Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (3): 546-555.doi: 10.3724/SP.J.1006.2021.02033

• RESEARCH NOTES • Previous Articles     Next Articles

Dynamics in above-ground biomass accumulation after transplanting and its characteristic analysis in Yongyou japonica/indica hybrids

WEI Huan-He1, ZHANG Xu-Bin1, GE Jia-Lin1, MENG Tian-Yao2, LU Yu1, LI Xin-Yue1, TAO Yuan1, DING En-Hao1, CHEN Ying-Long1, DAI Qi-Gen1,*()   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Rice Industry Engineering Technology Research Institute, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Joint International Research Laboratory of Agriculture and Agro-product Safety, Ministry of Education / Institute of Agricultural Science and Technological Development, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2020-05-12 Accepted:2020-10-15 Online:2021-03-12 Published:2020-11-02
  • Contact: DAI Qi-Gen E-mail:qgdai@yzu.edu.cn
  • Supported by:
    This study was supported by the Key Research and Development Program of Jiangsu Province(BE2016370);Key Research and Development Program of Jiangsu Province(BE2019343);National Natural Science Foundation of China(31901448);Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB210004);Priority Academic Program Development of Jiangsu Higher Education Institutions

Abstract:

In this study, two japonica/indica hybrids (JIH) (Yongyou 1540 and Yongyou 4540 with the total growth duration ranged from 169 to 171 days) of Yongyou series, two japonica conventional (JC) varieties (Zhendao 13 and Wuyunjing 30 with the total growth duration ranged from 159 to 160 days), and two indica hybrids (IH) varieties (Liangyoupeijiu and Yangliangyou 6 with the total growth duration ranged from 140 to 141 days) were grown to compare the characteristics and differences of above-ground biomass accumulation after transplanting among three variety types in 2015 and 2016. Grain yield of JIH was averaged 12.4 t hm -2 for two years, and 7.8% and 23.3% higher at P < 0.05 than that of JC and IH, respectively. Compared with JI and IH, JIH had lower panicle per m 2, filled-grain percentage, and 1000-grain weight, while more spikelets per panicle. JIH also had higher total biomass weight at maturity stage, while lower harvest index. The biomass weight in stem and leaf and their ratio at maturity stage were the highest in JIH and lowest in IH. JIH had the highest panicle weight while IH had the lowest panicle weight, and the opposite trend was observed in the ratio of panicle weight to the total biomass weight at maturity among three variety types. The above-ground biomass accumulation dynamics after transplanting of JIH, JC, and IH were all well fitted by Gompertz equation. The above-ground biomass accumulation rate of different variety types showed a single-peak curve of increasing trend and then a decreasing trend after transplanting. The maximum biomass accumulation rate of JIH, JC, and IH was observed at 61-62, 64-66, and 63-64 days after transplanting, respectively. The maximum biomass accumulation rate of JIH was 17.7% and 17.3% higher than that of JC and IH, respectively. Compared with JC and IH, JIH had higher mean biomass accumulation rate in the early, middle, and late stages; and JIH had lower duration days in the early and middle stages and higher duration days in the late stages. Compared with JC and IH, JIH had higher biomass accumulation in the early, middle, and late stages. In this study, a Gompertz model was established that conformed to the dynamic characteristics of above-ground biomass accumulation after transplanting in different variety types. Compared with JC and IH, JIH had superior biomass accumulation in the early, middle, and late stages; the higher biomass accumulation in the early and middle stages were due to the higher biomass accumulation rate, and higher biomass accumulation in the late stage was due to its higher biomass accumulation period and accumulation rate.

Key words: Yongyou series, japonica/indica hybrids, above-ground biomass accumulation, Gompertz equation

Table 1

Grain yield, total biomass weight, and harvest index of tested varieties"

年份
Year
品种类型
Variety type
品种
Variety
产量
Grain yield
(t hm-2)
穗数
Number of panicles
(×104 hm-2)
每穗粒数
Spikelets
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
2015 籼粳杂交稻
JIH
甬优1540 Yongyou 1540 12.4 187 349 87.6 21.9
甬优4540 Yongyou 4540 12.4 183 357 88.1 21.5
平均值 Mean 12.4 a 185 c 353 a 87.9 b 21.7 b
常规粳稻
JC
镇稻13号 Zhendao 13 11.5 303 169 89.2 25.1
武运粳30 Wuyunjing 30 11.4 294 176 90.1 24.8
平均值 Mean 11.5 b 299 a 173 c 89.7 a 25.0 ab
杂交籼稻
IH
两优培九 Liangyoupeijiu 10.1 226 204 89.3 25.1
扬两优6号 Yangliangyou 6 10.0 231 198 88.7 26.3
平均值 Mean 10.1 c 229 b 201 b 89.0 ab 25.7 a
2016 籼粳杂交稻
JIH
甬优1540 Yongyou 1540 12.5 189 351 87.2 22.2
甬优4540 Yongyou 4540 12.3 192 348 87.8 21.8
平均值 Mean 12.4 a 191 c 350 a 87.5 c 22.0 b
常规粳稻
JC
镇稻13号 Zhendao 13 11.6 287 172 89.6 25.2
武运粳30 Wuyunjing 30 11.4 296 174 89.8 24.9
平均值 Mean 11.5 b 292 a 173 c 89.7 a 25.1 ab
杂交籼稻
IH
两优培九 Liangyoupeijiu 10.1 235 197 88.7 25.3
扬两优6号 Yangliangyou 6 10.0 244 191 89.1 26.2
平均值 Mean 10.1 c 240 b 194 b 88.9 b 25.8 a

Table 2

Grain yield per day, total biomass weight, and harvest index of tested varieties"

年份
Year
品种类型
Variety type
品种
Variety
日产量
Grain yield per day
(kg hm-2 d-1)
成熟期干物重
Total biomass weight at maturity (t hm-2)
收获指数
Harvest index
2015 籼粳杂交稻
JIH
甬优1540 Yongyou 1540 72.9 22.1 0.484
甬优4540 Yongyou 4540 72.5 22.2 0.481
平均值 Mean 72.7 a 22.2 a 0.483 b
常规粳稻
JC
镇稻13号 Zhendao 13 71.9 20.1 0.493
武运粳30 Wuyunjing 30 71.3 19.7 0.497
平均值 Mean 71.6 a 19.9 b 0.495 ab
杂交籼稻
IH
两优培九 Liangyoupeijiu 72.1 17.3 0.502
扬两优6号 Yangliangyou 6 71.6 17.0 0.505
平均值 Mean 71.9 a 17.2 c 0.504 a
2016 籼粳杂交稻
JIH
甬优1540 Yongyou 1540 74.0 22.3 0.482
甬优4540 Yongyou 4540 72.4 21.7 0.487
平均值 Mean 73.2 a 22.0 a 0.485 b
常规粳稻
JC
镇稻13号 Zhendao 13 73.0 20.2 0.495
武运粳30 Wuyunjing 30 71.7 20.0 0.491
平均值 Mean 72.3 a 20.1 b 0.493 ab
杂交籼稻
IH
两优培九 Liangyoupeijiu 71.6 17.2 0.504
扬两优6号 Yangliangyou 6 70.9 17.2 0.501
平均值 Mean 71.3 a 17.2 c 0.503 a

Table 3

Biomass weight of rice organs and their ratios of tested varieties at maturity stage"

年份
Year
品种类型
Variety type
品种
Variety
成熟期器官干物重
Biomass weight of rice
organs at maturity stage (t hm-2)
成熟期各器官干物重所占比例
Ratio of biomass weight of
rice organs at maturity stage (%)
茎鞘
stem

Leaf

Panicle
茎鞘
Stem

Leaf

Panicle
2015 籼粳杂交稻
JIH
甬优1540 Yongyou 1540 7.2 3.2 11.7 32.4 14.7 52.9
甬优4540 Yongyou 4540 7.3 3.2 11.7 33.1 14.2 52.7
平均值 Mean 7.3 a 3.2 a 11.7 a 32.8 a 14.4 a 52.8 c
常规粳稻
JC
镇稻13号 Zhendao 13 6.5 2.6 10.9 32.3 13.2 54.5
武运粳30 Wuyunjing 30 6.4 2.5 10.8 32.7 12.5 54.8
平均值 Mean 6.5 b 2.6 b 10.8 b 32.5 a 12.9 b 54.7 b
杂交籼稻
IH
两优培九 Liangyoupeijiu 5.6 2.1 9.8 32.0 11.9 56.1
扬两优6号 Yangliangyou 6 5.4 2.0 9.7 31.6 11.5 56.9
平均值 Mean 5.5 c 2.0 c 9.7 c 31.8 b 11.7 c 56.5 a
2016 籼粳杂交稻
JIH
甬优1540 Yongyou 1540 7.2 3.3 11.8 32.5 14.6 52.9
甬优4540 Yongyou 4540 7.1 3.1 11.5 32.9 14.1 53.0
平均值 Mean 7.2 a 3.2 a 11.7 a 32.7 a 14.3 a 53.0 b
常规粳稻
JC
镇稻13号 Zhendao 13 6.5 2.7 11.0 32.1 13.6 54.3
武运粳30 Wuyunjing 30 6.5 2.5 11.0 32.3 12.7 55.0
平均值 Mean 6.5 b 2.6 b 11.0 b 32.2 a 13.2 b 54.7 ab
杂交籼稻
IH
两优培九 Liangyoupeijiu 5.4 2.0 9.8 31.3 11.8 56.9
扬两优6号 Yangliangyou 6 5.3 2.1 9.8 30.8 12.0 57.2
平均值 Mean 5.3 c 2.0 c 9.8 c 31.1 a 11.9 c 57.1 a

Fig. 1

Dynamics biomass accumulation of tested varieties after transplanting in 2015"

Table 4

Simulation equations of above-ground biomass accumulation of Yongyou 1540 after transplanting in 2015"

编号
Number
模拟方程
Simulation equation
参数 Parameter 相关系数
Correlation coefficient
a b c d
1 $w=\text{a}{{\text{e}}^{-{{\text{e}}^{b-\text{c}t}}}}$ 23.81 1.94 0.0316 0.998
2 w=a+bt+ct2+dt3 -0.24 -0.027 0.004 -0.00002 0.997
3 $w=\frac{a}{{{\left( 1+{{\text{e}}^{b-ct}} \right)}^{\frac{1}{d}}}}$ 23.42 0.37 0.035 0.16 0.996
4 $w=\frac{ab+c{{t}^{d}}}{b+{{t}^{d}}}$ -0.44 54,222.0 27.94 2.48 0.995
5 $w=\frac{a}{1+b{{\text{e}}^{-ct}}}$ 22.23 44.63 0.053 0.995
6 $w=a\text{e}{{\frac{-\left( t-b \right)}{2{{c}^{2}}}}^{2}}$ 22.19 133.62 50.61 0.994

Table 5

Simulation equations of above-ground biomass accumulation of Zhendao 13 after transplanting in 2015"

编号
Number
模拟方程
Simulation equation
参数 Parameter 相关系数
Correlation coefficient
a b c d
1 $w=ae^{-e^{b-ct}}$ 20.56 2.00 0.0302 0.998
2 $w=\frac{a}{{{\left( 1+{{\text{e}}^{b-ct}} \right)}^{\frac{1}{d}}}}$ 20.26 -0.025 0.032 0.088 0.998
3 w=a+b cos(ct+d) 9.02 9.10 0.024 2.95 0.997
4 w=a+bt+ct2+dt3 -0.16 -0.066 0.004 -0.00002 0.997
5 $w=\frac{ab+c{{t}^{d}}}{b+{{t}^{d}}}$ -0.31 74,337.0 25.52 2.48 0.997
6 $w=\frac{a}{1+be^{-ct}}$ 18.56 56.05 0.054 0.996
7 $w=a\text{e}{{\frac{-\left( t-b \right)}{2{{c}^{2}}}}^{2}}$. 17.99 131.11 46.97 0.996

Table 6

Stimulation equations of above-ground biomass accumulation of the tested varieties after transplanting in 2015"

品种类型
Variety type
品种
Variety
方程参数 Parameter 拟合方程
Stimulated equation
a b c
籼粳杂交稻
JIH
甬优1540 Yongyou 1540 23.81 1.94 0.0316 W=23.81e-exp(1.94-0.0316t), R2=0.996
甬优4540 Yongyou 4540 23.66 1.91 0.0311 W=23.66e-exp(1.91-0.0311t), R2=0.997
常规粳稻 镇稻13号 Zhendao 13 20.56 2.00 0.0302 W=20.56e-exp(2.00-0.0302t), R2=0.996
JC 武运粳30 Wuyunjing 30 20.63 2.02 0.0312 W=20.63e-exp(2.02-0.0312t), R2=0.997
杂交籼稻 两优培九 Liangyoupeijiu 20.61 1.96 0.0307 W=20.61e-exp(1.96-0.0307t), R2=0.995
IH 扬两优6号 Yangliangyou 6 20.36 1.97 0.0312 W=20.36e-exp(1.97-0.0312t), R2=0.997

Fig. 2

Relationship between simulated and measured values of above-ground biomass accumulation after transplanting in the tested varieties"

Fig. 3

Dynamics in above-ground biomass accumulation rate of tested varieties after transplanting in 2015"

Table 7

Characteristics of above-ground biomass accumulation of tested varieties in the early, middle and late stages after transplanting in 2015"

品种类型
Variety
type
品种
Variety
渐增期 Early stage 快增期 Middle stage 缓增期 Late stage
天数
Days
(d)
平均积
累速率
ARBA
(t hm-2 d-1)
干物质
积累量
BAA
(t hm-2)
天数
Days
(d)
平均积
累速率
ARBA
(t hm-2 d-1)
干物质
积累量
BAA
(t hm-2)
天数
Days
(d)
平均积
累速率
ARBA
(t hm-2 d-1)
干物质
积累量
BAA
(t hm-2)
籼粳杂交稻
JIH
甬优1540 Yongyou 1540 31.0 0.056 1.6 60.8 0.238 14.5 78.2 0.074 5.8
甬优4540 Yongyou 4540 30.5 0.056 1.7 61.8 0.233 14.4 78.7 0.074 5.8
平均值 Mean 30.7 c 0.056 a 1.7 a 61.3 a 0.236 a 14.5 a 78.4 a 0.074 a 5.8 a
常规粳稻
JC
镇稻13号 Zhendao 13 34.4 0.043 1.5 63.7 0.197 12.5 61.9 0.067 4.2
武运粳30 Wuyunjing 30 33.9 0.044 1.4 61.6 0.204 12.6 64.4 0.067 4.3
平均值 Mean 34.2 a 0.043 c 1.5 a 62.6 a 0.200 b 12.5 b 63.2 b 0.067 b 4.2 b
杂交籼稻
IH
两优培九 Liangyoupeijiu 32.5 0.046 1.4 62.6 0.200 12.6 44.8 0.073 3.3
扬两优6号 Yangliangyou 6 32.3 0.046 1.5 61.6 0.201 12.4 46.0 0.071 3.3
平均值 Mean 32.4 b 0.046 b 1.5 a 62.1 a 0.201 b 12.5 b 45.4 c 0.072 a 3.3 c
[1] 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海. 水稻甬优12产量13.5 t hm-2以上超高产群体的生育特征 . 作物学报, 2014,40:2149-2159.
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H. Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13.5 t ha-1) . Acta Agron Sin, 2014,40:2149-2159 (in Chinese with English abstract).
[2] 胡雅杰, 朱大伟, 钱海军, 曹伟伟, 邢志鹏, 张洪程, 周有炎, 陈厚存, 汪洪洋, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 籼粳杂交稻甬优2640钵苗机插超高产群体若干特征探讨. 作物学报, 2014,40:2016-2027.
Hu Y J, Zhu D W, Qian H J, Cao W W, Xing Z P, Zhang H C, Wei H Y, Zhou Y Y, Chen H C, Wang H Y, Dai Q G, Huo Z Y, Xu K, Guo B W. Some characteristics of mechanically transplanted pot seedlings in super high yielding population of indica-japonica hybrid rice Yongyou 2640. Acta Agron Sin, 2014,40:2016-2027 (in Chinese with English abstract).
[3] 吴文革, 习敏, 许有尊, 陈刚, 周永进, 张洪程, 戴其根, 马荣荣, 王晓燕, 杨飞, 吴晓鹏, 周陶竹, 叶为发, 胡润, 康启中. 籼粳交组合甬优1540钵育机插超高产的产量构成及其群体光合特征. 扬州大学学报(农业与生命科学版), 2017,38(1):73-80.
Wu W G, Xi M, Xu Y Z, Chen G, Zhou Y J, Zhang H C, Dai Q G, Ma R R, Wang X Y, Yang F, Wu X P, Zhou T Z, Ye W F, Hu R, Kang Q Z. Population photosynthetic characteristics and yield formation of the mechanically transplanted pot seedlings in hybrid rice variety Yongyou 1540 with super high-yield. J Yangzhou Univ (Agric Life Sci Edn), 2017,38(1):73-80 (in Chinese with English abstract).
[4] 曾研华, 张玉屏, 王亚梁, 向镜, 陈惠哲, 朱德峰. 籼粳杂交稻枝粳和颖花形成的播期效应. 中国农业科学, 2015,48:1300-1310.
Zeng Y H, Zhang Y P, Wang Y L, Xiang J, Chen H Z, Zhu D F. Effects of sowing date on formation of branches and spikelets in indica-japonica hybrid rice. Sci Agric Sin, 2015,48:1300-1310 (in Chinese with English abstract).
[5] 何爱斌, 于朋超, 陈乾, 姜广磊, 王慰亲, 聂立孝. 甬优4949和超优1000在华中地区再生稻种植的氮肥运筹研究. 中国水稻科学, 2019,33:47-56.
He A B, Yu P C, Chen Q, Jiang G L, Wang W Q, Nie L X. Optimizing the nitrogen management for Yongyou 4949 and Chaoyou 1000 in ratoon rice systems in central China. Chin J Rice Sci, 2019,33:47-56 (in Chinese with English abstract).
[6] 谢振兴, 张居念, 林祁, 刘锋, 张初长, 卓芳梅, 姜照伟, 卓传营. 植物生长调节剂对再生稻头季抗倒伏能力和两季产量的影响. 中国水稻科学, 2019,33:158-166.
Xie Z X, Zhang J N, Lin Q, Liu F, Zhang C Z, Zhuo F M, Jiang Z W, Zhuo C Y. Effect of plant growth regulators on rice lodging resistance and grain production of main-crop and ratooning rice. Chin J Rice Sci, 2019,33:158-166 (in Chinese with English abstract).
[7] Wei H H, Meng T Y, Li C, Xu K, Huo Z Y, Wei H Y, Guo B W, Zhang H C, Dai Q G. Comparisons of grain yield and nutrient accumulation and translocation in high-yieldingjaponica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Res, 2017,204:101-109.
[8] Huang L Y, Yang D S, Li X X, Peng S B, Wang F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Res, 2019,223:49-58.
[9] 姜元华, 许俊伟, 赵可, 韦还和, 孙建军, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 甬优系列籼粳杂交稻根系形态与生理特征. 作物学报, 2015,41:89-99.
Jiang Y H, Xu J W, Zhao K, Wei H H, Sun J J, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Root system morphological and physiological characteristics of indica- japonica hybrid rice of Yongyou series. Acta Agron Sin, 2015,41:89-99 (in Chinese with English abstract).
[10] Wei H H, Yang Y L, Shao X Y, Shi T Y, Meng T Y, Lu Y, Tao Y, Li X Y, Ding E H, Chen Y L, Dai Q G. Higher leaf area through leaf width and lower leaf angle were the primary morphological traits for yield advantage ofjaponica/indica hybrids. J Inter Agric, 2020,19:483-494.
[11] 孟天瑶, 李晓芸, 李超, 韦还和, 史天宇, 马荣荣, 王晓燕, 杨筠文, 戴其根, 张洪程. 甬优系列籼粳杂交稻中熟高产品系的株型特征. 中国水稻科学, 2016,30:170-180.
Meng T Y, Li X Y, Li C, Wei H H, Shi T Y, Ma R R, Wang X Y, Yang J W, Dai Q G, Zhang H C. Plant-type characteristics of high-yielding lines of Yongyou japonica/indica hybrid rice with medium maturity. Chin J Rice Sci, 2016,30:170-180 (in Chinese with English abstract).
[12] Kumar R, Sarawgi A K, Ramos C, Amarante S T, Ismail A M, Wade L J. Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Res, 2006,96:455-465.
[13] Mao L L, Zhang L Z, Sun X Z, van der Werf W, Evers J B, Zhao X H, Zhang S P, Song X L, Li Z H. Use of the beta growth function to quantitatively characterize the effects of plant density and a growth regulator on growth and biomass partitioning in cotton. Field Crops Res, 2018,224:28-36.
[14] 纪洪亭, 冯跃华, 何腾兵, 潘剑, 范乐乐, 李云, 武彪, 肖铭, 梁显林. 超级杂交稻群体干物质和养分积累动态模型与特征分析. 中国农业科学, 2012,45:3709-3720.
Ji H T, Feng Y H, He T B, Pan J, Fan L L, Li Y, Wu B, Xiao M, Liang X L. A dynamic model of dry matter and nutrient accumulation in super hybrid rice and analysis of its characteristics. Sci Agric Sin, 2012,45:3709-3720 (in Chinese with English abstract).
[15] 肖强, 闫连波, 朱欣雨, 张怀文, 曹兵, 倪小会, 李丽霞, 杨俊刚, 黄德明, 衣文平. 夏玉米植株干物质、氮磷钾养分积累速度和时间的动态分析. 植物营养与肥料学报, 2014,20:606-612.
doi: 10.11674/zwyf.2014.0311
Xiao Q, Yan L B, Zhu X Y, Zhang H W, Cao B, Ni X H, Li L X, Yang J G, Huang D M, Yi W P. Dynamic analysis of dry matter and NPK accumulation with time in summer maize. J Plant Nutr Fert, 2014,20:606-612 (in Chinese with English abstract).
[16] Yang D Q, Luo Y L, Ni Y L, Yin Y P, Yang W B, Peng D L, Cui Z Y, Wang Z L. Effects of exogenous ABA application on post-anthesis dry matter redistribution and grain starch accumulation of winter wheat with different staygreen characteristics. Crop J, 2014,2:144-153.
[17] 韦还和, 孟天瑶, 李超, 张洪程, 史天宇, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 甬优籼粳杂交稻花后干物质积累模型与特征分析. 作物学报, 2016,42:265-277.
Wei H H, Meng T Y, Li C, Zhang H C, Shi T Y, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Dynamic model and its characteristics analysis for dry matter production after heading of indica/japonica hybrid rice of Yongyou series. Acta Agron Sin, 2016,42:265-277 (in Chinese with English abstract).
[18] 何连华, 陈多, 张弛, 田青兰, 吴振元, 李秋萍, 钟晓媛, 邓飞, 胡剑锋, 凌俊英, 任万军. 机插栽培籼杂交稻的日产量及与株型的关系. 中国农业科学, 2019,52:981-996.
He L H, Chen D, Zhang C, Tian Q L, Wu Z Y, Li Q P, Zhong X Y, Deng F, Hu J F, Ling J Y, Ren W J. The daily yield of medium hybrid in machine transplanting and its relationship with plant type. Sci Agric Sin, 2019,52:981-996 (in Chinese with English abstract).
[19] 孟天瑶, 许俊伟, 邵子彬, 葛梦婕, 张洪程, 魏海燕, 戴其根, 霍中洋, 许轲, 郭保卫, 荆培培. 甬优系列籼粳杂交稻根氮肥群体最高生产力的优势及形成特征. 作物学报, 2015,41:1711-1725.
Meng T Y, Xu J W, Shao Z B, Ge M J, Zhang H C, Wei H Y, Dai Q G, Huo Z Y, Xu K, Guo B W, Jing P P. Advantages and their formation characteristics of the highest population productivity of nitrogen fertilization in japonica/indica hybrid rice of Yongyou series. Acta Agron Sin, 2015,41:1711-1725 (in Chinese with English abstract).
[20] Wei H H, Li C, Xing Z P, Wang W T, Dai Q G, Zhou G S, Wang L, Xu K, Huo Z Y, Guo B W, Wei H Y, Zhang H C. Suitable growing zone and yield potential for late-maturity type of Yongyoujaponica/indica hybrid rice in the lower reaches of Yangtze River, China. J Inter Agric, 2016,15:50-62.
[21] 陈露, 张伟杨, 王志琴, 张耗, 刘立军, 杨建昌. 施氮量对江苏不同年代中粳稻品种产量与群体质量的影响. 作物学报, 2014,40:1412-1423.
Chen L, Zhang W Y, Wang Z Q, Zhang H, Liu L J, Yang J C. Effects of nitrogen application rate on grain yield and population quality of mid-season japonica rice cultivars at different decades in Jiangsu province. Acta Agron Sin, 2014,40:1412-1423 (in Chinese with English abstract).
[22] Tian Z W, Jing Q, Dai T B, Jiang D, Cao W X. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China. Field Crops Res, 2011,124:417-425.
doi: 10.1016/j.fcr.2011.07.012
[23] Qian C R, Yu Y, Gong X J, Jiang Y B, Zhao Y, Yang Z L, Hao Y B, Li L, Song Z W, Zhang W J. Response of grain yield to plant density and nitrogen rate in spring maize hybrids released from 1970 to 2010 in Northeast China. Crop J, 2016,4:459-467.
[24] 刘琦, 胡剑锋, 周伟, 杨志平, 陈勇, 任万军. 四川盆地不同类型水稻品种机插栽培的干物质生产及产量特性分析. 中国水稻科学, 2019,33:35-46.
Liu Q, Hu J F, Zhou W, Yang Z P, Chen Y, Ren W J. Dry matter production and yield characteristics of machine-transplanted rice varieties falling into different types in Sichuan Basin. Chin J Rice Sci, 2019,33:35-46 (in Chinese with English abstract).
[25] 董桂春, 李进前, 于小凤, 周娟, 田昊, 张燕, 张传胜, 张岳芳. 不同库容量常规籼稻品种物质生产与分配的基本特征. 中国水稻科学, 2009,23:639-644.
Dong G C, Li J Q, Yu X F, Zhou J, Tian H, Zhang Y, Zhang C S, Zhang Y F. Characteristics of dry matter accumulation and distribution in conventional indica rice cultivars with different sink potentials. Chin J Rice Sci, 2009,23:639-644 (in Chinese with English abstract).
[26] 龚金龙, 邢志鹏, 胡雅杰, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 籼、粳超级稻光合物质生产与转运特征的差异. 作物学报, 2014,40:497-510.
Gong J L, Xing Z P, Hu Y J, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Difference of characteristics of photosynthesis, matter production and translocation between indica and japonica super rice. Acta Agron Sin, 2014,40:497-510 (in Chinese with English abstract).
[27] Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res, 2011,123:170-182.
[28] Shi W J, Xiao G, Struik P C, Jagadish C, Yin X Y. Quantifying source-sink relationships of rice under high night-time temperature combined with two nitrogen levels. Field Crops Res, 2017,202:36-46.
[29] 李艳大, 汤亮, 陈青春, 张玉屏, 曹卫星, 朱艳. 水稻地上部干物质积累动态的定量模拟. 应用生态学报, 2010,21:1504-1510.
Li Y D, Tang L, Chen Q C, Zhang Y P, Cao W X, Zhu Y. Dry matter accumulation in rice aboveground part: quantitative simulation. Chin J Appl Ecol, 2010,21:1504-1510 (in Chinese with English abstract).
[30] 苏李君, 刘云鹤, 王全九. 基于有效积温的中国水稻生长模型的构建. 农业工程学报, 2020,3(1):162-174.
Su L J, Liu Y H, Wang Q J. Rice growth model in China based on growing degree days. Trans CSAE, 2020,3(1):162-174 (in Chinese with English abstract).
[31] 何军, 崔远来, 张大鹏, 郑传举, 王建鹏, 王建漳, 史伟达. 不同水肥耦合条件下水稻干物质积累与分配特征. 灌溉排水学报, 2010,29(5):1-5.
He J, Cui Y L, Zhang D P, Zheng C J, Wang J P, Wang J Z, Shi W D. Characteristics of rice dry matter accumulation and distribution under different water and fertilizer treatment. J Irrig Drain, 2010,29(5):1-5 (in Chinese with English abstract).
[32] 白光志, 刘寿东, 余焰文, 杨再强, 殷建敏. 花期低温对晚稻干物质积累及分配的影响. 中国农业气象, 2016,37:206-212.
Bai G Z, Liu S D, Yu Y W, Yang Z Q, Yin J M. Effect of low temperature at flowering stage on late rice dry matter accumulation and distribution. Chin J Agrometeorol, 2016,37:206-212 (in Chinese with English abstract).
[33] 纪洪亭, 冯跃华, 何腾兵, 李云, 武彪, 王小燕. 两个超级杂交水稻品种物质生产的特性. 作物学报, 2013,39:2238-2246.
Ji H T, Feng Y H, He T B, Li Y, Wu B, Wang X Y. Dynamic characteristics of matter production in two super hybrid rice cultivars. Acta Agron Sin, 2013,39:2238-2246 (in Chinese with English abstract).
[1] Lei ZHOU,Qiu-Yuan LIU,Jin-Yu TIAN,Meng-Hua ZHU,Shuang CHENG,Yang CHE,Zhi-Jie WANG,Zhi-Peng XING,Ya-Jie HU,Guo-Dong LIU,Hai-Yan WEI,Hong-Cheng ZHANG. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series [J]. Acta Agronomica Sinica, 2020, 46(5): 772-786.
[2] Tian-Yao MENG,Jia-Lin GE,Xu-Bin ZHANG,Huan-He WEI,Yu LU,Xin-Yue LI,Yuan TAO,En-Hao DING,Gui-Sheng ZHOU,Qi-Gen DAI. A dynamic model and its characteristics for nitrogen accumulation after transplanting in medium-maturity types of Yongyou japonica/indica hybrids [J]. Acta Agronomica Sinica, 2020, 46(5): 798-806.
[3] WEI Huan-He,MENG Tian-Yao,LI Chao,ZHANG Hong-Cheng,SHI Tian-Yu,MA Rong-Rong,WANG Xiao-Yan,YANG Jun-Wen,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,GUO Bao-Wei. A Dynamic Model and Its Characteristics Analysis for Nitrogen Accumulation after Heading in Yongyou 538 [J]. Acta Agron Sin, 2016, 42(04): 540-550.
[4] WEI Huan-He,MENG Tian-Yao,LI Chao,ZHANG Hong-Cheng,SHI Tian-Yu,MA Rong-Rong,WANG Xiao-Yan,YANG Jun-Wen,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,GUO Bao-Wei. Dynamic Model and Its Characteristics Analysis for Dry Matter Production after Heading of Indica/JaponicaHybrid Rice of Yongyou Series [J]. Acta Agron Sin, 2016, 42(02): 265-277.
[5] MENG Tian-Yao,XU Jun-Wei,SHAO Zi-Bin,GE Meng-Jie2,ZHANG Hong-Cheng,WEI Hai-Yan,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,GUO Bao-Wei,JING Pei-Pei. Advantages and Their Formation Characteristics of the Highest Population Productivity of Nitrogen Fertilization in Japonica/Indica Hybrid Rice of Yongyou Series [J]. Acta Agron Sin, 2015, 41(11): 1711-1725.
[6] JIANG Yuan-Hua,XU Ke,ZHAO Ke,SUN Jian-Jun,WEI Huan-He,XU Jun-Wei,WEI Hai-Yan,GUO Bao-Wei,HUO Zhong-Yang,DAI Qi-Gen,ZHANG Hong-Cheng* . Canopy Structure and Photosynthetic Characteristics of Yongyou Series of Indica-Japonica Hybrid Rice under High-yielding Cultivation Condition [J]. Acta Agron Sin, 2015, 41(02): 286-296.
[7] JIANG Yuan-Hua,XU Jun-Wei,ZHAO Ke,WEI Huan-He,SUN Jian-Jun,ZHANG Hong-Cheng*,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,GUO Bao-Wei. Root System Morphological and Physiological Characteristics of Indica-japonica Hybrid Rice of Yongyou Series [J]. Acta Agron Sin, 2015, 41(01): 89-99.
[8] WEI Huan-He,JIANG Yuan-Hua,ZHAO Ke,XU Jun-Wei,ZHANG Hong-Cheng,DAI Qi-Gen,HUO Zhong-Yang,XU Ke,WEI Hai-Yan,ZHENG Fei. Characteristics of Super-high Yield Population in Yongyou Series of Hybrid Rice [J]. Acta Agron Sin, 2013, 39(12): 2201-2210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!