Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (3): 410-421.doi: 10.3724/SP.J.1006.2010.00410
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
[1] Kochert G, Halward R, Branch W D, Simpson C E. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet, 1991, 81: 565-570 [2] Stalker H T, Dhesi J S, Kochert G. Genetic diversity within the species Arachis duranensis Krapov. & W.C. Gregory, a possible progenitor of cultivated peanut. Genome, 1995, 38: 1201-1212 [3] Raina S N, Rani V, Kojima T, Ogihara Y, Singh K P, Devarumath R M. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome, 2001, 44: 763-772 [4] Subramanian V, Gurtu S, Rao R C N, Nigam S N. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome, 2000, 43: 656-660 [5] Milla S R, Isleib T G, Stalker H T, Taxonomic relationships among Arachis sect: Arachis species as revealed by AFLP markers. Genome, 2005, 8: 1-11 [6] Tang R H, Gao G Q, He L Q, Hang Z Q, Shan S H, Zhong R C, Zhou C Q, Jiang Q, Li Y R, Zhuang W J. Genetic diversity in cultivated groundnut based on SSR markers. J Genet Genom, 2007, 34: 449-459 [7] Hong Y-B(洪彦彬), Liang X-Q(梁炫强), Chen X-P(陈小平), Lin K-Y(林坤耀), Zhou G-Y(周桂元), Li S-X(李少雄), Liu H-Y(刘海燕). Genetic diversity analysis in botanical varieties of the cultivated peanut (Arachis hypogaea L.) based on SSR polymorphism. Mol Plant Breed(分子植物育种), 2008, 6(1): 71-78 (in Chinese with English abstract) [8] Hong Y B, Liang X Q, Chen X P, Liu H Y, Zhou G Y, Li S X, Wen S, Construction of genetic linkage map based on SSR markers in peanut (Arachis hypogaea L.). Agric Sci China, 2008, 7: 915-921 [9] Hong Y-B(洪彦彬), Liang X-Q(梁炫强), Chen X-P(陈小平), Liu H-Y(刘海燕), Zhou G-Y(周桂元), Li S-X(李少雄), Wen S-J(温世杰). Construction of genetic linkage map in peanut (Arachis hypogaea L.) cultivars. Acta Agron Sin (作物学报), 2009, 35: 395-402 (in Chinese with English abstract) [10] Liang X Q, Chen X P, Hong Y B, Liu H Y, Guo B Z. Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biol, 2009, 9: 35 [11] Benson G, Tandem repeats finder: A program to analyze DNA sequences. Nucl Acids Res, 1999, 27: 573-580 [12] Castelo A T, Martins W, Gao G R. TROLL - Tandem repeat occurrence locator. Bioinformatics, 2002, 18: 634-636 [13] Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: Features and applications. Trends Biotechnol, 2005, 23: 48-55 [14] Choudhary S, Sethy N K, Shokeen B, Bhatia S. Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor Appl Genet, 2009, 118: 591-608 [15] Kantety R V, La Rota M, Matthews D E, Sorrells M E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48: 501-510 [16] Yu J K, Dake T M, Singh S, Benscher D, Li W, Gill B, Sorrells M E. Development and mapping of EST-derived simple sequence repeat (SSR) markers for hexaploid wheat. Genome, 2004, 47, 805-818 [17] Rossi M, Araujo P G, Paulet F, Garsmeur O, Dias V M, Chen H, Van Sluys M A, D'Hont A. Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Genet Genom, 2003, 269: 406-419 [18] Castillo A, Budak H, Varshney R K, Dorado G, Graner A, Hernandez P. Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol, 2008, 8: 97 [19] Luro F L, Costantino G, Terol J, Argout X, Allario T, Wincker P, Talon M, Ollitrault P, Morillon R. Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other citrus species and their effectiveness for genetic mapping. BMC Genomics, 2008, 9: 287 [20] Aggarwal R K, Hendre P S, Varshney R K, Bhat P R, Krishnakumar V, Singh L. Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species Theor Appl Genet, 2006, 114: 359-372 [21] Varshney R K, Sigmund R, Borner A, Korzun V, Stein N, Sorrells M E Langridge P, Graner A. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci, 2005, 168: 195-202 [22] Gutierrez M V, Patto M C V, Huguet T, Cubero J I, Moreno M T, Torres A M, Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet, 2005, 110: 1210-1217 [23] He G H, Woullard F E, Marong I, Guo B Z. Transferability of soybean markers in peanut (Arachis hypogaea L.). Peanut Sci, 2006, 33: 22-28 [24] Lu S-D(卢圣栋). Current Protocols for Molecular Biology (现代分子生物学实验技术). Beijing: Chinese Academy of Medical Sciences & Peking Union Medical College Press, 1999. pp 101-136 [25] Varshney R K, Thiel T, Stein N, Langridge P, Graner A. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett, 2002, 7: 537-546 [26] Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with non-repetitive DNA in plant genomes. Nat Genet, 2002, 30: 194-200 [27] Gao L F, Tang J F, Li H W, Jia J Z. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed, 2003, 12: 245-261 [28] Jayashree B, Punna R, Prasad P, Bantte K, Hash C T, Chandra S, Hoisington D A, Varshney R K. A database of simple sequence repeats from cereal and legume expressed sequence tags mined in silico: Survey and evaluation. In silico Biol, 2007, 6: 607-620 [29] Saha M C, Mian M A, Eujayl I, Zwonitzer J C, Wang L, May G D. Tall fescue EST-SSR markers with transferability across several grass species. Theor App1 Genet, 2004, 109: 783-791 [30] Thiel T, Michalek W, Varshney R K, Graner A. Exploiting EST databases for the development of cDNA derived microsatellite markers in barley (Hordeum vulgare L.). Theor App1 Genet, 2003, 106: 411-422 [31] Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-112 [32] Gupta P K, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H S. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genom, 2003, 270, 315-323 [33] Sreenivasulu N, Kavikishor P B, Varshney R K, Altschmied L. Mining functional information from cereal genomes—the utility of expressed sequence tags. Curr Sci, 2002, 83: 965-973 [34] Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A. Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: Implications for the transferability of SSRs in plants. Mol Biol Evol, 1998, 15: 1275-1287 [35] Treuren V R, Kuittinen H, Karkkainen K, Baenagonzalez E, Savolainen O. Evolution of microsatellites in Arabis petraea and Arabis lyrata, outcrossing relatives of Arabidopsis thaliana. Mol Biol Evol, 1997, 14: 220-229 [36] Provan J, Powell W, Waugh R. Microsatellite analysis of relationships within cultivated potato (Solanum tuberosum). Theor App1 Genet, 1996, 92: 1078-1084 [37] Röder M S, Plaschke J, König S U, Börner A, Sorrells M E, Tanksley S D, Ganal M W, Abundance, variability and chromosomal location of microsatellites in wheat. Mol General Genet, 1995, 246: 327-333 [38] Ellegren H, Primmer C R, Sheldon B C. Microsatellite ‘evolution’: Directionality or bias. Nat Genet, 1995, 11: 360-362 [39] Ellegren H, Moore S, N. Robinson, Byrne K, Ward W, Sheldon B C. Microsatellite evolution: A reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol Biol Evol, 1997, 14: 854-860 [40] Ellgren H. Microsatellites: Simple sequences with complex evolution. Nat Genet, 2004, 5: 435-445 |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536. |
[4] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[5] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[6] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[7] | LIU Jia-Xin, LAN Yu, XU Qian-Yu, LI Hong-Ye, ZHOU Xin-Yu, ZHAO Xuan, GAN Yi, LIU Hong-Bo, ZHENG Yue-Ping, ZHAN Yi-Hua, ZHANG Gang, ZHENG Zhi-Fu. Creation and identification of peanut germplasm tolerant to triazolopyrimidine herbicides [J]. Acta Agronomica Sinica, 2022, 48(4): 1027-1034. |
[8] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[9] | CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919. |
[10] | ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929. |
[11] | YAN Sheng-Ji, DENG Ai-Xing, SHANG Zi-Yin, TANG Zhi-Wei, CHEN Chang-Qing, ZHANG Jun, ZHANG Wei-Jian. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production [J]. Acta Agronomica Sinica, 2022, 48(4): 930-941. |
[12] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[13] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[14] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[15] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
|