Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2546-2559.doi: 10.3724/SP.J.1006.2022.14148
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
TANG Ying-Hong1,3,4(), LIU Fang2, CHEN Jian-Rong2,*(), MAO Kai-Quan2, LI Hui1,3, WAN Hai-Qing1
[1] |
Zhao Q. Lignification: flexibility, biosynthesis and regulation. Trends Plant Sci, 2016, 21: 713-721.
doi: 10.1016/j.tplants.2016.04.006 |
[2] | 郭亚玉, 许会敏, 赵媛媛, 吴鸿洋, 林金星. 植物木质化过程及其调控的研究进展. 中国科学: 生命科学, 2020, 50: 111-122. |
Guo Y Y, Xu H M, Zhao Y Y, Wu H X, Lin J X. Plant lignification and its regulation. Sci Sin (Vitae), 2020, 50: 111-122 (in Chinese with English abatract).
doi: 10.2298/SOS1801111K |
|
[3] |
Day A, Ruel K, Neutelings G, Cronier D, David H, Hawkins S, Chabbert B. Lignification in the flax stem: evidence for an unusual lignin in bast fibers. Planta, 2005, 222: 234-245.
doi: 10.1007/s00425-005-1537-1 |
[4] | 袁有美, 唐映红, 刘芳, 陈建荣. 免耕种植水土保持用苎麻木质纤维主要成分分析. 中国农学通报, 2015, 31(31): 242-246. |
Yuan Y M, Tang Y H, Liu F, Chen J R. Analysis of fiber main ingredients in no-till planting ramie. Chin Agric Sci Bull, 2015, 31(31): 242-246. (in Chinese with English abstract) | |
[5] |
徐益, 张力岚, 祁建民, 张列梅, 张立武. 主要麻类作物基因组学与遗传改良: 现状与展望. 作物学报, 2021, 47: 997-1019.
doi: 10.3724/SP.J.1006.2021.04121 |
Xu Y, Zhang L L, Qi J M, Zhang L M, Zhang L W. Genomics and genetic improvement in main bast fiber crops: advances and perspectives. Acta Agron Sin, 2021, 47: 997-1019. (in Chinese with English abstract) | |
[6] |
Sonawane P, Vishwakarma R K, Khan B M. Biochemical characterization of recombinant cinnamoyl CoA reductase 1 (Ll- CCRH1) from Leucaena leucocephala. Int J Biol Macromol, 2013, 58: 154-159.
doi: 10.1016/j.ijbiomac.2013.03.050 |
[7] |
Barakat A, Yassin N B M, Park J S, Choi A, Herr J, Carlson J E. Comparative and phylogenomic analyses of cinnamoyl-CoA reductase and cinnamoyl-CoA-reductase-like gene family in land plants. Plant Sci, 2011, 181: 249-257.
doi: 10.1016/j.plantsci.2011.05.012 |
[8] | Labeeuw L, Martone P T, Boucher Y, Case R J. Ancient origin of the biosynthesis of lignin precursors. Biol Direct, 2015, 10: 23. |
[9] |
Escamilla-Trevino L L, Shen H, Uppalapati S R, Ray T, Tang Y, Hernandez T, Yin Y, Xu Y, Dixon R A. Switchgrass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties. New Phytol, 2010, 185: 143-155.
doi: 10.1111/j.1469-8137.2009.03018.x pmid: 19761442 |
[10] |
Zhou R, Jackson L, Shadle G, Nakashima J, Temple S, Chen F, Dixon R A. Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proc Natl Acad Sci USA, 2010, 107: 17803-17808.
doi: 10.1073/pnas.1012900107 |
[11] |
Chao N, Li N, Qi Q, Li S, Lyu T, Jiang X N, Gai Y. Characterization of the cinnamoyl-CoA reductase (CCR) gene family in Populus tomentosa reveals the enzymatic active sites and evolution of CCR. Planta, 2017, 245: 61-75.
doi: 10.1007/s00425-016-2591-6 pmid: 27580618 |
[12] |
Baltas M, Lapeyre C, Bedos-Belval F, Maturano M, Saint-Aguet P, Roussel L, Duran H, Grima-Pettenati J. Kinetic and inhibition studies of cinnamoyl-CoA reductase 1 from Arabidopsis thaliana. Plant Physiol Biochem, 2005, 43: 746-753.
doi: 10.1016/j.plaphy.2005.06.003 |
[13] |
Sonawane P, Patel K, Vishwakarma R K, Srivastava S, Singh S, Gaikwad S, Khan B M. Probing the active site of cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala. Int J Biol Macromol, 2013, 60: 33-38.
doi: 10.1016/j.ijbiomac.2013.05.005 |
[14] |
Bomati E K, Noel J P. Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase. Plant Cell, 2005, 17: 1598-1611.
pmid: 15829607 |
[15] |
Ma Q H. Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. J Exp Bot, 2007, 58: 2011-2021.
doi: 10.1093/jxb/erm064 |
[16] |
Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry, 2001, 57: 1187-1195.
pmid: 11430991 |
[17] |
Goffner D, Campbell M M, Campargue C, Clastre M, Borderies G, Boudet A, Boudet A M. Purification and characterization of cinnamoyl-coenzyme A: NADP oxidoreductase in Eucalyptus gunnii. Plant Physiol, 1994, 106: 625-632.
pmid: 12232355 |
[18] |
Pinçon G, Maury S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M. Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth. Phytochemistry, 2001, 57: 1167-1176.
pmid: 11430989 |
[19] | 李雪平, 彭镇华, 高志民, 胡陶. 抑制COMT基因表达对转基因烟草木质素合成的影响. 分子植物育种, 2012, 10: 689-692. |
Li X P, Peng Z H, Gao Z M, Hu T. The Effects of depressing expression of COMT on lignin synthesis of transgenic tobacco. Mol Plant Breed, 2012, 10: 689-692. (in Chinese with English abstract) | |
[20] | Li Y, Kim J I, Pysh L, Chapple C. Four isoforms of Arabidopsis thaliana 4-coumarate: CoA ligase (4CL) have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiol, 2015, 169: 2409-2421. |
[21] | Wang Q, Dai X R, Pang H Y, Cheng Y X, Huang X, Li H, Yan X J, Lu F C, Wei H R, Sederoff R R, Li Q Z. BEL1-like homeodomain protein BLH6a is a negative regulator of CAl5H2 in sinapyl alcohol monolignol biosynthesis in poplar. Front Plant Sci, 2021, 12: 1-14. |
[22] | Chen J R, Liu F, Tang Y H, Yuan Y M, Guo Q Q. Transcriptome sequencing and profiling of expressed genes in phloem and xylem of ramie (Boehmeria nivea L. Gaud). PLoS One, 2014, 10: e110623. |
[23] |
唐映红, 陈建荣, 刘芳, 袁有美, 郭清泉, 昌洪涛. 苎麻肉桂酰辅酶A还原酶基因cDNA序列的克隆与分析. 作物学报, 2015, 41: 1324-1332.
doi: 10.3724/SP.J.1006.2015.01324 |
Tang Y H, Chen J R, Liu F, Yuan Y M, Guo Q Q, Chang H T. cDNA Cloning and analysis of Cinnamoyl-CoA reductase gene from Boehmeria nivea. Acta Agron Sin, 2015, 41: 1324-1332. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01324 |
|
[24] |
Tang Y H, Liu F, Mao K Q, Xing H C, Chen J R, Guo Q Q. Cloning and characterization of the key 4-coumarate CoA ligase genes in Boehmeria nivea. South Afr J Bot, 2018, 116: 123-130.
doi: 10.1016/j.sajb.2018.02.398 |
[25] | Tang Y H, Liu F, Xing H C, Mao K Q, Chen G, Guo Q Q, Chen J R. Correlation analysis of lignin accumulation and expression of key genes involved in lignin biosynthesis of ramie (Boehmeria nivea). Genes, 2019, 10: 389. |
[26] |
Luan M B, Jian J B, Chen P, Chen J H, Chen J H, Gao Q, Gao G, Zhou J H, Chen K M, Guang X M, Chen J K, Zhang Q Q, Wang X F, Fang L, Sun Z M, Bai M Z, Fang X D, Zhao S C, Xiong H P, Yu C M, Zhu A G. Draft genome sequence of ramie, Boehmeria nivea (L.) Gaudich. Mol Ecol Resour, 2018, 18: 639-645.
doi: 10.1111/1755-0998.12766 |
[27] |
Chao N, Li S, Li N, Qi Q, Jiang W T, Jiang X N, Gai Y. Two distinct cinnamoyl-CoA reductases in Selaginella moellendorffii offer insight into the divergence of CCRs in plants. Planta, 2017, 246: 33-43.
doi: 10.1007/s00425-017-2678-8 pmid: 28321576 |
[28] |
Pan H, Zhou R, Louie G V, Mühlemann J K, Bomati E K, Bowman M E, Dudareva N, Dixon R A, Noel J P, Wang X Q. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis. Plant Cell, 2014, 26: 3709-3727.
doi: 10.1105/tpc.114.127399 |
[29] |
Sattler S A, Walker A M, Vermerris W, Sattler S E, Kang C. Structural and biochemical characterization of Cinnamoyl-CoA reductases. Plant Physiol, 2017, 173: 1031-1044.
doi: 10.1104/pp.16.01671 pmid: 27956488 |
[30] |
Chao N, Jiang W T, Wang X C, Jiang X N, Gai Y. Novel motif is capable of determining CCR and CCR-like proteins based on the divergence of CCRs in plants. Tree Physiol, 2019, 39: 2019-2026.
doi: 10.1093/treephys/tpz098 pmid: 31748812 |
[31] |
Jones L, Ennos A R, Turner S R. Cloning and characterization of irregular xylem4 (irx4) a severely lignin-deficient mutant of Arabidopsis. Plant J, 2001, 26: 205-216.
pmid: 11389761 |
[32] | 宋恩慧, 蔡诚, 魏国, 高慧, 项艳. RNA干涉培育低木质素杨树. 安徽林业科技, 2012, 38(2): 58-62. |
Song E H, Cai C, Wei G, Gao H, Xiang Y. Research on RNA- interference breeding of low- lignin poplar varieties. Anhui For Sci Technol, 2012, 38(2): 58-62 (in Chinese with English abatract). | |
[33] |
Wadenbäck J, von Arnold S, Egertsdotter U, Walter M H, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Res, 2008, 17: 379-392.
pmid: 17610137 |
[34] |
Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA, 2006, 103: 230-235.
doi: 10.1073/pnas.0509875103 |
[1] | TANG Ying-Hong, CHEN Jian-Rong, LIU Fang, YUAN You-Mei, GUO Qing-Quan, CHANG Hong-Tao. cDNA Cloning and Analysis of Cinnamoyl-CoA Reductase Gene from Boehmeria nivea [J]. Acta Agron Sin, 2015, 41(09): 1324-1332. |
|