Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2517-2532.doi: 10.3724/SP.J.1006.2022.14185

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification of the Class III PRX gene family in foxtail millet (Setaria italica L.) and expression analysis under drought stress

MA Xin-Lei1,2(), XU Rui-Qi2, SUO Xiao-Man2, LI Jing-Shi1,2, GU Peng-Peng1,2, YAO Rui1,2, LIN Xiao-Hu1,2,*(), GAO Hui1,2,*()   

  1. 1Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao 066004, Hebei, China
    2College of Life Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, Hebei, China
  • Received:2021-10-12 Accepted:2022-01-05 Online:2022-10-12 Published:2022-02-15
  • Contact: LIN Xiao-Hu,GAO Hui E-mail:maxinlei5966@126.com;xiaohulin2008@163.com;gaohui1028@126.com
  • Supported by:
    National Key Research and Development Program of the 13th Five-Year Plan of China(2019YFD1001701-2);Modern Agricultural Industrial Technology System Innovation Team (Grain and Soybean) Project of Hebei Province(HBCT2018070404);National Natural Science Foundation of Hebei Province(C2019407089);Science and Technology Research Project of Higher Education in Hebei Province(QN2020154);Innovation Ability Training Project of Postgraduate Students in Hebei Province(CXZZSS2021152)

Abstract:

Class III peroxidases (PRX) are a family of plant-specific peroxidases that play an important role in plant growth and development as well as in abiotic stresses. Foxtail millet (Setaria italica L.), as a C4 plant, is a model plant for stress resistance. However, the function of class III peroxidases family genes is rarely reported in foxtail millet. A genome-wide expression analysis was conducted to investigate the expression pattern of class III peroxidase gene family (SitPRXs) under drought stress and ABA induction. In this study, 132 members of the Class III PRX gene family were identified in the whole genome in foxtail millet by bioinformatics and named SitPRX1-SitPRX132 according to their chromosomal position. 132 members were classified into Mα, Mβ, Mγ, MIKCC, and MIKC* subfamilies by phylogenetic analysis of foxtail millet, Arabidopsis, and rice. Gene structure and conserved motif analysis indicated a high level of conservation in the same subfamily. Gene duplication analysis revealed fragmental duplication in 17 SitPRX genes (13%) and tandem duplication in 78 SitPRX genes (59%), thus tandem duplication events playing an important role in SitPRX gene amplification. Interspecies homology analysis with Arabidopsis, rice and maize revealed that most SitPRXs were formed after dicotyledonous and monocotyledonous plants diverged. Transcriptome analysis implied that members of the SitPRX gene family were differentially expressed in seedlings, roots, stems, and leaves, as well as in panicles in foxtail millet. Analysis of promoter cis-acting elements showed that 79 SitPRXs contained cis-acting elements associated with drought stress response, and further qRT-PCR analysis showed that SitPRX12, SitPRX41, SitPRX81, SitPRX110, and SitPRX126 were induced to be expressed by PEG and ABA, suggesting that these genes may be regulated through an ABA-dependent signalling pathway in response to drought stress and could be used as these genes may be candidates for further studies on the drought resistance function of the class III PRX gene family. These results of this study provide new information for the comprehensive analysis of the structure and biological functions of SitPRX genes, the molecular mechanism of drought resistance, and molecular breeding in foxtail millet, with a view of providing ideas for the breeding of new varieties of highly efficient stress-resistant crops in the future.

Key words: class III peroxidase, gene family analysis, drought stress response, Setaria italica

Table S1

qRT-PCR primer of PRX gene family in foxtail millet"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
SitPRX9 AGCCAACGCTGGTCTGATT TTCTGTGACATCCACCCGTC
SitPRX12 GGCCAGCCCTCGTTTTCTAT TTTGCTCTGCTCCGCTGTTT
SitPRX33 ACTGCTTCGTCAGGGGTTG GTCGTCGATCACCTCGAACG
SitPRX41 GTCCGTCGCACTTGAT AAGGCTGAGACGATGATC
SitPRX49 ACTACTCCAAGACATGCCCG ACTGATCCATCACATCCCTGC
SitPRX72 TGATGCCGTTGATCTGACCG TGTGGGCACCGACTAATGTT
SitPRX81 GTGTCGTCCAGTTCTACC CTCGGCAAGCGTTGAA
SitPRX87 ACGTGATTCGTCAGTGTGCC GGATGAGCCTTTCCCAGAGT
SitPRX110 GTCGTGGTCTTATCGGGAGC TCCAGCGTCGGATCTACTGA
SitPRX126 GAGCCCGTGAAGGAGGAGTT CCTCAGATGGTCAGAACCCTTA
SitEF1a-2 TGACTGTGCTGTCCTCATCA GTTGCAGCAGCAAATCATCT

Table S2

Physicochemical properties of PRX gene family proteins in foxtail millet"

基因名称
Gene name
序列名称
Sequence ID
染色体
Chr.
氨基酸
Size (aa)
分子量
Molecular weight (kD)
等电点
pI
不稳定系数
Instability index
脂肪系数
Aliphatic index
SitPRX1 Seita.1G022200 1 323 34.01297 4.65 46.44 86.19
SitPRX2 Seita.1G022300 1 320 33.99131 6.06 35.99 86.94
SitPRX3 Seita.1G022500 1 321 34.06693 6.93 35.87 94.92
SitPRX4 Seita.1G022900 1 323 32.94039 8.77 35.46 85.76
SitPRX5 Seita.1G023000 1 320 32.79593 5.16 34.89 87.69
SitPRX6 Seita.1G023100 1 325 33.59487 8.61 50.68 84.25
SitPRX7 Seita.1G079000 1 347 36.77990 8.08 43.59 83.00
SitPRX8 Seita.1G170200 1 342 36.70845 6.44 24.42 85.67
SitPRX9 Seita.1G192100 1 478 51.19841 5.18 50.25 67.80
SitPRX10 Seita.1G281400 1 331 35.85566 5.74 40.75 79.64
SitPRX11 Seita.1G380000 1 327 33.90540 7.10 43.36 83.49
SitPRX12 Seita.2G236400 2 343 37.36357 5.82 35.23 81.40
SitPRX13 Seita.2G266900 2 337 35.49031 6.00 33.43 80.53
SitPRX14 Seita.2G320200 2 357 38.91543 9.00 30.86 79.58
SitPRX15 Seita.2G371600 2 324 33.41573 9.27 41.70 84.51
SitPRX16 Seita.2G406700 2 413 44.45746 6.41 46.79 70.70
SitPRX17 Seita.2G407000 2 364 38.15130 5.98 44.02 79.95
SitPRX18 Seita.2G407100 2 372 39.60795 6.89 30.53 86.34
SitPRX19 Seita.2G407200 2 553 57.24306 7.56 78.21 59.89
SitPRX20 Seita.2G407400 2 350 37.48503 9.07 39.39 82.80
SitPRX21 Seita.2G411900 2 328 35.06796 6.33 38.71 82.77
SitPRX22 Seita.2G430900 2 317 33.14664 9.11 38.83 90.98
SitPRX23 Seita.2G431000 2 351 36.48558 6.57 35.11 94.93
SitPRX24 Seita.2G431100 2 312 33.15028 5.48 48.85 84.87
SitPRX25 Seita.2G431200 2 312 32.73764 5.67 44.13 84.55
SitPRX26 Seita.2G431300 2 318 33.09396 6.19 40.08 79.91
SitPRX27 Seita.2G431500 2 311 32.45267 6.97 39.19 87.97
SitPRX28 Seita.3G004800 3 323 33.71242 6.23 33.82 97.99
SitPRX29 Seita.3G004900 3 332 35.23111 6.89 42.79 90.33
SitPRX30 Seita.3G005100 3 348 36.75468 5.05 38.65 93.42
SitPRX31 Seita.3G005200 3 350 37.21731 5.65 42.99 91.23
SitPRX32 Seita.3G022600 3 333 35.59788 9.16 40.76 91.23
SitPRX33 Seita.3G052400 3 344 37.47289 8.51 32.37 91.10
基因名称
Gene name
序列名称
Sequence ID
染色体
Chr.
氨基酸
Size (aa)
分子量
Molecular weight (kD)
等电点
pI
不稳定系数
Instability index
脂肪系数
Aliphatic index
SitPRX34 Seita.3G052500 3 328 34.69369 8.34 32.54 83.63
SitPRX35 Seita.3G052600 3 321 33.78561 6.30 32.81 80.9
SitPRX36 Seita.3G052700 3 328 34.82772 8.33 32.72 83.35
SitPRX37 Seita.3G052800 3 325 33.93987 7.51 36.99 85.97
SitPRX38 Seita.3G052900 3 333 36.42036 6.26 38.96 79.97
SitPRX39 Seita.3G053000 3 334 35.86602 9.36 37.01 85.36
SitPRX40 Seita.3G053100 3 336 36.71877 7.13 42.16 78.96
SitPRX41 Seita.3G190300 3 345 37.79519 5.54 43.42 85.10
SitPRX42 Seita.3G190400 3 326 35.42539 6.25 34.41 79.05
SitPRX43 Seita.3G234900 3 318 34.02132 5.41 42.17 87.52
SitPRX44 Seita.3G235000 3 317 34.15256 5.68 46.78 87.76
SitPRX45 Seita.3G235100 3 324 34.70026 6.65 45.38 86.51
SitPRX46 Seita.3G270300 3 337 36.09192 7.52 34.24 83.59
SitPRX47 Seita.3G347500 3 344 35.56654 8.59 39.48 88.72
SitPRX48 Seita.4G105100 4 342 36.82120 8.78 38.15 81.40
SitPRX49 Seita.4G122600 4 378 41.42903 5.03 27.18 78.23
SitPRX50 Seita.4G134900 4 364 39.37921 7.09 34.97 94.64
SitPRX51 Seita.4G135000 4 328 35.59600 8.29 28.43 91.34
SitPRX52 Seita.4G135100 4 327 35.10916 6.45 28.98 88.44
SitPRX53 Seita.4G165000 4 331 35.97672 5.20 47.40 82.90
SitPRX54 Seita.4G165100 4 330 35.90367 5.20 48.44 83.42
SitPRX55 Seita.4G165200 4 333 36.09562 5.34 47.66 76.58
SitPRX56 Seita.4G176600 4 359 38.13847 9.37 37.13 87.10
SitPRX57 Seita.4G176800 4 312 33.60469 10.58 48.94 78.37
SitPRX58 Seita.4G247300 4 339 36.26934 8.95 36.81 78.94
SitPRX59 Seita.4G247400 4 319 34.40781 6.72 39.28 79.56
SitPRX60 Seita.4G247500 4 318 34.20550 5.93 39.72 76.76
SitPRX61 Seita.4G247600 4 319 34.11854 5.24 33.72 80.00
SitPRX62 Seita.5G029700 5 347 38.28653 5.96 33.92 92.51
SitPRX63 Seita.5G029800 5 348 38.20653 6.31 34.03 93.65
SitPRX64 Seita.5G030000 5 330 34.54058 4.73 33.19 82.00
SitPRX65 Seita.5G030100 5 317 33.48703 6.30 42.21 82.65
SitPRX66 Seita.5G030300 5 335 36.55180 9.82 36.56 89.13
SitPRX67 Seita.5G046600 5 347 36.50828 9.00 38.16 84.18
SitPRX68 Seita.5G053000 5 367 39.71532 8.83 47.85 86.65
SitPRX69 Seita.5G053100 5 338 36.02722 9.03 36.04 92.43
SitPRX70 Seita.5G053200 5 338 36.38048 7.61 34.48 90.65
SitPRX71 Seita.5G053300 5 347 38.32482 7.62 39.97 88.85
SitPRX72 Seita.5G122000 5 327 35.14673 5.97 42.75 84.77
SitPRX73 Seita.5G145500 5 321 33.72513 8.87 35.40 84.98
SitPRX74 Seita.5G155100 5 359 37.33727 6.11 35.90 84.37
SitPRX75 Seita.5G155200 5 370 38.68255 5.64 41.43 87.65
SitPRX76 Seita.5G155300 5 362 38.49054 6.44 37.28 83.62
SitPRX77 Seita.5G164800 5 344 36.95184 6.69 45.91 84.24
SitPRX78 Seita.5G170000 5 322 33.87709 9.27 36.20 90.09
SitPRX79 Seita.5G191900 5 337 36.27433 8.39 45.24 88.37
SitPRX80 Seita.5G293800 5 367 39.46438 5.10 43.22 78.45
SitPRX81 Seita.5G344000 5 343 37.01494 4.79 38.86 86.21
SitPRX82 Seita.5G462500 5 357 38.14559 6.11 34.90 94.87
SitPRX83 Seita.5G463200 5 356 37.71887 8.59 45.69 84.44
基因名称
Gene name
序列名称
Sequence ID
染色体
Chr.
氨基酸
Size (aa)
分子量
Molecular weight (kD)
等电点
pI
不稳定系数
Instability index
脂肪系数
Aliphatic index
SitPRX84 Seita.5G463300 6 362 39.21183 9.01 35.06 87.10
SitPRX85 Seita.6G090100 6 319 34.70663 5.30 35.00 85.92
SitPRX86 Seita.6G224300 6 334 36.59959 6.39 47.66 78.56
SitPRX87 Seita.6G239800 6 288 31.41981 7.02 35.54 84.44
SitPRX88 Seita.7G006800 7 330 35.41114 5.21 31.65 90.64
SitPRX89 Seita.7G023900 7 292 31.98142 6.67 42.64 76.95
SitPRX90 Seita.7G102200 7 342 36.98169 8.79 40.93 72.13
SitPRX91 Seita.7G128200 7 336 35.92006 9.45 44.80 85.03
SitPRX92 Seita.7G154400 7 495 50.08982 8.99 68.05 75.66
SitPRX93 Seita.7G247400 7 359 38.99986 8.75 44.15 85.32
SitPRX94 Seita.7G265300 7 320 33.99704 4.82 33.00 80.28
SitPRX95 Seita.7G271000 7 364 38.88408 6.98 41.86 80.19
SitPRX96 Seita.7G271100 7 362 38.69103 8.01 37.25 84.97
SitPRX97 Seita.7G271400 7 337 35.63451 6.92 37.98 85.19
SitPRX98 Seita.7G277800 7 331 34.16931 4.39 34.08 93.02
SitPRX99 Seita.7G283600 7 311 33.94250 7.13 45.64 78.55
SitPRX100 Seita.7G327600 7 321 33.66502 8.06 35.56 80.56
SitPRX101 Seita.7G327800 7 317 33.97633 8.32 34.29 78.52
SitPRX102 Seita.8G015100 8 331 34.92851 8.31 35.24 81.99
SitPRX103 Seita.8G015200 8 355 37.31111 8.71 40.05 80.82
SitPRX104 Seita.8G100100 8 339 35.55516 6.10 32.34 85.75
SitPRX105 Seita.8G106600 8 321 34.59168 8.90 45.52 82.99
SitPRX106 Seita.9G081300 9 324 34.07148 4.44 33.58 93.77
SitPRX107 Seita.9G081400 9 326 34.65617 5.28 36.89 84.48
SitPRX108 Seita.9G186200 9 345 37.93747 9.15 34.05 87.33
SitPRX109 Seita.9G186300 9 333 35.75638 9.36 59.24 96.37
SitPRX110 Seita.9G282900 9 327 35.40278 4.73 28.03 88.53
SitPRX111 Seita.9G298200 9 340 36.51632 4.92 38.22 86.15
SitPRX112 Seita.9G298300 9 343 36.40207 5.40 28.97 84.26
SitPRX113 Seita.9G298400 9 338 36.05723 4.52 34.97 82.28
SitPRX114 Seita.9G298500 9 342 36.79289 4.50 43.85 76.78
SitPRX115 Seita.9G316400 9 330 35.44946 8.90 37.57 89.33
SitPRX116 Seita.9G316500 9 325 34.91006 5.95 32.18 94.00
SitPRX117 Seita.9G316600 9 260 28.07594 8.94 43.80 81.04
SitPRX118 Seita.9G316700 9 329 35.34733 9.09 36.90 89.27
SitPRX119 Seita.9G342200 9 323 33.49696 7.55 34.67 83.10
SitPRX120 Seita.9G355500 9 330 34.04416 5.30 37.53 87.73
SitPRX121 Seita.9G392700 9 330 34.59363 7.06 38.68 84.88
SitPRX122 Seita.9G392800 9 343 36.74207 5.66 45.64 85.63
SitPRX123 Seita.9G393100 9 330 35.86731 9.12 42.48 82.52
SitPRX124 Seita.9G393200 9 322 34.4055 7.47 35.87 82.11
SitPRX125 Seita.9G411500 9 330 34.90751 8.08 40.40 86.48
SitPRX126 Seita.9G444200 9 250 27.32902 5.69 40.56 75.80
SitPRX127 Seita.9G477900 9 332 34.68019 5.54 31.09 91.17
SitPRX128 Seita.9G478000 9 392 42.26585 9.00 44.72 75.97
SitPRX129 Seita.9G478300 9 339 36.23680 4.83 44.50 82.18
SitPRX130 Seita.9G537300 9 498 52.30507 5.63 40.28 86.65
SitPRX131 Seita.9G562400 9 334 35.11090 5.62 42.16 81.92
SitPRX132 Seita.9G562600 9 331 34.28555 5.22 29.95 81.48

Fig. 1

Phylogenetic tree of Class III PRX gene family in Arabidopsis thaliana, Oryza sativa, and Setaria italica AtPRX: Class III PRX genes in Arabidopsis thaliana (yellow star marks in the figure); SitPRX: Class III PRX genes in Setaria italica (red circle marks in the figure); OsPRX: Class III PRX genes in Oryza sativa (green circle marks in the figure)."

Fig. 2

Gene structure and conserved motifs of members of PRX gene family in Setaria italica Motif: conservative base sequence; UTR: untranslated region; CDS: coding region sequence."

Fig. 3

Distribution of PRX gene family members on chromosomes in Setaria italica Sit1-Sit9 represents chromosomes 1-9 in Setaria italica, respectively."

Fig. 4

Synteny analysis of PRX gene family in Setaria italica"

Fig. 5

Synteny analysis of PRX gene family in Arabidopsis thaliana, Oryza sativa, and Setaria italica A: the synteny analysis of PRX genes in Setaria italica and Arabidopsis thaliana; B: the synteny analysis of PRX genes in Setaria italica and Oryza sativa; C: the synteny analysis of PRX genes in Setaria italica and Zea mays."

Fig. 6

Tissue expression profile of PRX gene family in Setaria italica Seed: 3 days imbibed seeds; Seedling: two-week-old whole seedling; Root: root at the grain-filling stage; Stem: stem at the grain-filling stage; Leaf 1: the top first fully extended leaf of two-week-old seedling; Leaf 2: the top second leaf of 30-day-old plants; Leaf 3: flag leaf; Leaf 4: the fourth leaf; Panicle 1: immature panicle; Panicle 2: panicle at pollination stage; Panicle 3: panicle at grain-filling stage."

Fig. 7

Statistics of cis-acting elements analysis of PRX gene family in Setaria italica Light-responsive: light response elements; Stress-responsive: stress response elements; Hormone-responsive: hormone response elements."

Fig. 8

Cis-acting elements analysis of PRX gene family in Setaria italica"

Fig. 9

Expression patterns of PRX gene family under drought and ABA treatment in Setaria italica * indicates significant difference between PEG or ABA treatment at 0.5 h, 1 h, 3 h, and no treatment (0 h) at the 0.05 probability level."

[1] Salekdeh G H, Reynolds M, Bennett J, Boyer J. Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci, 2009, 14: 488-496.
doi: 10.1016/j.tplants.2009.07.007
[2] Møller I M, Sweetlove L J. ROS signalling-specificity is required. Trends Plant Sci, 2010, 15: 370-374.
doi: 10.1016/j.tplants.2010.04.008 pmid: 20605736
[3] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
doi: 10.1016/j.plaphy.2010.08.016
[4] Cooke M S, Evans M D, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 2003, 17: 1195-1214.
doi: 10.1096/fj.02-0752rev
[5] Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279.
doi: 10.1146/annurev.arplant.49.1.249
[6] Knoops B, Loumaye E, Van Der Eecken V. Evolution of the peroxiredoxins. Subcell Biochem, 2007, 44: 27-40.
[7] Hofmann B, Hecht H J, Flohé L. Peroxiredoxins. Biol Chem, 2002, 383: 347-364.
pmid: 12033427
[8] Nonn L, Berggren M, Powis G. Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis. Mol Cancer Res, 2003, 1: 682-689.
[9] Lee T H, Kim S U, Yu S L, Kim S H, Park D S, Moon H B, Dho S H, Kwon K S, Kwon H J, Han Y H, Jeong S, Kang S W, Shin H S, Lee K K, Rhee S G, Yu D Y. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood, 2003, 101: 5033-5038.
doi: 10.1182/blood-2002-08-2548
[10] Dierick J F, Wenders F, Chainiaux F, Remacle J, Fisher A B, Toussaint O. Retrovirally mediated overexpression of peroxiredoxin Ⅵ increases the survival of WI-38 human diploid fibroblasts exposed to cytotoxic doses of tert-butylhydroperoxide and UVB. Biogerontology, 2003, 4: 125-131.
doi: 10.1023/A:1024154024602
[11] Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol, 2001, 42: 462-468.
pmid: 11382811
[12] Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot, 2002, 53: 1305-1319.
pmid: 11997377
[13] Piontek K, Smith A T, Blodig W. Lignin peroxidase structure and function. Biochem Soc Trans, 2001, 29: 111-116.
doi: 10.1042/bst0290111
[14] Tognolli M, Penel C, Greppin H, Simon P. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene, 2002, 288: 129-138.
pmid: 12034502
[15] Zheng X, Huystee R B. Oxidation of tyrosine by peroxidase isozymes derived from peanut suspension culture medium and by isolated cell wall. Plant Cell Tissue Organ Cult, 1991, 25: 35-43.
doi: 10.1007/BF00033910
[16] Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879-1893.
pmid: 15279994
[17] Intapruk C, Higashimura N, Yamamoto K, Okada N, Shinmyo A, Takano M. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana. Gene, 1991, 98: 237-241.
pmid: 2016063
[18] Barceló A R, Pomar F. Oxidation of cinnamyl alcohols and aldehydes by a basic peroxidase from lignifying Zinnia elegans hypocotyls. Phytochemistry, 2001, 57: 1105-1113.
pmid: 11430983
[19] Hiraga S, Yamamoto K, Ito H, Sasaki K, Matsui H, Honma M, Nagamura Y, Sasaki T, Ohashi Y. Diverse expression profiles of 21 rice peroxidase genes. FEBS Lett, 2000, 471: 245-250.
pmid: 10767432
[20] Wang Y, Wang Q, Zhao Y, Han G, Zhu S. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015, 566: 95-108.
doi: 10.1016/j.gene.2015.04.041 pmid: 25895479
[21] Llorente F, López-Cobollo R M, Catalá R, Martínez-Zapater J M, Salinas J. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J, 2002, 32: 13-24.
doi: 10.1046/j.1365-313X.2002.01398.x
[22] Zhu T, Xin F, Wei S, Liu Y, Han Y, Xie J, Ding Q, Ma L. Genome-wide identification, phylogeny and expression profiling of class III peroxidases gene family in Brachypodium distachyon. Gene, 2019, 700: 149-162.
doi: 10.1016/j.gene.2019.02.103
[23] Yang X, Yuan J, Luo W, Qin M, Yang J, Wu W, Xie X. Genome-wide identification and expression analysis of the class III peroxidase gene family in potato (Solanum tuberosum L.). Front Genet, 2020, 11: 593577.
[24] Yan J, Su P, Li W, Xiao G, Zhao Y, Ma X, Wang H, Nevo E, Kong L. Genome-wide and evolutionary analysis of the class III peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses. BMC Genomics, 2019, 20: 666.
[25] 彭方林, 王丽, 穆春, 王曦烨, 李迎迎, 王林嵩. 萝卜过氧化物酶基因Rsprx1对其抗氧化能力的影响. 贵州农业科学, 2014, 42(9): 40-42.
Peng F L, Wang L, Mu C, Wang X Y, Li Y Y, Wang L S. Effect of peroxidase gene Rsprx1 on antioxidant ability in Raphanus sativus. Guizhou Agric Sci, 2014, 42(9): 40-42. (in Chinese with English abstract)
[26] 高正银, 孙文杰, 宋晓云, 胡轼, 左开井. 雷蒙德棉第III类过氧化物酶全基因组鉴定和表达分析. 生物技术进展, 2019, 9: 490-501.
Gao Z Y, Sun W J, Song X Y, Hu S, Zuo K J. Genome-wide identification and expression pattern analysis of class III peroxidase family in Gossypium raimondii. Curr Biotechnol, 2019, 9: 490-501. (in Chinese with English abstract)
[27] Feng Y, Wei R, Liu A, Fan S, Che J, Zhang Z, Tian B, Yuan Y, Shi G, Shang H. Genome-wide identification, evolution, expression, and alternative splicing profiles of peroxiredoxin genes in cotton. PeerJ, 2021, 9: e10685.
[28] Meng G, Fan W, Rasmussen S K. Characterisation of the class III peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation. Plant Phys Biochem, 2021, 167: 245-256.
doi: 10.1016/j.plaphy.2021.08.004
[29] 张瑞杰, 王喆, 连卜颖, 郭展, 魏东, 于世慧, 李红英, 刘晓东. 谷子ABC转运蛋白基因与抗旱关系的研究. 山西农业大学学报(自然科学版), 2018, 38(1): 11-15.
Zhang R J, Wang Z, Lian B Y, Guo Z, Wei D, Yu S H, Li H Y, Liu X D. Study on the relationship between ABC transporter genes and drought tolerance in foxtail millet. Shanxi Agric Univ (Nat Sci Edn), 2018, 38(1): 11-15. (in Chinese with English abstract)
[30] 张雁明, 刘晓东, 马建萍, 温琪汾, 韩渊怀. 谷子抗旱研究进展. 山西农业科学, 2013, 41: 282-285.
Zhang Y M, Liu X D, Ma J P, Wen Q F, Han Y H. Research progress on drought resistance in foxtail millet (Setaria italica L.). Shanxi Agric Sci, 2013, 41: 282-285. (in Chinese with English abstract)
[31] 武懿茂, 樊武哲, 李红英, 李雪垠. 谷子抗旱相关蛋白激酶基因家族鉴定及表达分析. 山西农业大学学报(自然科学版), 2020, 40(1): 1-10.
Wu Y M, Fan W Z, Li H Y, Li X Y. Identification and expression of protein kinase gene family related to drought resistance in Setaria italica. Shanxi Agric Univ (Nat Sci Edn), 2020, 40(1): 1-10. (in Chinese with English abstract)
[32] Yang Z, Zhang H, Li X, Shen H, Gao J, Hou S, Zhang B, Mayes S, Bennett M, Ma J, Wu C, Sui Y, Han Y, Wang X. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7
[33] Tang S, Li L, Wang Y, Chen Q, Zhang W, Jia G, Zhi H, Zhao B, Diao X. Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). Sci Rep, 2017, 7: 10009.
[34] Rogozin I B, Wolf Y I, Sorokin A V, Mirkin B G, Koonin E V. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol, 2003, 13: 1512-1517.
pmid: 12956953
[35] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
[36] Kaashyap M, Ford R, Kudapa H, Jain M, Edwards D, Varshney R, Mantri N. Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea. Sci Rep, 2018, 8: 4855.
[37] Kim Y, Seo C W, Khan A L, Mun B G, Shahzad R, Ko J W, Yun B W, Park S K, Lee I J. Exo-ethylene application mitigates waterlogging stress in soybean (Glycine max L.). BMC Plant Biol, 2018, 18: 254.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[3] ZHAO Xiang;WANG Yan-Liang;WANG Ya-Jing;WANG Xi-Li;ZHANG Xiao. Effects of Exogenous Ca2+ on Somatal Movement and Plasma Membrane K+ Channels of Vicia Guard Cell under Salt Stress[J]. Acta Agron Sin, 2008, 34(11): 1970 -1976 .
[4] Ye Xiaoli;Li Xuegang;Li Jiana. Mechanism of Melanin Synthesis in Seed Coat of Brassica napus L.[J]. Acta Agron Sin, 2002, 28(05): 638 -643 .
[5] XU Ning;CHENG Xu-Zhen;WANG Su-Hua;WANG Li-Xia;ZHAO Dan. Establishment of an Adzuki Bean (Vigna angularis) Core Collection Based on Geographical Distribution and Phenotypic Data in China[J]. Acta Agron Sin, 2008, 34(08): 1366 -1373 .
[6] Liu Guodong;Liu Gengling. Screening indica Rice for K-efficient Genotypes[J]. Acta Agron Sin, 2002, 28(02): 161 -166 .
[7] CHEN Li;ZHANG Zheng-Sheng;HU Mei-Chun;WANG Wei;ZHANG Jian;LIU Da-Jun;ZHENG Jing;ZHENG Feng-Min;MA Jing. Genetic Linkage Map Construction and QTL Mapping for Yield and Fi-ber Quality in Upland Cotton (Gossypium hirsutum L.)[J]. Acta Agron Sin, 2008, 34(07): 1199 -1205 .
[8]

Shen Xiuying; Liu Junwen; Zou Zonglan

. DRY MATTER ACCUMULATION AND DISTRIBUTION OF COTTON IN FIVE DIFFERENT PLANTING PATTERNS OF DOUBLE CROPPING SYSTEM[J]. Acta Agron Sin, 1985, 11(02): 131 -137 .
[9] GUO Tian-Cai;SONG Xiao;MA Dong-Yun;WANG Yong-Hua;XIE Ying-Xin;ZHA Fei-Na;YUE Yan-Jun;YUE Cai-Feng. Effects of Nitrogen Application Rates on Photosynthetic Characteristics of Flag Leaves in Winter Wheat (Triticum aestivum L.)[J]. Acta Agron Sin, 2007, 33(12): 1977 -1981 .
[10] Fang Xianwen;Jiang Dong;Dai Tingbo;Ji Qi;Cao Weixing. Genetic Analysis of Grain Starch and Amylopectin Contents in Wheat Grains[J]. Acta Agron Sin, 2003, 29(06): 925 -929 .