Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (8): 1105-1113.doi: 10.3724/SP.J.1006.2018.01105

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Mining Yellow-seeded Micro Effect Loci in B. napus by Integrated GWAS and WGCNA Analysis

Xiao-Hua XIAN1,**(),Jia WANG1,2,**(),Xin-Fu XU1,Cun-Min QU1,Kun LU1,Jia-Na LI1,Lie-Zhao LIU1,*()   

  1. 1 College of Agronomy and Biotechnology / Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
    2 Nanchong Academy of Agricultural Sciences, Nanchong 637000, Sichuan, China
  • Received:2018-01-29 Accepted:2018-06-09 Online:2018-08-10 Published:2018-06-11
  • Contact: Xiao-Hua XIAN,Jia WANG,Lie-Zhao LIU E-mail:xxm920423@126.com;wangjia0724@126.com;liezhao2003@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31771830);the Science and Technology Committee of Chongqing(cstc2016shmszx80083);the Fundamental Research Funds for the Central Universities(XDJK2017A009)

Abstract:

Brassica napus is one of the most important oil crops in the world, and developing yellow-seeded B. napus with improved qualities is a major breeding goal. The yellow-seeded minor genes were mined by genome-wide association study (GWAS) and weighted gene co-expression network analysis (WGCNA) with 520 representative varieties (or lines) and the transcriptional data at eight time points during the seed development. The 199 SNPs and 1826 nominally significant GWAS candidate genes were detected. Weighted gene co-expression network analysis was performed using the WGCNA R package to construct the resulting network composing eight distinct gene modules. Among them, the turquoise module and the blue module were related to the seed coat color based on gene function enrichment analysis. BnATCAD4, BnF3H, and BnANS, the key enzymes genes of phenylpropane metabolic pathway and flavonoid metabolic pathway were found in turquoise module. Through the characterization of module content and topology, we mined a number of micro effect genes based on known yellow-seed related genes mainly involved in the phenylpropanoid metabolic process, flavonoid metabolic process and proanthocyanidin biosynthetic process. This information of minor loci and candidate genes should be useful in the breeding for yellow-seeded B. napus.

Key words: Brassica napus, yellow-seeded, GWAS, WGCNA

Fig. 1

Manhattan plots of genome-wide association studies for seed coat color The gray horizontal dashed line indicates the Bonferroni threshold; the red horizontal dashed line indicates the FDR threshold."

Fig. 2

Result of gene co-expression network construction A: the cluster of genes and construction of modules; B: correlation analysis between characteristics and modules."

Table 1

GO enrichments of network modules (part)"

模块
Module
基因数目
Number of genes
GO 每个模块显著富集的term
Top term for each module
P
P-value
FDR
Black 68 GO:0004499 N,N-二甲基苯胺单加氧酶活性
N,N-dimethylaniline monooxygenase activity
2.38E-03 1.26E-01
Blue 303 GO:0045551 肉桂醇脱氢酶活性
Cinnamyl-alcohol dehydrogenase activity
1.53E-04 3.37E-02
GO:0052747 芥子醇脱氢酶活性
Sinapyl alcohol dehydrogenase activity
1.53E-04 3.37E-02
GO:0009698 苯丙烷代谢过程
Phenylpropanoid metabolic process
1.40E-06 2.01E-03
GO:0009699 苯丙烷生物合成过程
Phenylpropanoid biosynthetic process
4.27E-06 3.06E-03
GO:0019748 次生代谢过程
Secondary metabolic process
9.92E-05 3.56E-02
Brown 157 GO:0044699 单一的生物过程
Single-organism process
4.78E-05 5.30E-02
Green 82 GO:0008107 α-1,2岩藻糖基转移酶活性
Galactoside 2-alpha-L-fucosyltransferase activity
4.89E-04 4.74E-02
Pink 49 GO:0016886 形成磷酸酯键的连接酶活性
Ligase activity, forming phosphoric ester bonds
4.32E-05 7.04E-03
Red 79 GO:0043170 大分子代谢过程
Macromolecule metabolic process
3.86E-05 2.51E-02
Turquoise 473 GO:0009699 苯丙烷生物合成过程
Phenylpropanoid biosynthetic process
6.06E-07 1.47E-04
GO:0010023 原花青素的生物合成过程
Proanthocyanidin biosynthetic process
1.11E-04 7.92E-03
GO:0009809 木质素的生物合成过程
Lignin biosynthetic process
1.23E-04 8.13E-03
GO:0009698 苯丙烷代谢过程
Phenylpropanoid metabolic process
2.90E-04 1.36E-02
GO:0009808 木质素代谢过程
Lignin metabolic process
3.68E-04 1.65E-02
GO:0009812 类黄酮代谢过程
Flavonoid metabolic process
5.93E-04 2.18E-02
GO:0009813 类黄酮生物合成过程
Flavonoid biosynthetic process
6.35E-04 2.27E-02
Yellow 142 GO:0050619 还原酶活性
Phytochromobilin: ferredoxin oxidoreductase activity
5.33E-03 2.78E-01

Fig. 3

Analysis of KEGG enrichment in turquoise module"

Fig. 4

Gene co-expression network of the turquoise module"

Fig. 5

The local control network closely related to hub genes The highlighted genes involved in flavonoid-proanthocyanidin pathways. A: turquoise module; B: blue module."

[1] Wittkop B, Snowdon R J, Friedt W . Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica, 2009,170:131
doi: 10.1007/s10681-009-9940-5
[2] 张永泰, 李爱民, 蒋金金, 王娟, 王幼平 . 新型黄籽甘蓝型油菜的获得及其遗传规律分析. 中国油料作物学报, 2011,33:302-306
Zhang Y T, Li A M, Jiang J J, Wang J, Wang Y P . Discovery and genetics of new type of yellow seed Brassica napus. Chin J Oil Crop Sci, 2011,33:302-306 (in Chinese with English abstract)
[3] Remington D L, Thornsberry J M, Matsuoka Y, Wilson L M, Whitt S R, Doebley J, Kresovich S, Goodman M M, Buckler E S . Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA, 2001,98:11479-11484
doi: 10.1073/pnas.201394398
[4] Hasan M, Friedt W, Pons-Kuehnemann J, Freitag N M, Link K, Snowdon R J . Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape(Brassica napus ssp. napus).Theor Appl Genet, 2008, 116:1035-1049
[5] Wang J, Xian X H, Xu X F, Qu C M, Lu K, Li J N, Liu L Z . Genome wide association mapping of seed coat color in Brassica napus. J Agric Food Chem, 2017,65:5229-5237
[6] 杨小红, 严建兵, 郑艳萍, 余建明, 李建生 . 植物数量性状关联分析研究进展, 作物学报, 2007,33:523-530
doi: 10.3321/j.issn:0496-3490.2007.04.001
Yang X H, Yan J B, Zheng Y P, Yu J M, Li J S . Reviews of association analysis for quantitative traits in plants. Acta Agron Sin, 2007,33:523-530 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2007.04.001
[7] Zhang B, Horvath S . A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol, 2005,4:17
doi: 10.2202/1544-6115.1128 pmid: 16646834
[8] 刘伟, 李立, 叶桦, 屠伟 . 权重基因共表达网络分析在生物医学中的应用. 生物工程学报, 2017,33:1791-1801
doi: 10.13345/j.cjb.170006
Liu W, Li L, Ye H, Tu W . Weighted gene co-expression network analysis in biomedicine research. Chin J Biotech, 2017,33:1791-1801 (in Chinese with English abstract)
doi: 10.13345/j.cjb.170006
[9] Weiss J N, Karma A, MacLellan W R, Deng M, Rau C D, Rees C N, Wang J, Wisniewski N, Eskin E, Horvath S, Qu Z L, Wang Y B, Lusis A J . “Good enough solutions” and the genetics of complex diseases. Circ Res, 2012,111:493-504
doi: 10.1161/CIRCRESAHA.112.269084
[10] Farber C R . Systems-level analysis of genome-wide association data. G3: Genes Genom Genet, 2013,3:119-129
doi: 10.1534/g3.112.004788 pmid: 23316444
[11] Huang D, Koh C, Feurtado J A, Tsang E W, Cutler A J . MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics, 2013,14:140
[12] Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008,9:559
doi: 10.1186/1471-2105-9-559 pmid: 19114008
[13] 甘蓓, 杨红玉 . 拟南芥中类黄酮代谢途径及其调控. 安徽农业科学, 2008,36:5290-5292
Gan B, Yang H Y . Metabolic approach of flavonoids and its regulation in Arabidopsis thaliana. J Anhui Agric Sci, 2008,36:5290-5292 (in Chinese with English abstract)
[14] Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I . TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005,17:2966-2980
[15] 黄杨岳, 孔祥祯, 甄宗雷, 刘嘉 . 全基因组关联研究中的多重校正方法比较. 心理科学进展, 2013,21:1874-1882
doi: 10.3724/SP.J.1042.2013.01874
Huang Y Y, Kong X Z, Zhen Z L, Liu J . The comparison of multiple testing corrections methods in genome-wide association studies. Adv Psycholog Sci, 2013,21:1874-1882
doi: 10.3724/SP.J.1042.2013.01874
[16] Sato S, Uemoto Y, Kikuchi T, Egawa S, Kohira K, Saito S, Sakuma H, Miyashita S, Arata S, Kojima T, Suzuki K . SNP- and haplotype-based genome-wide association studies for growth, carcass, and meat quality traits in a Duroc multigenerational population. BMC Genet, 2016,17:60
[17] Zhang W, Li J, Guo Y, Zhang L, Xu L, Gao X, Zhu B, Gao H, Ni H, Chen Y . Multi-strategy genome-wide association studies identify the DCAF16-NCAPG region as a susceptibility locus for average daily gain in cattle. Sci Rep, 2016,6:38073
doi: 10.1038/srep38073
[18] Marshall C R, Howrigan D P, Merico D, Thiruvahindrapuram B, Wu W, Greer D S, Antaki D, Shetty A, Holmans P A, Pinto D, Gujral M, Brandler W M, Malhotra D, Wang Z, Fajarado K V F, Maile M S, Ripke S, Agartz I, Albus M, Alexander M, Amin F, Atkins J, Bacanu S A, Belliveau R A, Bergen S E, Bertalan M, Bevilacqua E, Bigdeli T B, Black D W, Bruggeman R, Buccola N G, Buckner R L, Bulik-Sullivan B, Byerley W, Cahn W, Cai G, Cairns M J, Campion D, Cantor R M, Carr V J, Carrera N, Catts S V, Chambert K D, Cheng W, Cloninger C R, Cohen D, Cormican P, Craddock N, Crespo-Facorro B, Crowley J J, Curtis D, Davidson M, Davis K L, Degenhardt F, Del Favero J, DeLisi L E, Dikeos D, Dinan T, Djurovic S, Donohoe G, Drapeau E, Duan J, Dudbridge F, Eichhammer P, Eriksson J, Escott-Price V, Essioux L, Fanous A H, Farh K H, Farrell M S, Frank J, Franke L, Freedman R, Freimer N B, Friedman J I, Forstner A J, Fromer M, Genovese G, Georgieva L, Gershon E S, Giegling I, Giusti-Rodríguez P, Godard S, Goldstein J I, Gratten J, de Haan L, Hamshere M L, Hansen M, Hansen T, Haroutunian V, Hartmann A M, Henskens F A, Herms S, Hirschhorn J N, Hoffmann P, Hofman A, Huang H, Ikeda M, Joa I, Kähler A K, Kahn R S, Kalaydjieva L, Karjalainen J, Kavanagh D, Keller M C, Kelly B J, Kennedy J L, Kim Y, Knowles J A, Konte B, Laurent C, Lee P, Lee S H, Legge S E, Lerer B, Levy D L, Liang K Y, Lieberman J, Lönnqvist J, Loughland C M, Magnusson P K E, Maher B S, Maier W, Mallet J, Mattheisen M, Mattingsdal M, McCarley R W, McDonald C, McIntosh A M, Meier S, Meijer C J, Melle I, Mesholam-Gately R I, Metspalu A, Michie P T, Milani L, Milanova V, Mokrab Y, Morris D W, Müller-Myhsok B, Murphy K C, Murray R M, Myin-Germeys I, Nenadic I, Nertney D A, Nestadt G, Nicodemus KK, Nisenbaum L, Nordin A, O’Callaghan E, O’Dushlaine C, Oh S Y, Olincy A, Olsen L, O'Neill F A, Van Os J, Pantelis C, Papadimitriou G N, Parkhomenko E, Pato M T, Paunio T, Perkins D O, Pers T H, Pietiläinen O, Pimm J, Pocklington A J, Powell J, Price A, Pulver A E, Purcell S M, Quested D, Rasmussen H B, Reichenberg A, Reimers M A, Richards A L, Roffman J L, Roussos P, Ruderfer D M, Salomaa V, Sanders A R, Savitz A, Schall U, Schulze T G, Schwab S G, Scolnick E M, Scott R J, Seidman L J, Shi J, Silverman J M, Smoller J W, Söderman E, Spencer C C A, Stahl E A, Strengman E, Strohmaier J, Stroup T S, Suvisaari J, Svrakic D M, Szatkiewicz J P, Thirumalai S, Tooney P A, Veijola J, Visscher P M, Waddington J, Walsh D, Webb B T, Weiser M, Wildenauer D B, Williams N M, Williams S, Witt S H, Wolen A R, Wormley B K, Wray N R, Wu J Q, Zai C C, Adolfsson R, Andreassen O A, Blackwood D H R, Bramon E, Buxbaum J D, Cichon S, Collier D A, Corvin A, Daly M J, Darvasi A, Domenici E, Esko T, Gejman P V, Gill M, Gurling H, Hultman C M, Iwata N, Jablensky A V, Jönsson E G, Kendler K S, Kirov G, Knight J, Levinson D F, Li Q S, McCarroll S A, McQuillin A, Moran J L, Mowry B J, Nöthen M M, Ophoff R A, Owen M J, Palotie A, Pato C N, Petryshen T L, Posthuma D, Rietschel M, Riley B P, Rujescu D, Sklar P, St Clair D, Walters J T R, Werge T, Sullivan P F, O’Donovan M C, Scherer S W, Neale B M, Sebat J . Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet, 2017,49:27-35
doi: 10.1038/ng.3725
[19] He J, Meng S, Zhao T, Xing G, Yang S, Li Y, Guan R, Lu J, Wang Y, Xia Q, Yang B, Gai J . An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theor Appl Genet, 2017,130:2327-2343
doi: 10.1007/s00122-017-2962-9
[20] 叶小利, 李加纳, 唐章林, 梁颖, 谌利 . 甘蓝型油菜种皮色泽及相关性状的研究. 作物学报, 2001,27:550-556
doi: 10.3321/j.issn:0496-3490.2001.05.002
Ye X L, Li J N, Tang Z L, Liang Y, Chen L . Study on seed coat color and related characters of Brassica napus. Acta Agron Sin, 2001,27:550-556 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2001.05.002
[21] Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Jin M Y, Ma A F, Yan X Y, Zhang Z S, Li J N . Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 2007,50:840-854
[22] Chai Y R, Lei B, Huang H L, Li J N, Yin J M, Tang Z L, Wang R, Chen L . TRANSPARENT TESTA12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genom, 2009,281:109-123
[23] Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty P B, Li G . Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol, 2009,69:553-563
[24] Stein A, Wittkop B, Liu L, Obermeier C, Friedt W, Snowdon R J . Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breed, 2013,132:382-389
[25] Padmaja L K, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K . Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea(AABB). Theor Appl Genet, 2014,127:339-347
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[3] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[4] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[5] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[6] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[7] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[8] ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137.
[9] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[10] MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238.
[11] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[12] CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123.
[13] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[14] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[15] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!