Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (09): 1440-1449.doi: 10.3724/SP.J.1006.2010.01440
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WAN Xiao-Rong1,MO Ai-Qiong2,GUO Xiao-Jian1,YANG Miao-Xian1,YU Shi-Yuan1,CAO Jin-Ping1
[1] Wan X R, Li L. Molecular cloning and characterization of a dehydration-inducible cDNA encoding a putative 9-cis-epoxycarotenoid dioxygenase in Arachis hypogaea L. DNA Seq, 2005, 16: 217-223 [2] Yan M-L(严美玲), Li X-D(李向东), Jiao Y-L(矫岩林), Wang L-L(王丽丽). Identification of drought resistance in different peanut varieties. J Peanut Sci (花生学报), 2004, 33(1): 8-12 (in Chinese with English abstract) [3] Zeevaart J A D. Abscisic Acid Metabolism and Its Regulation. In: Hooykaas P J J, Hall M A, Libbenga K R, eds. Biochemistry and Molecular Biology of Plant Hormones. Amsterdam: Elsevier Science, 1999. pp 189-207 [4] Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol, 2005, 56: 165-185 [5] Taylor I B, Sonneveld T, Bugg T D H, Thompson A J. Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors. J Plant Growth Regul, 2005, 24: 253-273 [6] Kende H, Zeevaart J A D. The five classical plant hormones. Plant Cell, 1997, 9: 1197-1210 [7] Koornneef M, Leon-Kloosterziel K M, Schwartz S H, Zeevaart J A D. The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiol Biochem, 1998, 36: 83-89 [8] Tan B C, Schwartz S H, Zeevaart J A D, McCarty D R. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA, 1997, 94: 12235-12240 [9] Burbidge A, Grieve T, Jackson A, Thompson A, Taylor I B. Structure and expression of a cDNA encoding a putative neoxanthin cleavage enzyme (NCE), isolated from a wilt-related tomato (Lycopersicon esculentum Mill.) library. J Exp Bot, 1997, 47: 2111-2112 [10] Qin X, Zeevaart J A D. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA, 1999, 96: 15354-15361 [11] Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol, 2000, 123: 553-562 [12] Chernys J T, Zeevaart J A D. Characterization of the 9-cis epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol, 2000, 124: 343-353 [13] Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J, 2001,27: 325-333 [14] Soar C J, Speirs J, Maffei S M, Loveys B R. Gradients in stomatal conductance, xylem sap ABA and bulk leaf ABA along canes of Vitis vinifera cv Shiraz: biochemical and molecular biological evidence indicating their source. Funct Plant Biol, 2004, 31: 659-669 [15] Rodrigo M J, Alquezar B, Zacar?′as L. Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J Exp Bot, 2006, 57: 633-643 [16] Destefano-Beltran L, Knauber D, Huckle L, Suttle J C. Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues. Plant Mol Biol, 2006, 61: 687-697 [17] Yang J, Guo Z. Cloning of a 9-cis-epoxycarotenoid dioxygenase gene (SgNCED1) from Stylosanthes guianensis and its expression in response to abiotic stresses. Plant Cell Rep, 2007, 26: 1383-1390 [18] Zhu C, Kauder F, Romer S, Sandmann G. Cloning of two individual cDNAs encoding 9-cis-epoxycarotenoid dioxygenase from Gentiana lutea, their tissue-specific expression and physiological effect in transgenic tobacco. J Plant Physiol, 2007, 164: 195-204 [19] Kraft M, Kuglitsch R, Kwiatkowski J, Frank M, Grossmann K. Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): interaction with ethylene. J Exp Bot, 2007, 58: 1497-1503 [20] Qin X, Yang S H, Kepsel A C, Schwartz S H, Zeevaart J A D. Evidence for abscisic acid biosynthesis in Cuscuta reflexa, a parasitic plant lacking neoxanthin. Plant Physiol, 2008, 147: 816-822 [21] Munné-Bosch S, Falara V, Pateraki I, López-Carbonell M, Cela J, Kanellis A K. Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit. J Plant Physiol, 2009, 166: 136-145 [22] Leng P(冷平), Zhang G-L(张光连), Li X-X(李祥欣), Wang L-H(王良合), Zheng Z-M(郑仲明). Cloning of 9-cis-epoxycarotenoid dioxygenase (NCED) gene encoding a key enzyme during abscisic acid (ABA) biosynthesis and ethylene production regulated by ABA in detached young persimmon calyx. Chin Sci Bull (科学通报), 2009, 54: 2082-2088 (in Chinese) [23] Wan X R, Li L. Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. Biochem Biophys Res Commun, 2006, 347: 1030-1038 [24] Tan B C, Joseph L M, Deng W T, Liu L, Li Q B, Cline K, McCarty D R. Molecular characterization of the Arabidopsis 9-cis-epoxycarotenoid dioxygenase gene family. Plant J, 2003, 35: 44-56 [25] Hwang S G, Chen H C, Huang W Y, Chu Y C, Shii C T, Cheng W H. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci, 2010, 178: 12-22 [26] Rosso M G, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B. An Arabidopsis thaliana T-DNA mutagenized population (GABIKat) for flanking sequence tag-based reverse genetics. Plant Mol Biol, 2003, 53: 247-259 [27] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743 [28] Unfried I, Stocker U, Gruendler P. Nucleotide sequence of the 18S rRNA gene from Arabidopsis thaliana (Co1-0), Nucl Acids Res, 1989, 17: 7513 [29] Thompson A J, Jackson A C, Parker R A, Morpeth D R, Burbidge A, Taylor I B. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J, 2000, 23: 363-374 [30] Qin X, Zeevaart J A D. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol, 2002, 128: 544-551 [31] Zhang Y, Yang J, Lu S, Cai J, Guo Z.Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance. J Plant Growth Regul, 2008, 27: 151-158 [32] Zhang Y, Tan J, Guo Z, Lu S, He S, Shu W, Zhou B. Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant Cell Environ, 2009, 32: 509-519 [33] Ruggiero B, Koiwa H, Manabe Y, Quist T M, Inan G, Saccardo F, Joly R J, Hasegawa P M, Bressan R A, Maggio A. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiol, 2004, 136: 3134-3147 |
[1] | Meng-Ting YANG, Chun ZHANG, Zuo-Ping WANG, Hua-Wen ZOU, Zhong-Yi WU. Cloning and functional analysis of ZmbHLH161 gene in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 2008-2016. |
[2] | LI Min,YU Tai-Fei,XU Zhao-Shi,ZHANG Shuang-Xi,MIN Dong-Hong,CHEN Ming,MA You-Zhi,CHAI Shou-Cheng,ZHENG Wei-Jun. Soybean Transcription Factor Gene GmNF-YCa Enhances Osmotic Stress Tolerance of Transgenic Arabidopsis [J]. Acta Agron Sin, 2017, 43(08): 1161-1169. |
[3] | GE Shu-Juan,SUN Ai-Qing,LIU Peng,ZHANG Jie-Dao,DONG Shu-Ting. In silico Expression Profile of Maize Genes in Response to Osmotic Stress [J]. Acta Agron Sin, 2014, 40(07): 1164-1173. |
[4] | DING Zai-Song, WANG Chun-Yan, GUAN Dong-Meng, DIAO Feng-Wu, DIAO Meng. Response of Gas Exchange, Chlorophyll a Fluorescence and Anti-oxidation Enzymes Activities to Osmotic Stress in an Upland Rice Progeny YF2-1 Derived from Oryza sativa × Echinochloa caudata [J]. Acta Agron Sin, 2011, 37(05): 876-881. |
[5] | WANG Yao-Fu;YANG Tian-Xu;LIU Guo-Shun;ZHAO Chun-Hua;WANG Pei;CHEN Xin-Jian. Differently Expressed Genes in Tobacco Leaves under Osmotic Stress [J]. Acta Agron Sin, 2007, 33(06): 914-920. |
[6] | LIU Huai-Pan ;JI Xiu-E;SHI Liu-Gong;LI Chao-Hai. Effect of Osmotic Stress on the Contents of Different form Polyamines in Leaves of Maize Seedlings [J]. Acta Agron Sin, 2006, 32(10): 1430-1436. |
[7] | DUAN Hui-Guo ;YUAN Shu;HUANG Zuo-Xi;SUN Xin;QING Dong-Hong;DONG Ling;LIN Hong-Hui. The Effects of Spermidine Pretreatment on Antioxidative Capacity in Wheat Seedlings under Osmotic Stress [J]. Acta Agron Sin, 2006, 32(07): 1057-1062. |
[8] | SUN Li-Ping; HE Bao-Kun; WU Xue-You; LIU Li-Xia; LI De-Quan. Regulation of 63.5 kD Heat-stable Protein in Maize Seedling Roots by ABA and Calcium/Calmodulin under Osmotic Stress [J]. Acta Agron Sin, 2005, 31(01): 83-87. |
[9] | LIANG Zang-Suo;KANG Shao-Zhong;GAO Jun-Fen;ZHANG Jian-Huan. Effect of Abscisic Acid (ABA) and Alternative Split-root Osmotic Stress on Root Growth and Transpiration Efficiency in Maize [J]. Acta Agron Sin, 2000, 26(02): 250-256. |
[10] | Chen Jing. Physiological Response for Different Drought Resistance of Sweet Potato under Osmotic Stress [J]. Acta Agron Sin, 1999, 25(02): 232-236. |
[11] | Jiang Ming-yi; Yang Wen-ying; Xu Jiang; Chen Qiao-yun. Osmotic Stress-Induced Oxidative Injury of Rice Seedlings [J]. Acta Agron Sin, 1994, 20(06): 733-738. |
|