bairoch A. Protein identification and analysis tools on the ExPASy server. Proteomics Protocol Handbook, 2005, 53: 571-607.
[17] 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023-1026.
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas (Beijing), 2007, 29: 1023-1026. (in Chinese with English abstract)
[18] Bailey T L, Mikael B, Buske F A, Martin F, Grant C E, Luca C, Ren J, Li W W, Noble W S. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: 202-208.
[19] Sudhir K, Glen S, Koichiro T. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[20] Chow C N, Lee T Y, Hung Y C, Li G Z, Tseng K C, Liu Y H, Kuo P L, Zheng H Q, Chang W C. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res, 2018, 47: D1155-D1163.
[21] Zhao Y, Xing L, Wang X, Hou Y J, Gao J, Wang P, Duan C G, Zhu X, Zhu J K. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal, 2014, 7: ra53.
[22] Dittrich M, Mueller H M, Bauer H, Peirats-Llobet M, Rodriguez P L, Geilfus C M, Carpentier S C, Al Rasheid K A S, Kollist H, Merilo E. The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nat Plants, 2019, 5: 1002-1011.
doi: 10.1038/s41477-019-0490-0 pmid: 31451795
[23] Kumar R, Vinjamuri V, Santosh V, Shashank K, Yadav K. Overexpression of ABA receptor PYL10 gene confers drought and cold tolerance to Indica rice. Front Plant Sci, 2019, 10: 1488.
[24] Kumar V V S, Yadav S K, Verma R K, Shrivastava S, Ghimire O, Pushkar S, Rao M V, Kumar T S, Chinnusamy V. The abscisic acid receptor OsPYL6 confers drought tolerance to indica rice through dehydration avoidance and tolerance mechanisms. J Exp Bot, 2021, 4: 1411-1431.
[25] Di F, Jian H, Wang T, Chen X, Ding Y, Du H, Lu K, Li J, Liu L. Genome-wide analysis of the PYL gene family and identification of PYL genes that respond to abiotic stress in Brassica napus. Genes, 2018, 9: 156.
[26] Yun C, Li F, Wei N, Liu Z H, Shan H, Li X B. Overexpression of cotton PYL genes in Arabidopsis enhances the transgenic plant tolerance to drought stress. Plant Physiol Biochem, 2017, 115: 229-238.
doi: 10.1016/j.plaphy.2017.03.023
[27] Ma Y, Szostkiewicz I, Korte A, Moes D, Yi Y, Cristmann A, Grill E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 2009, 324: 1064-1068.
doi: 10.1126/science.1172408
[28] Tian X, Wang Z Y, Li X F, Lv T X, Liu H Z, Wang L Z, Niu H B, Bu Q Y. Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice. Rice, 2015, 8: 28.
[29] 王帅磊, 李子琪, 陈辉龙, 吴蒙, 葛伟娜. 谷子PYR/PYL/ RCAR基因家族进化及表达分析. 分子植物育种, 2020, 18: 5544-5554.
Wang S L, Li Z Q, Chen H L, Wu M, Ge W N. Evolution and expression analysis of the PYR/PYL/RCAR gene family in Setaria italica. Mol Plant Breed, 2020, 18: 5544-5554. (in Chinese with English abstract)
[30] Boneh U, Biton I, Zheng C, Schwartz A, Ben-Ari G. Characterization of potential ABA receptors in Vitis vinifera. Plant Cell Rep, 2012, 31: 311-321.
doi: 10.1007/s00299-011-1166-z pmid: 22016084
[31] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析. 作物学报, 2021, 48: 608-623.
Jin R, Jiang W, Liu M, Zhao P, Zhang Q Q, Li T X, Wang D F, Fan W J, Zhang A J, Tang Z H. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato. Acta Agron Sin, 2021, 48: 608-623. (in Chinese with English abstract)
[32] Bai G, Xie H, Yao H. Genome-wide identification and characterization of ABA receptor PYL/RCAR gene family reveals evolution and roles in drought stress in Nicotiana tabacum. BMC Genomics, 2019, 20: 575-583.
doi: 10.1186/s12864-019-5839-2 pmid: 31296158
[33] Ma J Q, Jian H J, Yang B, Lu K, Zhang A X, Liu P, Li J N. Genome-wide analysis and expression profiling of the GRF gene family in oilseed rape (Brassica napus L.). Gene, 2017, 620: 36-45.
doi: 10.1016/j.gene.2017.03.030
[34] 赵夏云, 鲜登宇, 宋明, 汤青林. MIKC型MADS-box蛋白对开花调控作用研究进展. 生物技术通报, 2014, (7): 8-15.
Zhao X Y, Xian D Y, Song M, Tang Q L. Research progress of MIKC-type MADS-box protein regulation on flowering. Biotechnol Bull, 2014, (7): 8-15. (in Chinese with English abstract)
[35] Wei P C, Tan F, Gao X Q, Zhang X Q, Wang G Q, Xu H, Li L J, Chen J, Wang X C. Overexpression of AtDOF4.7, an Arabidopsis DOF family transcription factor, induces floral organ abscission deficiency in Arabidopsis. Plant Physiol, 2010, 153: 1031-1045.
doi: 10.1104/pp.110.153247
[36] Qin H, Wang J, Chen X B, Wang F F, Peng P, Zhou Y, Miao Y C, Zhang Y Q, Gao Y D, Qi Y D, Zhou J H, Huang R F. Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress. New Phytol, 2019, 223: 798-813.
doi: 10.1111/nph.15824 pmid: 30924949
[37] Gonzales L R, Shi L, Bergonzi S B, Oortwijn M, Franco-Zorrilla J M, Solano-Tavira R, Visser R G F, Abelenda J A, Bachem C W B. Potato CYCLING DOF FACTOR 1 and its lncRNA counterpart StFLORE link tuber development and drought response. Plant J, 2021, 105: 855-869.
doi: 10.1111/tpj.15093
[38] Noman A, Liu Z Q, Yang S, Shen L, Hussain A, Ashraf M F, Khan M I, He S. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity. Microb Pathog, 2018, 118: 336-346.
doi: 10.1016/j.micpath.2018.03.044
[39] 张爱冬. 拟南芥C2H2型锌指蛋白ZFP5同源基因ZFP3、ZFP1和ZFP7的克隆及功能验证. 浙江大学博士学位论文, 浙江杭州, 2016.
Zhang A D. Cloning and Functional Analysis of C2H2 Zinc Finger Protein ZFP5 Homologous Gene ZFP3, ZFP1 and ZFP7 in Arabidopsis thaliana. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2016 (in Chinese with English abstract).
[40] 钟婵娟, 彭伟业, 王冰, 刘世名, 戴良英, 李魏. 植物逆境响应相关的C2H2型锌指蛋白研究进展. 植物生理学报, 2020, 56: 2356-2366.
Zhong C J, Peng W Y, Wang B, Liu S, Dai L Y, Li W. Advances of plant C2H2 zinc finger proteins in response to stresses. Plant Physiol J, 2020, 56: 2356-2366 (in Chinese with English abstract).
[41] Ramya M, Kwon O K, An H R, Park P M, Baek Y S, Park P H. Floral scent: regulation and role of MYB transcription factors. Phytochem Lett, 2017, 19: 114-120.
doi: 10.1016/j.phytol.2016.12.015
[42] Lau S E, Schwarzacher T, Othman R Y, Harikrishna J A. dsRNA silencing of an R2R3-MYB transcription factor affects flower cell shape in a Dendrobium hybrid. BMC Plant Biol, 2015, 15: 194.
[43] 王鸿雪, 刘天宇, 庄维兵, 王忠, 朱林, 渠慎春, 翟恒华. 花青素苷在植物逆境响应中的功能研究进展. 农业生物技术学报, 2020, 28(1): 174-183.
Wang H X, Liu T Y, Zhuang W B, Wang Z, Zhu L, Qu S C, Zhai H H. Research advances in the function of anthocyanin in plant stress response. J Agric Biotechnol, 2020, 28(1): 174-183. (in Chinese with English abstract)
[44] Shang X G, Yu Y J, Zhu L J, Liu H Q, Chai Q C, Guo W Z. A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis. Plant Sci, 2020, 296: 110498.
[45] 代春艳, 张笑晗, 王晓丽, 弓琼, 苏醒, 成耀华, 张明政, 于澄宇. 芥菜bZIP基因家族的鉴定和表达分析. 分子植物育种, 2021, https://kns.cnki.net/kcms/detail/46.1068.S.20210701.1838.006.html.
Dai C Y, Zhang X H, Wang X L, Gong Q, Su X, Cheng Y H, Zhang M Z, Yu C Y. Identification and expression analysis of bZIP gene family in Brassica juncea. Mol Plant Breed, 2021, https://kns.cnki.net/kcms/detail/46.1068.S.20210701.1838.006.html. (in Chinese with English abstract)
[1] HUI Zhi-Ming, XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping. 2b-RAD based maturity associated molecular marker identification in tetraploid potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2274-2284.
[2] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[3] XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087.
[4] JIAN Hong-Ju, ZHANG Mei-Hua, SHANG Li-Na, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Screening candidate genes involved in potato tuber development using WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1658-1668.
[5] LI Jie-Ya, LI Hong-Yan, YE Guang-Ji, SU Wang, SUN Hai-Hong, WANG Jian. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period [J]. Acta Agronomica Sinica, 2022, 48(7): 1669-1682.
[6] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[7] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[10] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[11] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[12] TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694.
[13] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[14] MA Wen-Jing, LIU Zhen, LI Zhi-Tao, ZHU Jin-Yong, LI Hong-Yang, CHEN Li-Min, SHI Tian-Bin, ZHANG Jun-Lian, LIU Yu-Hui. Genome-wide identification and expression analysis of BBX gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2797-2812.
[15] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[3] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[4] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[5] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[6] Yang Lianxin;Wang Yulong;Huang Jianye;Zhou Xiaodong;Xu Jiakuan;Gu Hui;Yang Hongjian;Dong Guicun. Dynamic Change and Influencing Factors of Hull Size in Yangdao 6, a Rice Variety[J]. Acta Agron Sin, 2003, 29(06): 853 -859 .
[7] WU Zheng-Bin; CHEN Peng; YANG Ye-Hua; SHU Yu-Song;XIE Hong-Bin. Evaluation of the Resistance of Different Insect-resistant Cotton Cultivars to the Pink Bollworm[J]. Acta Agron Sin, 2005, 31(01): 53 -57 .
[8] XU Ning;CHENG Xu-Zhen;WANG Su-Hua;WANG Li-Xia;ZHAO Dan. Establishment of an Adzuki Bean (Vigna angularis) Core Collection Based on Geographical Distribution and Phenotypic Data in China[J]. Acta Agron Sin, 2008, 34(08): 1366 -1373 .
[9] Meng Jinling;Liu Houli. THE EFFECTS OF SUCCESSIVE INBREEDING ON THE EMBRYO DEVELOPMENT OF BRASSICA NAPUS L[J]. Acta Agron Sin, 1986, 12(02): 79 -86 .
[10] Li Changbao;Liu Yanhua;Du Changqing;Kong Lingrang. Embryological Studies on the Fertility of the Original and Reciprocal Crosses between T.aestivumand Ae.tauschii[J]. Acta Agron Sin, 2002, 28(02): 170 -174 .